Skip to content

Advertisement

  • Research article
  • Open Access

Neglected zoonotic agents in cattle abortion: tackling the difficult to grow bacteria

BMC Veterinary ResearchBMC series – open, inclusive and trusted201713:373

https://doi.org/10.1186/s12917-017-1294-y

  • Received: 28 March 2017
  • Accepted: 21 November 2017
  • Published:

Abstract

Background

Coxiella burnetii, Chlamydia abortus and Leptospira spp. are difficult to grow bacteria that play a role in bovine abortion, but their diagnosis is hampered by their obligate intracellular lifestyle (C. burnetii, C. abortus) or their lability (Leptospira spp.). Their importance is based on the contagious spread in food-producing animals, but also as zoonotic agents. In Switzerland, first-line routine bacteriological diagnostics in cattle abortions is regulated by national law and includes only basic screening by staining for C. burnetii due to the high costs associated with extended spectrum analysis. The aim of this study was to assess the true occurrence of these zoonotic pathogens in 249 cases of bovine abortion in Switzerland by serology (ELISA for anti-C. burnetii and C. abortus antibodies and microscopic agglutination test for anti-Leptospira spp. antibodies), molecular methods (real-time PCR and sequencing of PCR products of Chlamydiales-positive cases), Stamp’s modification of the Ziehl-Neelsen (mod-ZN) stain and, upon availability of material, by histology and immunohistochemistry (IHC).

Results

After seroanalysis the prevalence was 15.9% for C. burnetii, 38.5% for C. abortus and 21.4% for Leptospira spp. By real-time PCR 12.1% and 16.9% of the cases were positive for C. burnetii and Chlamydiales, respectively, but only 2.4% were positive for C. burnetii or Chlamydiales by mod-ZN stain. Sequencing of PCR products of Chlamydiales-positive cases revealed C. abortus in 10% of cases and the presence of a mix of Chlamydiales-related bacteria in 5.2% of cases. Pathogenic Leptospira spp. were detected in 5.6% of cases. Inflammatory lesions were present histologically in all available samples which were real-time PCR-positive for Chlamydiales and Leptospira spp. One of 12 real-time PCR-positive cases for C. burnetii was devoid of histological lesions. None of the pathogens could be detected by IHC.

Conclusion

Molecular detection by real-time PCR complemented by histopathological analysis is recommended to improve definitive diagnosis of bovine abortion cases and determine a more accurate prevalence of these zoonotic pathogens.

Keywords

  • Coxiella burnetii
  • Chlamydiales
  • Leptospira spp.
  • Bovine abortion
  • Zoonosis

Background

Abortion in dairy cattle is one of the major causes of economic loss in the livestock industry [1] and three of the bacterial agents that are implicated in bovine abortion during mid- to late-gestation are the difficult to grow: Coxiella burnetii, Chlamydia abortus and pathogenic Leptospira spp. Their importance is based on not only in the economic loss in animal production but also in their zoonotic risk [24].

C. abortus and C. burnetii are obligate intracellular Gram-negative bacteria. C. abortus, the causative agent of ovine enzootic abortion, may also lead to reproductive disorders in large ruminants [2, 5] and is known to cause spontaneous abortion in pregnant women [5, 6]. Other members of the families Chlamydiaceae, Parachlamydiaceae and Waddliaceae have also been found to play a possible role in abortion in ruminants as well as in humans [711]. C. burnetii has a wide host range, including domestic and wild animals. Infection in most animals is subclinical or presents with non-specific clinical signs, whereas ruminants, the main reservoir of infection, may present with late abortion and stillbirths; moreover, C. burnetii might be associated with metritis and infertility in cattle [3, 1218]. Human infection with C. burnetii is known as Q fever and can lead to miscarriage in women [1921]. Leptospirosis is caused by Gram-negative, pathogenic spirochetes of the genus Leptospira that is divided in more than 250 pathogenic serovars worldwide, which are classified into 25 serogroups on the basis of their serological phenotype. In cattle, leptospirosis is mainly associated with reproductive problems including infertility, low conception rate, abortion, stillbirths and weak offspring [2224]. Cattle are considered to be the maintenance host of serovar Hardjo resulting in a high degree of subclinical infections [25]. Human leptospirosis occurs worldwide, is transmitted via direct or indirect contact with urine from infected animals and is due mostly to recreational and occupational activities [2628]. Numerous outbreaks of leptospirosis worldwide have been also associated with heavy rainfall and flooding [29, 30]. Abortion in women due to leptospirosis may occur if infection takes place during pregnancy [31, 32].

Given the numerous possible etiologies of abortion in ruminants and the high cost of definitive diagnosis, a finance-limited investigation is performed usually, and the causative agent often remains undetermined [33]. Of the three cattle abortifacient pathogens discussed, only investigation of C. burnetii is legally regulated in Switzerland requiring Stamp’s modification of the Ziehl-Neelsen (mod-ZN) stain [34] of tissue smears [Ordinance on Epizootic Diseases (TSV) SR.916.401; Article 129].

According to the epizootics database of the Swiss Federal Food Safety and Veterinary Office (InfoSM www.infosm.blv.admin.ch, consulted on 02/08/2017), 676 cases of coxiellosis in cattle were reported from 2006 to 2016. Although pathogenic Leptospira spp. and C. abortus are not included in routine bovine abortion diagnostics and, moreover, Leptospira interrogans serovar Hardjo is exempt from mandatory notification in cattle, 43 cases of leptospirosis and 23 cases of chlamydiosis in cattle were reported in the same time frame.

In this study, the recommended mod-ZN method was complemented with serology, molecular methods, histology and immunohistochemistry to determine the degree of underestimation of the three abortifacient pathogens C. burnetii, C. abortus and pathogenic Leptospira spp. in bovine abortion in Switzerland.

Methods

Collection of samples

Samples from 249 cases of bovine abortion from different cantons of Switzerland were collected from October 2012 to October 2015 [Bern (n = 213), Vaud (n = 7), Fribourg (n = 6), Jura (n = 6), Solothurn (n = 6), Aargau (n = 2), Basel-Land (n = 2), Neuchâtel (n = 2), Valais (n = 2), Zurich (n = 2) and Luzern (n = 1)]. The 249 cases comprised 242 placentas, 57 fetal abomasal contents and 182 maternal sera submitted for routine abortion diagnostics. Placenta from a healthy calf was included as a negative control.

Stamp’s modification of the Ziehl-Neelsen stain

Smears of placentas, abomasal contents (n = 299) and the negative control placenta were subjected to mod-ZN staining [32] and examined by light microscopy. Chlamydia-positive placental tissue was included as positive control in every stain. The sample was considered positive for Chlamydiales and/or C. burnetii when intracytoplasmic red-stained coccobacilli appeared in clumps against a blue background. The technique does not allow a differentiation between Chlamydiales and C. burnetii.

Serological studies

The 182 maternal sera were tested for antibodies against C. burnetii and C. abortus using the commercial CHEKIT® Q fever antibody ELISA Test Kit and CHEKIT® C. abortus Antibody Test Kit (IDEXX, Liebefeld-Bern, Switzerland) according to the manufacturer’s instructions. The results were expressed as S/P values and derived from the ratio between optical density (OD) of the sample (S) and the OD of positive control (P) included in the kits. IDEXX state an S/P  ≥ 40% is considered positive, an S/P  < 30% is considered negative, and S/P values between these are considered suspect positive.

The serological detection of antibodies against Leptospira spp. was performed by microscopic agglutination test (MAT) (Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the Ordinance of Epizootic Diseases [22]). Twelve serovars were included in the test panel: Australis, Autumnalis, Ballum, Bataviae, Bratislava, Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, Pomona, Sejroe and Tarassovi (Additional file 1: Table S1). Sera were screened initially for agglutination at a dilution of 1:100 in sterile 0.85% NaCl. Reactive sera were titrated in two-fold serial dilutions to determine the end-point titer defined as the dilution at which at least 50% agglutination occurs. In every serological analysis negative and positive control sera were included as controls.

