Dixon LK, Abrams CC, Bowick G, Goatley LC, Kay-Jackson PC, Chapman D, et al. African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol. 2004;100:117–34. doi:10.1016/j.vetimm.2004.04.002.
Article
CAS
PubMed
Google Scholar
Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J. 2003;165:11–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12618065 [Accessed 16 Dec 2014]
Article
CAS
PubMed
Google Scholar
Dixon LK, Escribano JM, Martins C, Rock DL, Salas ML, Wilkinson PJ. Asfarviridae in virus taxonomy. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. VIIIth report of the ICTV. London: Elsevier/Academic Press; 2005. p. 135–43.
Google Scholar
Tulman ER, Delhon GA, Ku BK, Rock DL. African swine fever virus. Curr Top Microbiol Immunol. 2009;328:43–87. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19216435 [Accessed 18 May 2016]
CAS
PubMed
Google Scholar
Gogin A, Gerasimov V, Malogolovkin A, Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Res. 2013;173:198–203. doi:10.1016/j.virusres.2012.12.007.
Article
CAS
PubMed
Google Scholar
Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU. Epidemiology of African swine fever virus. Virus Res. 2013;173:191–7. doi:10.1016/j.virusres.2012.10.030.
Article
CAS
PubMed
Google Scholar
De la Torre A, Bosch J, Iglesias I, Muñoz MJ, Mur L, Martínez-López B, et al. Assessing the risk of African swine fever introduction into the European Union by wild boar. Transbound Emerg Dis. 2015;62:272–9. doi:10.1111/tbed.12129.
Article
PubMed
Google Scholar
Oganesyan AS, Petrova ON, Korennoy FI, Bardina NS, Gogin AE, Dudnikov SA. African swine fever in the Russian Federation: spatio-temporal analysis and epidemiological overview. Virus Res. 2013;173:204–11. doi:10.1016/j.virusres.2012.12.009.
Article
CAS
PubMed
Google Scholar
Thiel H. Family Flaviviridae. In: Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball L, editors. Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2005. p. 979–96.
Google Scholar
Rümenapf T, Thiel H-J. Molecular biology of pestiviruses. In: Animal viruses: molecular biology; 2008. p. 39–96.
Google Scholar
Summerfield A, Knötig SM, McCullough KC. Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol. 1998;72:1853–61. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=109475&tool=pmcentrez&rendertype=abstract [Accessed 14 Dec 2014]
CAS
PubMed
PubMed Central
Google Scholar
Summerfield A, McNeilly F, Walker I, Allan G, Knoetig SM, McCullough KC. Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol. 2001;78:3–19. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11182144 [Accessed 4 Jan 2015]
Article
CAS
PubMed
Google Scholar
Summerfield A, Alves M, Ruggli N, de Bruin MGM, McCullough KC. High IFN-alpha responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever. J Interf Cytokine Res. 2006;26:248–55. doi:10.1089/jir.2006.26.248.
Article
CAS
Google Scholar
Tarradas J, Argilaguet JM, Rosell R, Nofrarías M, Crisci E, Córdoba L, et al. Interferon-gamma induction correlates with protection by DNA vaccine expressing E2 glycoprotein against classical swine fever virus infection in domestic pigs. Vet Microbiol. 2010;142:51–8. doi:10.1016/j.vetmic.2009.09.043.
Article
CAS
PubMed
Google Scholar
Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol. 2004;78:1858–64. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=369441&tool=pmcentrez&rendertype=abstract [Accessed 19 May 2016]
Article
CAS
PubMed
PubMed Central
Google Scholar
Fishbourne E, Abrams CC, Takamatsu H-H, Dixon LK. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Vet Microbiol. 2013;162:937–43. doi:10.1016/j.vetmic.2012.11.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lacasta A, Monteagudo PL, Jiménez-Marín Á, Accensi F, Ballester M, Argilaguet J, et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet Res. 2015;46:135. doi:10.1186/s13567-015-0275-z.
Article
PubMed
PubMed Central
Google Scholar
Salguero FJ, Gil S, Revilla Y, Gallardo C, Arias M, Martins C. Cytokine mRNA expression and pathological findings in pigs inoculated with African swine fever virus (E-70) deleted on A238L. Vet Immunol Immunopathol. 2008;124:107–19. doi:10.1016/j.vetimm.2008.02.012. Epub 2008 Feb 23
Article
CAS
PubMed
Google Scholar
Ganges L, Núñez JI, Sobrino F, Borrego B, Fernández-Borges N, Frías-Lepoureau MT, et al. Recent advances in the development of recombinant vaccines against Classical swine fever virus: cellular responses also play a role in protection. Vet J. 2008;177:169–77. doi:10.1016/j.tvjl.2007.01.030.
Article
CAS
PubMed
Google Scholar
van Oirschot JT, De Jong D, Huffels ND. Effect of infections with swine fever virus on immune functions. II. Lymphocyte response to mitogens and enumeration of lymphocyte subpopulations. Vet Microbiol. 1983;8:81–95. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6845636 [Accessed 14 Dec 2014]
Article
PubMed
Google Scholar
Moennig V. The control of classical swine fever in wild boar. Front Microbiol. 2015;6:1211. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26594202 [Accessed 18 May 2016]
Article
PubMed
PubMed Central
Google Scholar
Pérez LJ, Díaz de Arce H, Perera CL, Rosell R, Frías MT, Percedo MI, et al. Positive selection pressure on the B/C domains of the E2-gene of Classical swine fever virus in endemic areas under C-strain vaccination. Infect Genet Evol. 2012;12:1405–12. doi:10.1016/j.meegid.2012.04.030.
Article
PubMed
Google Scholar
Weesendorp E, Backer J, Stegeman A, Loeffen W. Transmission of Classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion. Vet Microbiol. 2011;147:262–73. doi:10.1016/j.vetmic.2010.06.032.
Article
PubMed
Google Scholar
Cabezón O, Colom-Cadena A, Muñoz-González S, Pérez-Simó M, Bohórquez JA, Rosell R, et al. Post-natal persistent infection with classical swine fever virus in wild boar: a strategy for viral maintenance? Transbound Emerg Dis. 2015; doi:10.1111/tbed.12395.
Muñoz-González S, Perez-Simó M, Muñoz M, Bohorquez JA, Rosell R, Summerfield A, et al. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs. Vet Res. 2015a;46:78. doi:10.1186/s13567-015-0209-9.
Article
PubMed
PubMed Central
Google Scholar
Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J Virol. 2014;88:11327–38. doi:10.1128/JVI.01612-14.
Article
PubMed
PubMed Central
Google Scholar
Folimonova SY. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol. 2012;86:5554–61. doi:10.1128/JVI.00310-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz-González S, Pérez-Simó M, Colom-Cadena A, Cabezón O, Bohórquez JA, Rosell R, et al. Classical swine fever virus vs. classical swine fever virus: the superinfection exclusion phenomenon in experimentally infected wild boar. PLoS One. 2016;11:e0149469. doi:10.1371/journal.pone.0149469.
Article
PubMed
PubMed Central
Google Scholar
Wensvoort G, Terpstra C, Boonstra J, Bloemraad M, Van Zaane D. Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis. Vet Microbiol. 1986;12:101–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2428160 [Accessed 14 Dec 2014]
Article
CAS
PubMed
Google Scholar
Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7. Available at: http://aje.oxfordjournals.org/content/27/3/493.extract [Accessed 14 Dec 2014]
Article
Google Scholar
Tarradas J, de la Torre ME, Rosell R, Perez LJ, Pujols J, Muñoz M, et al. The impact of CSFV on the immune response to control infection. Virus Res. 2014;185:82–91. doi:10.1016/j.virusres.2014.03.004.