DNA extraction and molecular studies

For the extraction of total genomic DNA 2 g of placenta or 2 mL of fetal abomasal content were suspended in 5 mL 0.85% NaCl in an IKA® DT-20 tube [35] and homogenized twice for 30 s at 6000 rpm, using the IKA ULTRA-TURRAX® tube drive. Subsequently, 500 μL of the homogenates were used for DNA extraction using QIAamp Mini Kit (Qiagen, Hombrechtikon, Switzerland). Fluorometric quantification of DNA was performed by Quantus™ Fluorometer (Promega, Dübendorf, Switzerland).

Real-time PCR targeting the IS1111 of C. burnetii was performed according to Howe et al. [36]: IS1111-F801: 5′ AATTTCATCGTTCCCGGCAG 3′; IS1111-R901: 5′ GCCGCGTTTACTAATCCCCA 3′; probe IS1111-p822S-MGB: 5′ 6FAM-TGTCGGCGTTTATTGG–MGBNFQ 3’. PCR was performed in a total volume of 25 μL, 1X final concentration of TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA, USA), 1 μM of each primer, 80 nM of the probe, 0.5X of internal positive control (IPC) Template, 0.5X IPC Mix and 2.5 μL of the template. The following conditions were applied: 94 °C for 2 min, 40 cycles of 94 °C for 15 s and 60 °C for 30 s. Amplification was performed in duplicate on the TaqMan 7500 Fast Real-time PCR System (Applied Biosystems, Zug, Switzerland). As positive and negative controls C. burnetii DNA and water were used, respectively. Samples were considered positive when showing an exponential amplification curve up to cycle 39 in both replicates.

A pan-Chlamydiales real-time PCR targeting the Chlamydiales 16S rDNA was performed according to Lienard et al. [37]: panCh16F2: 5’ CCGCCAACACTGGGACT 3’; panCh16R2: 5’ GGAGTTAGCCGGTGCTTCTTTAC 3’; probe panCh16S: 5’ 6FAM-CTACGGGAGGCTGCAGTCGAGAATC-BHQ1 3’. PCR assays were performed in 20 μL, with iTaq Supermix with ROX (Bio-Rad, Reinach, Switzerland), 0.1 μM concentrations of each primer (Eurogentec, Seraing, Belgium), a 0.1 μM concentration of probe (Eurogentec), molecular-biology-grade water (Sigma-Aldrich, Buchs, Switzerland) and 5 μL of DNA sample. The cycling conditions were 3 min at 95 °C, followed by 50 cycles of 15 s at 95 °C, 15 s at 67 °C and 15 s at 72 °C. Samples were tested in duplicate using a StepOnePlus™ Real-time PCR System (Applied Biosystems, Foster City, CA, USA). As positive and negative controls C. abortus DNA and water were used, respectively. Samples were considered positive when showing an exponential amplification curve up to cycle 40 in both replicates. Samples exhibiting a cycle threshold (Ct) of ≤35 cycles were sequenced using specifically designed internal sequencing primers as described by Lienard et al. [37]. Obtained sequences were edited and analyzed by BLAST on the NCBI website (http://www.ncbi.nlm.nih.gov).

Real-time PCR targeting the lipL32 gene of Leptospira spp. was performed using primers and probe described by Villumsen et al. [38]: LipL32-F: 5′ AGAGGTCTTTACAGAATTTCTTTCACTACCT 3′; LipL32-R: 5′ TGGGAAAAGCAGACCAACAGA 3′; probe LipL32-P: 5' 6FAM-AAGTGAAAGGATCTTTCGTTGC-MGBNFQ 3'. PCR was performed in a total volume of 25 μL, 1X final concentration of TaqMan Universal PCR Master Mix, 1 μM of each primer, 80 nM of the probe, 0.5X of IPC Template and 0.5X IPC Mix and 2.5 μL of the template. The following conditions were applied: 94 °C for 2 min, 45 cycles of 94 °C for 15 s and 60 °C for 30 s using the TaqMan 7500 Fast Real-time PCR System. DNA of Leptospira spp. serovar Icterohaemorrhagiae strain RGA and water were used as positive and negative controls, respectively. Samples were considered positive when showing an exponential amplification curve up to cycle 40 in both replicates.

Histopathology

To assess the significance of the molecular analysis, all cases with real-time PCR-positive results were examined histopathologically and by IHC (n = 32) when the placental tissue was available and was not severely autolytic. Selected samples of placenta were fixed in buffered formalin (10%), processed routinely through graded alcohols and embedded in paraffin-wax. Sections (4 μm) were mounted on Thermo Scientific™ SuperFrost Plus© (Braunschweig, Germany) slides and stained with hematoxylin and eosin (HE) for histological evaluation.

Antibodies

For immunohistochemistry, mouse monoclonal anti-Coxiella burnetii antibody (clone 3.13, Squarix GmbH, Marl, Germany) diluted 1:500 in Tris-buffered saline (TBS), an anti-Chlamydiaceae-specific antibody directed against the chlamydial lipopolysaccharide (LPS, Clone ACI-P, Progen, Heidelberg, Germany) diluted 1:200 in antibody diluent (Glostrup, Denmark) and a rabbit polyclonal anti-LipL32 antibody (kindly provided by Dr. Jarlath Nally) diluted 1:1000 in phosphate-buffered saline (PBS) for detection of pathogenic Leptospira spp. were used.

Immunohistochemistry (IHC)

All real-time PCR-positive cases for C. burnetii (n = 13), Chlamydiales (n = 14) and Leptospira spp. (n = 5) were subjected to immunohistochemistry when tissue was available and not autolytic.

Briefly, for all three antibodies 4 μm thick sections were deparaffinized and rehydrated through graded alcohols.

For C. burnetii, sections were immersed in 3% H2O2 in methanol (v/v) for 20 min to quench endogenous tissue peroxidases. Non-specific antibody binding was blocked with 25% normal goat serum (NGS, Vector Laboratories, Peterborough, UK) in TBS for 30 min and incubated with the primary antibody overnight at 4 °C. Visualization of the bound anti-C. burnetii primary antibody was by EnVision Kit (goat anti-mouse horseradish peroxidase conjugate, DakoCytomation, Ely, UK) according to the manufacturer’s instructions followed by addition of the chromogen 3-amino, 9-ethyl-carbazole (AEC, Vector Laboratories, Peterborough, United Kingdom) for 10 min.

Chlamydiaceae immunohistochemistry was performed as described by Borel et al. [39] using the detection kit Dako ChemMate (Dako, Glostrup, Denmark).

Immunohistochemistry for pathogenic Leptospira spp. was performed using the avidin-biotin-peroxidase complex (ABC) method. Sections were treated with 0.5% H2O2 in methanol (v/v) for 30 min to block endogenous peroxidase, heated in sodium-citrate buffer for 30 min in the microwave for antigen retrieval, incubated with 20% goat serum for 30 min, then incubated with the respective primary antibody overnight at 4 °C. Biotinylated goat-anti-rabbit IgG (BA-1000) diluted 1:200 in PBS (Vector Laboratories, Burlingame, CA, USA) was used as secondary antibody with incubation time of 60 min. Colour development was with 3,3′-diaminobenzidine tetrahydrochloride (DAB) with H2O2 (0.03%, pH 7.2) for 5 min.

Sections immunolabeled with the respective primary antibodies against Chlamydiaceae, C. burnetii and pathogenic Leptospira spp. were all counterstained with hematoxylin prior to mounting in an appropriate mountant.

Four qPCR-negative cases for all three agents were included as negative controls. For C. burnetii and pathogenic Leptospira spp., primary antibodies were substituted with an isotype matched normal mouse IgG antibody or normal rabbit IgG (1:3000; R4505; Sigma Aldrich, Taufkirchen, Germany), respectively, as method negative control preparations.

Sections of intestinal tissue from gnotobiotic piglets experimentally infected with porcine Chlamydia suis strain S45/6, C. burnetii-positive sheep and human placentas and hamster kidney infected with L. interrogans serovar Hardjo JB191 were included as positive controls.

Statistical analysis

We calculated the degree of agreement between the serological and the molecular tests for C. burnetii, C. abortus and Leptospira spp. carried out in 182 cases using Cohen’s kappa (κ) coefficient with 95% of CIs with the online software GraphPad (http://graphpad.com/quickcalcs/kappa2). Standard cutoffs were used to define poor (κ < 0.40), fair (κ = 0.41–0.60), good (κ = 0.61–0.80) and very good agreement (κ ≥ 0.80). The techniques that do not allow for detection of a specific pathogen or yielded only negative results were not included in the comparison.

Results

Stamp’s modification of the Ziehl-Neelsen stain

Of the 299 tissue smears, 10 placental smears and two of abomasal contents were positive as denoted by the presence of red intracytoplasmic organisms consistent with coccobacilli. One of the positive placenta and abomasal content samples were from the same case (Additional file 2: Table S2).

Detection by serological analysis

Of the 182 sera tested, 29 (15.9%) were positive for C. burnetii and two (1.1%) were suspect positive. Chlamydial antibodies were detected in 70 (38.5%) of the 182 sera and 23 (12.6%) sera were suspect positive. The prevalence of antibodies against Leptospira spp. was 39/182 (21.4%), with 21 (11.5%) sera being positive for at least two serovars. Serovar Hardjo was the most frequent (31/39) followed by serovar Sejroe (14/39). Yet, 12 sera were positive for both serovars with 10 sera showing a higher titer for Hardjo and, hence, indicating that the latter is the causative serovar. Six cases were positive for serovar Australis (Table 1).
Table 1

Positive samples by microscopic agglutination test for the 12 tested serovars of Leptospira spp.

Sample ID

Serovar

Har

Sej

Aus

Bal

Bra

Aut

Gri

Ict

Pom

Tar

Bat

Can

12Ue1157

1:400

     

1:400

     

13Ue0703

1:400

    

1:200

      

13Ue0920

1:400

 

1:400

         

13Ue1137

1:200

           

13Ue1300

1:1600

1:3200

       

1:100

  

13Ue1475

1:3200

           

13Ue1631

1:400

 

1:3200

 

1:3200

       

13Ue1769

1:3200

           

14A0004

1:3200

           

14A0027

1:3200

1:1600

          

14A0032

  

1:3200

         

14A0035

  

1:3200

         

14A0051

1:800

           

14A0057

 

1:200

          

14A0078

1:3200

           

14A0088

  

1:3200

 

1:3200

       

14A0090

1:3200

           

15A0004

1:1600

1:200

          

15A0019

1:800

           

15A0060

 

1:400

          

15A0063

1:1600

1:400

          

15A0082

1:1600

1:400

          

15A0086

1:1600

  

1:400

        

15A0093

  

1:1600

 

1:400

1:800

      

15A0103

1:400

           

15A0107

1:800

1:100

          

15A0112

1:1600

1:200

          

15A0114

1:800

1:200

          

15A0122

1:400

           

15A0127

1:400

           

15A0135

1:400

           

15A0137

1:800

       

1:400

   

15A0146

1:800

1:100

          

15A0147

   

1:200

        

15A0149

1:800

1:400

          

15A0157

1:400

1:200

          

15A0162

1:100

1:200

          

15A0167

1:800

           

15A0171

   

1:200

   

1:800

    

Total no.

31

14

6

3

3

2

1

1

1

1

0

0

Har Hardjo, Sej Sejroe, Aus Australis, Bal Ballum, Bra Bratislava, Aut Autumnalis, Gri Grippotyphosa, Ict Icterohaemorrhagiae, Pom Pomona, Tar Tarassovi, Bat Bataviae, Can Canicola

Detection by molecular analysis

Real-time PCR detection of C. burnetii was positive in 28/242 (11.6%) placenta and 7/57 (12.3%) abomasal content samples. The pan-Chlamydiales real-time PCR was positive for 41/242 placenta (16.9%) and 2/57 (3.5%) abomasal content samples. The results after amplicon sequencing of positive samples with a Ct ≤ 35 are summarized in Table 2. C. abortus was detected in 24 placenta samples and in one abomasal content sample. New Chlamydia-related bacteria were detected in four placenta samples. All four were distantly related to known species but all four could be assigned to the Parachlamydiaceae family since they exhibited >90% similarity with at least a member of this clade. The sequencing of the remaining 12 samples was not discriminatory because of superposition of sequences, probably due to the presence of more than one member of the Chlamydiales order in the sample. Real-time PCR for the detection of Leptospira spp. was positive for 14/242 (5.8%) samples of placenta and 1/57 (1.8%) samples of abomasal contents. For seven of the samples positive by real-time PCR, serum for analysis by MAT was available and was positive in five cases (serovar Hardjo, n = 4; serovar Icterohaemorrhagiae, n = 1) and negative in two cases. All the results of the molecular analyses are included in Additional file 2: Table S2 and the percentage of positive placenta and abomasal content samples is summarized in Fig. 1.
Table 2

Sequence results of Chlamydiales samples positive by real-time PCR. Not interpretable: presence of multiple peaks

Sample ID

Organ

Related microorganism

GenBank accession no.

Similarity %

12Ue0622

Placenta

Not interpretable

12Ue1119

Placenta

Chlamydia abortus

Z49871

100

12Ue1503

Placenta

Uncultured Chlamydiales bacterium

clone HE210023biof

JX083111

99.3

12Ue1510

Placenta

Chlamydia abortus

NR_036834

100

13Ue0490

Placenta

Chlamydia abortus

Z49871

94.7

13Ue0499

Placenta

Not interpretable

 –

– 

13Ue0815

Placenta

Chlamydiales bacterium cvE71

JF706724

96

13Ue0857

Placenta

Chlamydia abortus

Z49871

100

13Ue1009

Placenta

Chlamydia abortus

Z49871

99.3

13Ue1293

Placenta

Chlamydia abortus

Z49871

100

13Ue1359

Placenta

Chlamydia abortus

Z49871

100

14A0078

Placenta

Chlamydia abortus

Z49871

98.5

15A0068

Placenta

Chlamydia abortus

Z49871

90.8

15A0076

Placenta

Not interpretable

15A0078

Placenta

Chlamydia abortus

Z49871

99.5

15A0079

Placenta

Chlamydia abortus

Z49871

99.8

15A0080

Placenta

Chlamydia abortus

Z49871

99.5

15A0082

Placenta

Chlamydia abortus

Z49871

96.2

15A0087

Placenta

Uncultured Chlamydiales bacterium

clone P-9

AF364575

97

15A0091

Placenta

Chlamydia abortus

Z49871

92

15A0092

Placenta

Chlamydia abortus

Z49871

100

15A0093

Placenta

Chlamydia abortus

Z49871

90.8

15A0096

Placenta

Chlamydia abortus

Z49871

99.5

15A0096

Abomasal content

Chlamydia abortus

Z49871

99.5

15A0099

Placenta

Not interpretable

15A0104

Placenta

Chlamydia abortus

Z49871

100

15A0107

Placenta

Not interpretable

15A0111

Placenta

Chlamydia abortus

Z49871

99.5

15A0113

Placenta

Chlamydia abortus

Z49871

100

15A0114

Placenta

Chlamydia abortus

Z49871

99.5

15A0117

Placenta

Not interpretable

15A0118

Placenta

Chlamydia abortus

Z49871

96.8

15A0121

Placenta

Chlamydia abortus

Z49871

98.1

15A0122

Placenta

Chlamydia abortus

Z49871

97.6

15A0126

Abomasal content

Not interpretable

15A0129

Placenta

Not interpretable

15A0137

Placenta

Not interpretable

15A0148

Placenta

Not interpretable

15A0155

Placenta

Parachlamydia acanthamoebae strain Bn9

NR_026357

90.3

15A0160

Placenta

Not interpretable

15A0172

Placenta

Not interpretable

Fig. 1
Fig. 1

Incidence of placenta and abomasal content samples that were positive by real-time PCR for Coxiella burnetii, Chlamydiales and/or pathogenic Leptospira spp.