Article
CAS
PubMed
Google Scholar
Allepuz A, Casal J, Pujols J, Jové R, Selga I, Porcar J, et al. Descriptive epidemiology of the outbreak of classical swine fever in Catalonia (Spain), 2001/02. Vet Rec. 2007;160:398–403. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17384291 [Accessed 14 Dec 2014]
Article
CAS
PubMed
Google Scholar
Rodríguez F, Martín de las Mulas J, Herráez P, Sánchez Vizcaíno JM, Fernández A. Immunohistopathological study of African swine fever (strain E-75)-infected bone marrow. J Comp Pathol. 1996;114:399–406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8814534 [Accessed 19 May 2016]
Article
PubMed
Google Scholar
Aragon V, Cerdà-Cuéllar M, Fraile L, Mombarg M, Nofrarías M, Olvera A, et al. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains. Vet Microbiol. 2010;142:387–93. doi:10.1016/j.vetmic.2009.10.025.
Article
PubMed
Google Scholar
Tarradas J, Monsó M, Muñoz M, Rosell R, Fraile L, Frías MT, et al. Partial protection against Classical swine fever virus elicited by dendrimeric vaccine-candidate peptides in domestic pigs. Vaccine. 2011;29:4422–9. doi:10.1016/j.vaccine.2011.03.095.
Article
CAS
PubMed
Google Scholar
Ganges L, Barrera M, Núñez JI, Blanco I, Frias MT, Rodríguez F, et al. A DNA vaccine expressing the E2 protein of Classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine. 2005;23:3741–52. doi:10.1016/j.vaccine.2005.01.153.
Article
CAS
PubMed
Google Scholar
Gallardo C, Soler A, Nieto R, Cano C, Pelayo V, Sánchez MA, Pridotkas G, Fernandez-Pinero J, Briones V, Arias M. Experimental Infection of Domestic Pigs with African Swine Fever Virus Lithuania 2014 Genotype II Field Isolate. Transbound Emerg Dis. 2017;64:300–4. doi:10.1111/tbed.12346.
Article
CAS
PubMed
Google Scholar
Galindo-Cardiel I, Ballester M, Solanes D, Nofrarías M, López-Soria S, Argilaguet JM, et al. Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Res. 2013;173:180–90. doi:10.1016/j.virusres.2012.12.018.
Article
CAS
PubMed
Google Scholar
Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods. 2005;130:36–44. doi:10.1016/j.jviromet.2005.05.030.
Article
CAS
PubMed
Google Scholar
Fernández-Pinero J, Gallardo C, Elizalde M, Robles A, Gómez C, Bishop R, et al. Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transbound Emerg Dis. 2013;60:48–58. doi:10.1111/j.1865-1682.2012.01317.x.
Article
PubMed
Google Scholar
Terpstra C, Bloemraad M, Gielkens AL. The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Vet Microbiol. 1984;9:113–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6375112 [Accessed 14 Dec 2014]
Article
CAS
PubMed
Google Scholar
Muñoz-González S, Ruggli N, Rosell R, Pérez LJ, Frías-Leuporeau MT, Fraile L, et al. Postnatal persistent infection with classical swine fever virus and its immunological implications. PLoS One. 2015b;10:e0125692. doi:10.1371/journal.pone.0125692.
Article
PubMed
PubMed Central
Google Scholar
Pérez C, Ezquerra A, Ortuño E, Gómez N, García-Briones M, Martínez de la Riva P, et al. Cloning and expression of porcine CD163: its use for characterization of monoclonal antibodies to porcine CD163 and development of an ELISA to measure soluble CD163 in biological fluids. Spanish J Agric Res. 2008;6:59. doi:10.5424/sjar/200806S1-374.
Article
Google Scholar
Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173:122–30. doi:10.1016/j.virusres.2012.10.026.
Article
CAS
PubMed
Google Scholar
Cubillos C, Gómez-Sebastian S, Moreno N, Nuñez MC, Mulumba-Mfumu LK, Quembo CJ, Heath L, Etter EM, Jori F, Escribano JM, Blanco E. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Res. 2013;173:159–67. doi:10.1016/j.virusres.2012.10.021.