To compare serological and molecular techniques we analyzed 182 cases that were processed by ELISA, MAT and PCR (Fig. 2). All three pathogens had more positive results in the serological analyses than in the molecular analysis, with C. abortus having the highest seropositivity. Results from samples that were positive by real-time PCR for more than one pathogen are summarized in Table 3.
Fig. 2
Fig. 2

Incidence of seropositive cases and their corresponding samples that were positive by real-time PCR for Coxiella burnetii, Chlamydiales and/or pathogenic Leptospira spp.

Table 3

Results of six cases of bovine abortion which were positive for more than one pathogen

Lab ID

Cox-ELISA

Cab-ELISA

Lep MAT

Lep Serovar

Organ

mod-ZN Cox-Chl

Cox-qPCR

Chl-qPCR

Lep-qPCR

12Ue0622

NA

NA

NA

 

AC

+

     

PL

+

+

13Ue1009

+

S

 

PL

+

+

14A0078

+

Har

PL

+

+

15A0087

S

 

PL

+

+

15A0092

S

 

PL

+

+

15A0099

 

PL

+

+

15A0107

+

+

Har/Ser

PL

+

+

+

Cox Coxiella burnetii, Cab Chlamydia abortus, Lep pathogenic Leptospira spp., MAT Microscopic Agglutination Test, PL placenta, AC abomasal content, mod-ZN Stamp’s modification of the Ziehl-Neelsen stain, Chl Chlamydiales, NA not available, +: positive result, : negative result, S suspect positive, Har Hardjo, Sej Sejroe, Aus Australis, Bal Ballum, Bra Bratislava, Aut Autumnalis, Gri Grippotyphosa, Ict Icterohaemorrhagiae, Pom Pomona, Tar Tarassovi. The serovars are in descending order regarding the titer

Histopathology and IHC

The severity of the placentitis, necrosis, inflammatory cell infiltrate and vasculitis in all real-time PCR-positive cases of C. burnetii, Chlamydiales and Leptospira spp. that were evaluated histologically (when tissue was available and not autolytic) varied greatly and the histological findings are summarized in Table 4.
Table 4

Histological lesions in placentas from Coxiella burnetii, Chlamydiales and Leptospira spp. positive cases by real-time PCR

Sample ID

Placentitis

Necrosis

Type of infiltrate

Vasculitis

Presence of ICBa

Presence of ECBb

IHC

pos C. burnetii (n = 13)

 12Ue0622

Moderate

Moderate

Mixed

Yes

Yes

No

Neg

 13Ue0536

Moderate

Mild

Mixed

No

No

No

Neg

 13Ue0858

Mild

Moderate

Mixed

No

Yes

No

Neg

 13Ue1008

Moderate

Moderate

Mixed

Yes

No

No

Neg

 13Ue1009

Moderate

Moderate

Mixed

Yes

No

No

Neg

 13Ue1414

Mild

Mild

Neutrophilic

No

Yes

Yes

Neg

 13Ue1488

Mild

Moderate

Neutrophilic

No

Yes

Yes

Neg

 13Ue1524

Mild

Mild

Mixed

Yes

Yes

Yes

Neg

 13Ue1644

No

No

No

No

No

No

Neg

 14A0076

Mild

No

Neutrophilic

No

No

Yes

Neg

 15A0086

Mild

Moderate

Mixed

No

Yes

Yes

Neg

 15A0101

Moderate

Moderate

Mixed

No

No

Yes

Neg

 15A0107

Severe

Severe

Mixed

Yes

Yes

No

Neg

pos Chlamydiales (n = 14)

 12Ue0622

Moderate

Moderate

Mixed

Yes

Yes

No

Neg

 12Ue1503

Mild

Mild

Mixed

No

No

Yes

Neg

 13Ue1009

Moderate

Moderate

Mixed

Yes

No

No

Neg

 15A0076

Moderate

Moderate

Mixed

Yes

Yes

Yes

Neg

 15A0078

Severe

Moderate

Mixed

No

No

Yes

Neg

 15A0080

Moderate

Moderate

Mixed

No

No

Yes

Neg

 15A0082

Severe

Mild

Mixed

No

No

Yes

Neg

 15A0093

Mild

Moderate

Mixed

No

No

Yes

Neg

 15A0104

Moderate

Mild

Mixed

Yes

No

Yes

Neg

 15A0107

Severe

Severe

Mixed

Yes

Yes

No

Neg

 15A0121

Mild

Mild

Mononuclear

No

No

Yes

Neg

 15A0122

Mild

Moderate

Neutrophilic

No

No

Yes

Neg

 15A0137

Severe

Moderate

Mixed

Yes

Yes

Yes

Neg

 15A0148

Moderate

Moderate

Mixed

Yes

No

Yes

Neg

pos Leptospira spp. (n = 5)

 12Ue1016

Severe

Mild

Mixed

No

No

Yes

Neg

 12Ue1185

Severe

Mild

Mixed

No

Yes

Yes

Neg

 15A0011

Mild

Mild

Mononuclear

No

No

Yes

Neg

 15A0107

Severe

Severe

Mixed

Yes

Yes

No

Neg

 15A0127

Mild

Mild

Mononuclear

No

No

Yes

Neg

aPresence of intracytoplasmic bacteria (ICB). bPresence of extracellular bacteria (ECB)

Regardless of the etiological agent, if necrosis was present in the cotyledon it was multifocal, randomly distributed and affected the chorioallantoic stroma and the villi including the trophoblasts.

Placentitis was present in 12 of 13 samples that were positive for C. burnetii by real-time PCR. Necrosis was present in 11 of 13 cases. Mixed inflammatory infiltrates characterized by neutrophils, macrophages and lymphocytes were present in nine of 13 cases and only three cases were designated as suppurative placentitis. Vasculitis was present in five of 13 cases and characterized by infiltration of neutrophils, macrophages and lymphocytes primarily in the tunicae media and adventitia resulting in mild fibrinoid necrosis only (Fig. 3a). All cases positive for Chlamydiales by real-time PCR had placentitis and necrosis. Mixed inflammatory cell infiltrates were present in 12 of 14 cases, only one was designated suppurative and one case was infiltrated by macrophages and lymphocytes (mononuclear) only. Vasculitis was present in seven of the 14 cases (Fig. 3b). Similarly, all cases of Leptospira spp. positive by real-time PCR had placentitis and necrosis (Fig. 3c). Mixed inflammatory cell infiltrates were present in three of five cases, while in two cases the inflammation was comprised of mononuclear leukocytes only. For cases positive for Leptospira spp. by real-time PCR no suppurative placentitis was found and only one case had vasculitis.
Fig. 3
Fig. 3

Histopathology of representative placental samples from bovine abortions positive by real-time PCR for: Coxiella burnetii (a), Chlamydia abortus (b) and pathogenic Leptospira spp. (c). Infection with either C. burnetii (a) or C. abortus (b) was characterized by variable degrees of vasculitis (arrow) and necrosis (arrowhead). Cases positive for pathogenic Leptospira spp. by real-time PCR (c) showed variable severities of necrosis (arrowhead) and lacked vasculitis. HE, bar 100 μm

Immunohistochemical analysis failed to visualize C. burnetii, Chlamydiales and Leptospira spp. in all sections evaluated (Table 4).

Statistical analysis

The Cohen’s kappa coefficient is summarized in Table 5. The degree of agreement between the serological and the molecular diagnostic techniques for C. burnetii, C. abortus and Leptospira spp. was poor with κ = 0.103 ± 0.086, κ = −0.006 ± 0.067 and κ = 0.163 ± 0.074, respectively.
Table 5

Cohen’s kappa (κ) coefficient with 95% of CIs to assess the degree of agreement between molecular and serological techniques for the diagnosis of C. burnetii, C. abortus and Leptospira spp.

 

C. burnetii

C. abortus

Leptospira spp.

Number of observed agreements

145 (79.67% of the observations)

103 (56.59% of the observations)

146 (80.22% of the observations)

Number of agreements expected by chance

140.7 (77.33% of the observations)

103.5 (56.85% of the observations)

139.0 (6.37% of the observations)

Kappa (κ)

0.103 ± 0.086

−0.006 ± 0.067

0.163 ± 0.074

95% CIs

−0.065 to 0.272

−0.137 to 0.126

0.018 to 0.308

Strength of agreement

Poor

Poor

Poor

Discussion

This study investigated, concomitantly, the prevalence of C. burnetii, C. abortus and pathogenic Leptospira spp. DNA in bovine abortion material and seroconversion in affected dams and highlights the underestimation associated with using a single staining technique. Although detection of any of these pathogens does not equate invariably to causality with respect to bovine abortion, their presence does invariably represent a high zoonotic risk and a possible reservoir of infection for other animals.

The frequency of antibodies specific for C. burnetii in dams was 15.9%, comparable to the reported seroprevalence of 16.7% in aborting cows in Switzerland by Hässig and Lubsen [40]. However, previous studies reported similar seropositivity for C. burnetii antibodies but in healthy cows and in different European countries (Bulgaria 20.8%; France 15%; Germany 19.3% and the Netherlands 21%) [41] suggesting serological results are not reliable for diagnostic purposes. With 38.4% positive and 13.0% suspect positive reactions the seropositivity to anti-C. abortus antibodies was the highest of the three abortifacient pathogens investigated in this study. This result was in agreement with studies in other countries which also reported a high prevalence of anti-chlamydial antibodies in cattle, with seropositivity ranging from 45% to 100% [42]. However, such high seropositivity rates have to be interpreted with caution. Firstly, a single seropositive result is not necessarily related to the etiology of the abortion and might be due to a previous exposure [43]. Secondly, serological tests may not be C. abortus specific and positive titers can arise from cross-reactivity to C. pecorum, a common intestinal opportunistic chlamydial species found in ruminants [44]. The frequency of Leptospira spp. antibodies was 21.4% and primarily due to serovar Hardjo (seroprevalence of 17.0%). The implication of a positive titer to serovar Hardjo on fetal loss remains controversial as many studies failed to show a causal association between seropositivity and abortion [22, 4548], while others described Hardjo as a cause of abortions [49, 50]. The interpretation of the serological results for Leptospira spp. should be done carefully since there is cross-reactivity between serovars of the same serogroup; nevertheless, the infecting serovar is more likely to show the higher titer [22, 51]. Although Sejroe was the second most prevalent serovar (14 cases), 12 cases were positive for serovars Hardjo and Sejroe, belonging to the same serogroup. Yet, Hardjo presented the higher titer in 10 cases making Australis (six cases) the second most frequent serovar. Abortion in cattle due to serovar Hardjo is a chronic event with a variable serological response at the time of abortion [22] and confirmation of infection by MAT is difficult because maternal antibody production mostly occurs prior to fetal death [52].

Molecular detection of DNA of abortifacient agents has been shown to be highly sensitive and specific [37, 5355]. By real-time PCR we detected C. burnetii in 12.1% of cases, similar to findings in Italy (11.3%) obtained by nested PCR [56] but lower than results by classical PCR from Portugal (17.2%) [57] and by real-time PCR from Hungary (25.9%) [58]. These findings, although obtained with different techniques, may reflect different endemicity. Furthermore, we showed the capacity of C. burnetii of spreading via the amniotic-oral route [59, 60] with the 7/57 samples of abomasal content being positive. Of the 21 real-time PCR positive cases of C. burnetii, 15 were seronegative suggesting early stages of infection when antibodies are not yet present, or environmental contamination of samples or failure of the dam to seroconvert occurred. In contrast, 23 cases with positive sera were negative by real-time PCR suggesting previous exposure to C. burnetii is not uncommon. The statistical analysis showed a poor agreement (κ = 0.103 ± 0.086) between the serological and the molecular technique indicating that there is a poor relationship between the seropositivity of the dam for antibodies to C. burnetii and an abortion event as reported previously [6164]. It is important to keep in mind that real-time PCR is highly sensitive and thus able to detect low levels of C. burnetii. Yet, different strains harbor a very variable number of the target IS1111 (between 7 and 110) making quantification inaccurate for this bacterium [65]. For the final interpretation at herd-level it is recommended to include complementary techniques and consider the case history [18, 66].

Of 43 real-time PCR-positive samples for Chlamydiales (placenta, n = 41; abomasal content, n = 2) C. abortus could be identified by sequencing in 9.6% of the cases, although the prevalence could be higher because in 12 samples a single species could not be assigned due to multiple peaks. In Eastern Switzerland, C. abortus was considered not to play an important role in bovine abortion in studies by end-point PCR [39] and real-time PCR [67]. However, Blumer et al. [9] confirmed the presence of C. abortus in 14.8% of studied cases of abortion from Eastern Switzerland. We could detect members of the Parachlamydiaceae family in four samples confirming that Chlamydia-related bacteria could be involved in bovine abortion as reported previously [9, 39, 67] and could cause mixed infection [68]. It is noteworthy that some samples with Chlamydia-related bacteria, including P. acanthamoebae, were positive by C. abortus ELISA also. This result might be due to the production of antibodies that could cross-react with other chlamydial-species due to a genus-specific epitope of the lipopolysaccharide [44, 6971]. This might also be the underlying reason for the poor agreement (κ = −0.006 ± 0.067) between the serological and the molecular technique.

In six cases of coxiellosis we found evidence of coinfection with C. abortus and Chlamydiales-related bacteria. Although C. burnetii and Chlamydiales belong to phylogenetically unrelated species [72], they have some similarities in their interaction with the host and mechanisms of pathogenicity [73]. Thus, the diagnosis of either agent is usually established by microscopic examination of stained placenta smears in veterinary diagnostic laboratories but this cannot discriminate between the different organisms. Pritchard et al. [74] stated that the mod-ZN stain is insufficiently sensitive in cattle cotyledons. Our findings agree with this and confirm that the mod-ZN stain is not very sensitive for the detection of either C. burnetii or Chlamydiales infection in bovine abortion material and that it should be replaced by specific real-time PCRs.

Pathogenic Leptospira spp. had a prevalence of 5.6% by real-time PCR (placenta, n = 14; abomasal content, n = 1). The detection of leptospires in internal organs of aborted or stillborn fetuses reflects chronic leptospirosis of the mother and indicates an active infection of the fetus, but PCR-based diagnosis of leptospirosis alone cannot identify the infecting serovar; moreover, contamination with faeces or autolysis in clinical samples is known to lead to false-negative results [22]. Hence, the combination of both, molecular and serological techniques is of epidemiological value, even though no satisfactory agreement between techniques (κ = 0.163 ± 0.074) was achieved. Unfortunately, in only seven cases material was available for both analysis, and four sera of these were positive for serovar Hardjo and one for serovar Icterohaemorrhagiae. Two of the samples positive by real-time PCR for Leptospira spp. DNA were negative in MAT indicating an early stage of the infection or failure to detect seroconversion. In one case, pathogenic Leptospira spp., presumably identified as serovar Hardjo by serology, were detected together with C. burnetii and Chlamydiales and in another case we found possible coinfection between pathogenic Leptospira spp. and C. abortus.

Histological investigation and confirmation of the cellular inflammatory process indicative of infectious agents is important to unambiguously confirm the implication of a specific etiological agent especially if it could also be present in the commensal and the environmental microbiota [43]. However, as the cotyledonary lesions are not pathognomonic for any of the three pathogens investigated [39, 75], a definitive diagnosis based on histopathology only is not possible. Accordingly, in real-time PCR-positive cases of C. burnetii and Chlamydiales we found similar placental lesions varying only in the degree and severity of the inflammatory infiltrate. Although, vasculitis in the placenta of abortion cases is described as a prominent feature of C. abortus infections [39], it is not invariably present. Furthermore, vasculitis in the placenta is present frequently in cases of C. burnetii abortion [75, 76] as was observed in this study. Additionally, we found that not all Chlamydiales real-time PCR-positive cases displayed vasculitis, similar to previous reports [9, 39]. All Leptospira spp. real-time PCR-positive cases showed necrotizing placentitis with three and two displaying mixed and mononuclear inflammatory infiltrates, respectively. Vasculitis was not observed in any sample except one case which was real-time PCR-positive for C. burnetii and Chlamydiales also. Placental lesions caused by Leptospira spp. in bovine abortion are not well characterized but, based on our limited observations, vasculitis is not a prominent feature.