Article
CAS
PubMed
Google Scholar
Nieto-Pelegrín E, Rivera-Arroyo B, Sánchez-Vizcaíno JM. First detection of antibodies against African swine fever virus in Faeces samples. Transbound Emerg Dis. 2015;62:594–602. doi:10.1111/tbed.12429.
Article
PubMed
Google Scholar
Gómez del Moral M, Ortuño E, Fernández-Zapatero P, Alonso F, Alonso C, Ezquerra A, et al. African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. J Virol. 1999;73:2173–80. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=104462&tool=pmcentrez&rendertype=abstract [Accessed 19 May 2016]
PubMed
PubMed Central
Google Scholar
Gomez-Villamandos JC, Salguero FJ, Ruiz-Villamor E, Sánchez-Cordón PJ, Bautista MJ, Sierra MA. Classical swine fever: pathology of bone marrow. Vet Pathol. 2003;40:157–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12637755 [Accessed 19 May 2016]
Article
CAS
PubMed
Google Scholar
Murtaugh MP, Baarsch MJ, Zhou Y, Scamurra RW, Lin G. Inflammatory cytokines in animal health and disease. Vet Immunol Immunopathol. 1996;54:45–55. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8988847 [Accessed 19 May 2016]
Article
CAS
PubMed
Google Scholar
Brady MT, MacDonald AJ, Rowan AG, Mills KHG. Hepatitis C virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes. Eur J Immunol. 2003;33:3448–57. doi:10.1002/eji.200324251.
Article
CAS
PubMed
Google Scholar
Klinker MW, Lundy SK. Multiple mechanisms of immune suppression by B lymphocytes. Mol Med. 2012;18:123–37. doi:10.2119/molmed.2011.00333.
Article
CAS
PubMed
Google Scholar
Selvarajah S, Keating S, Heitman J, Lu K, Simmons G, Norris PJ, et al. Detection of host immune responses in acute phase sera of spontaneous resolution versus persistent hepatitis C virus infection. J Gen Virol. 2012;93:1673–9. doi:10.1099/vir.0.041277-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taoufik Y, Lantz O, Wallon C, Charles A, Dussaix E, Delfraissy JF. Human immunodeficiency virus gp120 inhibits interleukin-12 secretion by human monocytes: an indirect interleukin-10-mediated effect. Blood. 1997;89:2842–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9108403 [Accessed 14 Dec 2014]
CAS
PubMed
Google Scholar
Gómez-Villamandos JC, Hervás J, Méndez A, Carrasco L, Martín de las Mulas J, Villeda CJ, et al. Experimental African swine fever: apoptosis of lymphocytes and virus replication in other cells. J Gen Virol. 1995;76:2399–405. doi:10.1099/0022-1317-76-9-2399.
Article
PubMed
Google Scholar
Karalyan Z, Zakaryan H, Sargsyan K, Voskanyan H, Arzumanyan H, Avagyan H, et al. Interferon status and white blood cells during infection with African swine fever virus in vivo. Vet Immunol Immunopathol. 2012;145:551–5. doi:10.1016/j.vetimm.2011.12.013.
Article
CAS
PubMed
Google Scholar
Alfonso P, Rivera J, Hernáez B, Alonso C, Escribano JM. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics. 2004;4:2037–46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15221765 [Accessed 18 May 2016]
Article
CAS
PubMed
Google Scholar
Ramiro-Ibáñez F, Ortega A, Ruiz-Gonzalvo F, Escribano JM, Alonso C. Modulation of immune cell populations and activation markers in the pathogenesis of African swine fever virus infection. Virus Res. 1997;47:31–40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9037734 [Accessed 19 May 2016]
Article
PubMed
Google Scholar
Summerfield A, Hofmann MA, McCullough KC. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet Immunol Immunopathol. 1998;63:289–301. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9656461 [Accessed 14 Dec 2014]
Article
CAS
PubMed
Google Scholar
Sánchez-Torres C, Gómez-Puertas P, Gómez-del-Moral M, Alonso F, Escribano JM, Ezquerra A, Domínguez J. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol. 2003;148:2307–23. Epub 2003 Sep 16
Article
PubMed
Google Scholar