Lesion-associated pathogen detection is usually considered vital for definitive diagnosis to prove causality. However, we were not able to identify lesion-associated C. burnetii, Chlamydiales or Leptospira spp. by IHC in any of the analyzed slides. IHC is known to have lower sensitivity than real-time PCR [77, 78], especially when there is some degree of autolysis in the samples as is often the case for abortion material.

Limited first-line diagnostics (mod-ZN staining) could only detect possible abortifacient agents in 11 cases (4.4%) while real-time PCR detected a possible abortifacient agent in 78 cases (31.2%). The fact that (i) C. burnetii, Chlamydiales and Leptospira spp. are all difficult to culture, (ii) serology cannot exclude a past infection or confirm an ongoing infection and (iii) IHC apparently fails to demonstrate the presence of the agents, makes the molecular approach the method of choice.

Conclusions

In conclusion, we recommend an extended workflow including molecular analysis for routine abortion diagnostics to avoid the underestimation of the discussed agents and histological analysis to avoid misinterpretation of real-time PCR positive results. It would be prudent to use molecular methods initially and then subject positive cases to histological screening. For further epidemiological investigations complementary serological analyses should be considered. However, the real value of this work was determining the inherent public health risk with respect to these zoonotic pathogens and their prevalence in bovine abortion material as important source of infection.

Declarations

Acknowledgements

The authors would like to thank Dr. Jarlath Nally (Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA) for kindly providing the LipL32-antibody and are grateful to Valentine Jaquier, Isabelle Brodard and Stefanie Müller for technical assistance.

Funding

This study was financed by project 1.14.07 of the Swiss Federal Food Safety and Veterinary Office. Additional funding was obtained from the Institute of Veterinary Bacteriology, University of Bern and from the Scottish Government Rural and Environment Science and Analytical Services Division (RESAS).

Availability of data and materials

The datasets generated and analyzed during the current study are not publicly available. However, the data can be available from Authors upon request.

Authors’ contributions

SRC and VP conceived the study. SV and SRC were responsible for the study coordination and the data and sample collection. SV and SRC were responsible for the serological analyses and the real-time PCR of C. burnetii and Leptospira spp. SA and GG were responsible for the real-time PCR and sequencing of samples for Chlamydiales. KK and HP were responsible for pathological and histological investigation and immunohistochemistry for Leptospira spp. NB was responsible for immunohistochemistry of Chlamydiaceae. MPD was responsible for immunohistochemistry of C. burnetii. SV drafted the manuscript. SRC and MPD edited the manuscript. All of the authors read and approved the final manuscript.

Ethics approval and consent to participate

All samples included in this study were received as routine diagnostic submissions for the screening of abortions as prescribed by law.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
(2)
Graduate School for Cellular and Biomedical Sciences, Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3001 Bern, Switzerland
(3)
Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland
(4)
Institute of Microbiology, University Hospital Center and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Switzerland
(5)
Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, CH – 8057 Zurich, Switzerland
(6)
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK

References

  1. Hässig M, Eggenberger E, Künzle S, Rüsch P. Reassessment of the herd consultation in facilities with accumulated abortions in cattle. Schweiz Arch Tierheilkd. 2000;142(2):55–64.PubMedGoogle Scholar
  2. Rodolakis A, Salinas J, Papp J. Recent advances on ovine chlamydial abortion. Vet Res. 1998;29(3–4):275–88.PubMedGoogle Scholar
  3. Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12(4):518–53.Google Scholar
  4. McDaniel CJ, Cardwell DM, Moeller RB, Jr., Gray GC. Humans and cattle: a review of bovine zoonoses. Vector Borne Zoonotic Dis. 2014;14(1):1-19.Google Scholar
  5. Longbottom D, Coulter LJ. Animal chlamydioses and zoonotic implications. J Comp Pathol. 2003;128(4):217–44.View ArticlePubMedGoogle Scholar
  6. Pospischil A, Thoma R, Hilbe M, Grest P, Gebbers JO. Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med Wkly. 2002;132(5–6):64–6.PubMedGoogle Scholar
  7. Borel N, Ruhl S, Casson N, Kaiser C, Pospischil A, Greub G. Parachlamydia spp. and related Chlamydia-like organisms and bovine abortion. Emerg Infect Dis. 2007;13(12):1904–7.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Baud D, Goy G, Gerber S, Vial Y, Hohlfeld P, Greub G. Evidence of maternal-fetal transmission of Parachlamydia acanthamoebae. Emerg Infect Dis. 2009;15(1):120–1.View ArticlePubMedPubMed CentralGoogle Scholar
  9. Blumer S, Greub G, Waldvogel A, Hässig M, Thoma R, Tschuor A, Pospischil A, Borel N. Waddlia, Parachlamydia and Chlamydiaceace in bovine abortion. Vet Microbiol. 2011;152(3–4):385–93.View ArticlePubMedGoogle Scholar
  10. Lamoth F, Pillonel T, Greub G. Waddlia: an emerging pathogen and a model organism to study the biology of chlamydiae. Microbes Infect. 2015;17(11–12):732–7.View ArticlePubMedGoogle Scholar
  11. Wheelhouse N, Flockhart A, Aitchison K, Livingstone M, Finlayson J, Flachon V, Sellal E, Dagleish MP, Longbottom D. Experimental challenge of pregnant cattle with the putative abortifacient Waddlia chondrophila. Sci Rep. 2016;6:37150.View ArticlePubMedPubMed CentralGoogle Scholar
  12. Willeberg P, Ruppanner R, Behymer DE, Haghighi S, Kaneko JJ, Franti CE. Environmental exposure to Coxiella burnetii: a sero-epidemiologic survey among domestic animals. Am J Epidemiol. 1980;111(4):437–43.View ArticlePubMedGoogle Scholar
  13. Marrie TJ, Schlech WF 3rd, Williams JC, Yates LQ. Fever pneumonia associated with exposure to wild rabbits. Lancet. 1986;1(8478):427–9.View ArticlePubMedGoogle Scholar
  14. Webster JP, Lloyd G, Macdonald DWQ. Fever (Coxiella burnetii) reservoir in wild brown rats (Rattus norvegicus) populations in the UK. Parasitology. 1995;110(1):31–5.View ArticlePubMedGoogle Scholar
  15. Dunbar MR, Cunningham MW, Roof JC. Seroprevalence of selected disease agents from free-ranging black bears in Florida. J Wildl Dis. 1998;34(3):612–9.View ArticlePubMedGoogle Scholar
  16. Komiya T, Sadamasu K, Kang MI, Tsuboshima S, Fukushi H, Hirai K. Seroprevalence of Coxiella burnetii infections among cats in different living environments. J Vet Med Sci. 2003;65(9):1047–8.View ArticlePubMedGoogle Scholar
  17. Parker NR, Barralet JH, Bell AMQ. fever. Lancet. 2006;367(9511):679–88.View ArticlePubMedGoogle Scholar
  18. World Organization for Animal Health (OIE). Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees). 2015;2.1.16.Google Scholar
  19. Baud D, Greub G. Intracellular bacteria and adverse pregnancy outcomes. Clin Microbiol Infect. 2011;17(9):1312–22.View ArticlePubMedGoogle Scholar
  20. Raoult D, Chronic Q. Fever: expert opinion versus literature analysis and consensus. J Inf Secur. 2012;65(2):102–8.Google Scholar
  21. Bellini C, Magouras I, Chapuis-Taillard C, Clerc O, Masserey E, Peduto G, Péter O, Schaerrer S, Schuepbach G, Greub GQ. Fever outbreak in the terraced vineyards of Lavaux, Switzerland. New Microbes New Infect. 2014;2(4):93–9.View ArticlePubMedPubMed CentralGoogle Scholar
  22. World Organization for Animal Health (OIE). Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees). 2014;2.1.12.Google Scholar
  23. Cerqueira GM, Picardeau MA. Century of Leptospira strain typing. Infect Genet Evol. 2009;9(5):760–8.View ArticlePubMedGoogle Scholar
  24. Levett PN. Leptospirosis. Clin Microbiol Rev. 2001;14(2):296–326.View ArticlePubMedPubMed CentralGoogle Scholar
  25. Adler B, de la Peña-Moctezuma A. Leptospira and leptospirosis. Vet Microbiol 2010;140(3–4):287–296.Google Scholar
  26. Dreyfus A, Heuer C, Wilson P, Collins-Emerson J, Baker MG, Benschop J. Risk of infection and associated influenza-like disease among abattoir workers due to two Leptospira species. Epidemiol Infect. 2015;143(10):2095–105.View ArticlePubMedGoogle Scholar
  27. Schreiber PW, Aceto L, Korach R, Marreros N, Ryser-Degiorgis MP, Günthard HF. Cluster of leptospirosis acquired through river surfing in Switzerland. Open Forum Infect Dis. 2015;2(3):ofv102.Google Scholar
  28. Pijnacker R, Goris MG, te Wierik MJ, Broens EM, van der Giessen JW, de Rosa M, Wagenaar JA, Hartskeerl RA, Notermans DW, Maassen K, Schimmer B. Marked increase in leptospirosis infections in humans and dogs in the Netherlands, 2014. Euro Surveill. 2016;21(17)Google Scholar
  29. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, Levett PN, Gilman RH, Willig MR, Gotuzzo E, Vinetz JM. Peru-United States leptospirosis consortium. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis. 2003;3(12):757–71.View ArticlePubMedGoogle Scholar
  30. Lau CL, Smythe LD, Craig SB, Weinstein P. Climate change, flooding, urbanization and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg. 2010;104:631–8.View ArticlePubMedGoogle Scholar
  31. Coghlan JD, Bain AD. Leptospirosis in human pregnancy followed by death of the foetus. Br Med J. 1969;1(5638):228–30.View ArticlePubMedPubMed CentralGoogle Scholar
  32. Carles G, Montoya E, Joly F, Peneau C. Leptospirosis and pregnancy. Eleven cases in French Guyana. J Gynecol Obstet Biol Reprod (Paris). 1995;24(4):418–21.Google Scholar
  33. Reitt K, Hilbe M, Voegtlin A, Corboz L, Hässig M, Pospischil A. Aetiology of bovine abortion in Switzerland from 1986 to 1995 – a retrospective study with emphasis on detection of Neospora caninum and Toxoplasma gondii by PCR. J Vet Med A Physiol Pathol Clin Med. 2007;54(1):15–22.View ArticlePubMedGoogle Scholar
  34. Stamp JT, McEwen AD, Watt JA, Nisbet DI. Enzootic abortion in ewes; transmission of the disease. Vet Rec. 1950;62(17):251–4.View ArticlePubMedGoogle Scholar
  35. Abril C, Thomann A, Brodard I, Wu N, Ryser-Degiorgis MP, Frey J, Overesch GA. Novel isolation method of Brucella species and molecular tracking of Brucella suis biovar 2 in domestic and wild animals. Vet Microbiol. 2011;150(3–4):405–10.View ArticlePubMedGoogle Scholar
  36. Howe GB, Loveless BM, Norwood D, Craw P, Waag D, England M, Lowe JR, Courtney BC, Pitt ML, Kulesh DA, Real-time PCR. For the early detection and quantification of Coxiella burnetii as an alternative to the murine bioassay. Mol Cell Probes. 2009;23(3–4):127–31.View ArticlePubMedGoogle Scholar
  37. Lienard J, Croxatto A, Aeby S, Jaton K, Posfay-Barbe K, Gervaix A, Greub G. Development of a new Chlamydiales-Specific Real-time PCR and its application to respiratory clinical samples. J Clin Microbiol. 2011;49(7):2637–42.View ArticlePubMedPubMed CentralGoogle Scholar
  38. Villumsen S, Pedersen R, Borre MB, Ahrens P, Jensen JS, Krogfelt KA. Novel TaqMan® PCR for detection of Leptospira species in urine and blood: pit-falls of in silico validation. J Microbiol Methods. 2012;91(1):184–90.View ArticlePubMedGoogle Scholar
  39. Borel N, Thoma R, Spaeni P, Weilenmann R, Teankum K, Brugnera E, Zimmermann DR, Vaughan L, Pospischil A. Chlamydia-related abortions in cattle from Graubunden, Switzerland. Vet Pathol. 2006;43(5):702–8.View ArticlePubMedGoogle Scholar
  40. Hässig M, Lubsen J. Relationship between abortions and seroprevalences to selected infectious agents in dairy cows. J Veterinary Med Ser B. 1998;45(7):435–41.View ArticleGoogle Scholar
  41. Georgiev M, Afonso A, Neubauer H, Needham H, Thiéry R, Rodolakis A, Roest HJ, Stärk D, Stegeman JA, Vellema P, van der Hoek W, More SJ. Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro Surveill. 2013;18(8):pii=20407.Google Scholar
  42. Kauffold J, Wehrend A, Sigmarsson H, Matthias H. Chlamydia and Chlamydophilia in bovine reproduction. Clin Theriogenol. 2014;6(3):251–4.Google Scholar
  43. Borel N, Frey CF, Gottstein B, Hilbe M, Pospischil A, Franzoso FD, Waldvogel A. Laboratory diagnosis of ruminant abortion in Europe. Vet J. 2014;200(2):218–29.View ArticlePubMedGoogle Scholar
  44. Wilson K, Livingstone M, Longbottom D. Comparative evaluation of eight serological assays for diagnosing Chlamydophila abortus infection in sheep. Vet Microbiol. 2009;135(1–2):38–45.View ArticlePubMedGoogle Scholar
  45. Carter ME, Cordes DO, Holland JT, Lewis SF, Lake DE. Leptospirosis: II. Investigation of clinical disease in dairy cattle in the Waikato district of New Zealand. N Z Vet J. 1982;30(9):136–40.View ArticlePubMedGoogle Scholar
  46. Dixon RJ. Leptospira interrogans serovar Hardjo: an abortifacient in New Zealand? A review of the literature. N Z Ve J. 1983;31:107–9.View ArticleGoogle Scholar
  47. Elder JK, McKeon GM, Duncalfe F, Ward WH, Leutton RD. Epidemiological studies on the ecology of Leptospira interrogans serovars pomona and hardjo in Queensland. Prev Vet Med. 1986;3(6):501–21.View ArticleGoogle Scholar
  48. Chappel RJ, Millar BD, Adler B, Hill J, Jeffers MJ, Jones RT, McCaughan CJ, Mead LJ, Skilbeck NW. Leptospira interrogans serovar hardjo is not a major cause of bovine abortion in Victoria. Aust Vet J. 1989;66(10):330–3.View ArticlePubMedGoogle Scholar
  49. Ellis WA, Michna SW. Bovine leptospirosis: experimental infection of pregnant heifers with a strain belonging to the Hebdomadis serogroup. Res Vet Sci. 1977;22(2):229–36.PubMedGoogle Scholar
  50. Ellis WA, Logan EF, O'Brien JJ, Neill SD, Ferguson HW, Hanna J. Antibodies to Leptospira in the sera of aborted bovine fetuses. Vet Rec. 1978;103(11):237–9.View ArticlePubMedGoogle Scholar
  51. Goris MG, Hartskeerl RA. Leptospirosis serodiagnosis by the microscopic agglutination test. Curr Protoc Microbiol. 2014;6:32.Google Scholar
  52. Rusbridge S, Caldow G, Crawshaw M, Gunn G. Leptospira hardjo infection in cattle. In: Edinburgh: SAC. Technical note TN 500; 2004. https://www.sruc.ac.uk/download/downloads/id/762/tn500_leptospira_hardjo_infection_in_cattle.pdf. Accessed 28 Mar 2017.
  53. Laroucau C, Souriau A, Rodolakis A. Improved sensitivity of PCR for Chlamydophila using pmp genes. Vet Microbiol. 2001;82(2):155–64.View ArticlePubMedGoogle Scholar
  54. DeGraves FJ, Gao D, Hehnen HR, Schlapp T, Kaltenboeck B. Quantitative detection of Chlamydia psittaci and C. pecorum by high-sensitivity real-time PCR reveals high prevalence of vaginal infection in cattle. J Clin Microbiol. 2003;41(4):1726–9.View ArticlePubMedPubMed CentralGoogle Scholar
  55. Berri M, Rekiki A, Boumedine KS, Rodolakis A. Simultaneous differential detection of Chlamydophila abortus, Chlamydophila pecorum and Coxiella burnetii from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 2009;9:130.View ArticlePubMedPubMed CentralGoogle Scholar
  56. Parisi A, Fraccalvieri R, Cafiero M, Miccolupo A, Padalino I, Montagna C, Capuano F, Sottili R. Diagnosis of Coxiella burnetii-related abortion in Italian domestic ruminants using single-tube nested PCR. Vet Microbiol. 2006;118(1–2):101–6.View ArticlePubMedGoogle Scholar
  57. Clemente L, Barahona MJ, Andrade MF, Botelho A. Diagnosis by PCR of Coxiella burnetii in aborted foetuses of domestic ruminants in Portugal. Vet Rec. 2009;164(12):373–4.View ArticlePubMedGoogle Scholar
  58. Kreizinger Z, Szeredi L, Bacsadi Á, Nemes C, Sugár L, Varga T, Sulyok KM, Szigeti A, Ács K, Tóbiás E, Borel N, Gyuranecz M. Occurrence of Coxiella burnetii and Chlamydiales species in abortions of domestic ruminants and in wild ruminants in Hungary, Central Europe. J Vet Diagn Investig. 2015;27(2):206–10.View ArticleGoogle Scholar
  59. Cantas H, Muwonge A, Sareyyupoglu B, Yardimci H, Skjerve EQ. Fever abortions in ruminants and associated on-farm risk factors in northern Cyprus. BMC Vet Res. 2011;7(1):13.View ArticlePubMedPubMed CentralGoogle Scholar
  60. Agerholm JS. Coxiella burnetii associated reproductive disorders in domestic animals-a critical review. Acta Vet Scand. 2013;55:13.View ArticlePubMedPubMed CentralGoogle Scholar
  61. Berri M, Souriau A, Crosby M, Rodolakis A. Shedding of Coxiella burnetii in ewes in two pregnancies following an episode of Coxiella abortion in a sheep flock. Vet Microbiol. 2002;85(1):55–60.View ArticlePubMedGoogle Scholar
  62. Berri M, Rousset E, Champion JL, Russo P, Rodolakis A. Goats may experience reproductive failures and shed Coxiella burnetii at two successive parturitions after a Q fever infection. Res Vet Sci. 2007;83(1):47–52.View ArticlePubMedGoogle Scholar
  63. Rousset E, Berri M, Durand B, Dufour P, Prigent M, Delcroix T, Touratier A, Rodolakis A. Coxiella burnetii shedding routes and antibody response after outbreaks of Q fever-induced abortion in dairy goat herds. Appl Environ Microbiol. 2009;75(2):428–33.View ArticlePubMedGoogle Scholar
  64. Ruiz-Fons F, Astobiza I, Barandika JF, Hurtado A, Atxaerandio R, Juste RA, García-Pérez AL. Seroepidemiological study of Q fever in domestic ruminants in semi-extensive grazing systems. BMC Vet Res. 2010;6(1):3.View ArticlePubMedPubMed CentralGoogle Scholar
  65. Klee SR, Tyczka J, Ellerbrok H, Franz T, Linke S, Baljer G, Appel B. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 2006;2006:6,2.Google Scholar
  66. Sidi-boumedine K, Duquesne V, Rousset E, Cochonneau D, Cutler SJ, Frangoulidis D, Rodolakis A, Roest HJ, Ruuls R, Van Rotterdam B, Vincent G, Thiéry R. A multicentre MLVA and MST typingring trial for C. burnetii genotyping: An approach to standardisation of methods. 5th MedVetNet Annual Scientific Conference. Madrid, Spain, 2009.Google Scholar
  67. Ruhl S, Casson N, Kaiser C, Thoma R, Pospischil A, Greub G, Borel N. Evidence for Parachlamydia in bovine abortion. Vet Microbiol. 2009;135(1–2):169–74.View ArticlePubMedGoogle Scholar
  68. Borel N, Kempf E, Hotzel H, Schubert E, Torgerson P, Slickers P, Ehricht R, Tasara T, Pospischil A, Sachse K. Direct identification of chlamydiae from clinical samples using a DNA microarray assay – a validation study. Mol Cell Probes. 2008;22(1):55–64.View ArticlePubMedGoogle Scholar
  69. Casson N, Entenza JM, Greub G. Serological cross-reactivity between different Chlamydia-like organisms. J Clin Microbiol. 2007;45(1):234–6.View ArticlePubMedGoogle Scholar
  70. Borel N, Casson N, Entenza JM, Kaiser C, Pospischil A, Greub G. Tissue microarray and immunohistochemistry as tools for evaluation of antibodies against Chlamydia-like bacteria. J Med Microbiol. 2009;58(Pt7):863–6.View ArticlePubMedGoogle Scholar
  71. Frikha-Gargouri O, Gdoura R, Znazen A, Gargouri J, Rebai A, Hammami A. Diagnostic value of an enzyme-linked immunosorbent assay using the recombinant CT694 species-specific protein of Chlamydia trachomatis. J Appl Microbiol. 2009;107(6):1875–82.View ArticlePubMedGoogle Scholar
  72. Woese CR. Bacterial evolution. Microbiol Rev. 1987;51(2):221–71.PubMedPubMed CentralGoogle Scholar
  73. Lukáčová M. Are Coxiella burnetii and chlamydiae related? Antigenic properties of Coxiella burnetii and chlamydiae. Alpe Adria Microbiol J. 1996;5:3–13.Google Scholar
  74. Pritchard GC, Smith RP, Errington J, Hannon S, Jones RM, Mearns R. Prevalence of Coxiella burnetii in livestock abortion material using PCR. Vet Rec. 2011;169(15):391.View ArticlePubMedGoogle Scholar
  75. Hansen MS, Rodolakis A, Cochonneau D, Agger JF, Christoffersen AB, Jensen TK, Agerholm JS. Coxiella burnetii associated placental lesions and infection level in parturient cows. Vet J. 2011;190(2):e135–9.View ArticlePubMedGoogle Scholar
  76. Bildfell RJ, Thomson GW, Haines DM, McEwen BJ, Smart N. Coxiella burnetii infection is associated with placentitis in cases of bovine abortion. J Vet Diagn Investig. 2000;12(5):419–25.View ArticleGoogle Scholar
  77. van Maanen C, Wouda W, Schares G, von Blumröder D, Conraths FJ, Norton R, Williams DJ, Esteban-Redondo I, Innes EA, Mattsson JG, Björkman C, Fernández-García A, Ortega-Mora LM, Müller N, Sager H, Hemphill A. An interlaboratory comparison of immunohistochemistry and PCR methods for detection of Neospora caninumin bovine fetal tissues. Vet Parasitol. 2004;126(4):351–64.View ArticlePubMedGoogle Scholar
  78. Muskens J, Wouda W, von Bannisseht-Wijsmuller T, van Maanen C. Prevalence of Coxiella burnetii infections in aborted foetuses and stillborn calves. Vet Rec 2012;170(10):260.Google Scholar

Copyright

Advertisement