McEntee MC, Page RL. Feline vaccine-associated sarcomas. J Vet Intern Med [Internet]. 2001;15:176–82. [cited 2015 Jun 29]. Available from: http://doi.wiley.com/10.1111/j.1939-1676.2001.tb02308.x
Article
CAS
Google Scholar
Travetti O, di Giancamillo M, Stefanello D, Ferrari R, Giudice C, Grieco V, et al. Computed tomography characteristics of fibrosarcoma -- a histological subtype of feline injection-site sarcoma. J Feline Med Surg [Internet]. 2013;15:488–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23295271
Article
Google Scholar
Martano M, Morello E, Buracco P. Feline injection-site sarcoma: past, present and future perspectives. Vet J [Internet]. 2011;188:136–41. [cited 2015 Jun 29] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20510635
Article
Google Scholar
Katayama R, Huelsmeyer MK, Marr AK, Kurzman ID, Thamm DH, Vail DM. Imatinib mesylate inhibits platelet-derived growth factor activity and increases chemosensitivity in feline vaccine-associated sarcoma. Cancer Chemother Pharmacol. 2004;54:25–33.
Article
CAS
PubMed
Google Scholar
Wójcik M, Lewandowski W, Król M, Pawłowski K, Mieczkowski J, Lechowski R, et al. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines. PLoS One. 2015; doi:10.1371/journal.pone.0124955.
Holtermann N, Kiupel M, Hirschberger J. The tyrosine kinase inhibitor toceranib in feline injection site sarcoma: efficacy and side effects. Vet Comp Oncol. 2016; doi:10.1111/vco.12207.
Jas D, Soyer C, De Fornel-Thibaud P, Oberli F, Vernes D, Guigal PM, et al. Adjuvant immunotherapy of feline injection-site sarcomas with the recombinant canarypox virus expressing feline interleukine-2 evaluated in a controlled monocentric clinical trial when used in association with surgery and brachytherapy. Trials Vaccinol [Internet]. 2014;4:1–8. Elsevier Ltd. Available from: http://dx.doi.org/10.1016/j.trivac.2014.11.001
Google Scholar
Rous P, Murphy JB. Tumor implantations in the developing embryo. J Am Med Assoc. 1991;56:741–2.
Google Scholar
Rema RB, Rajendran K, Ragunathan M. Angiogenic efficacy of heparin on chick chorioallantoic membrane. Vasc Cell [Internet]. 2012;4:8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22513007
Article
CAS
Google Scholar
Mangieri D, Nico B, Coluccia AML, Vacca A, Ponzoni M, Ribatti D. An alternative in vivo system for testing angiogenic potential of human neuroblastoma cells. Cancer Lett [Internet]. 2009;277:199–204. Elsevier Ireland Ltd. Available from: http://dx.doi.org/10.1016/j.canlet.2008.12.014
Article
CAS
Google Scholar
Uchibayashi T, Egawa M, Nakajima K, Hisazumi H, Tanaka M, Endo Y, et al. Responses of tumour cell lines implanted onto the chorioallantoic membrane of chick embryo to anticancer agents in combination with hyperthermia. Urol Res. 1992;20:237–9.
Article
CAS
PubMed
Google Scholar
Subauste MC, Kupriyanova T a, Conn EM, Ardi VC, Quigley JP, Deryugina EI. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastasis [Internet]. 2009;26:1033–47. Available from: d:%5CDesktop%5CDeep%5CPapers%5CCAM%5CEvaluation of Metastatic potential of Human Colon Carcinoma in CAM.pdf%5Cn. http://dx.doi.org/10.1007/s10585-009-9293-4
Article
PubMed Central
Google Scholar
Olivry T, DeBoer DJ, Favrot C, Jackson HA, Mueller RS, Nuttall T, et al. Treatment of canine atopic dermatitis: 2010 clinical practice guidelines from the international task force on canine atopic dermatitis. Vet Dermatol. 2010;21:233–48.
Article
PubMed
Google Scholar
Gu JW, Bailey a P, Sartin a, Makey I, Brady a L. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos. Cancer [Internet]. 2005;103:422–31. Available from: pm:15597382
Article
CAS
Google Scholar
Szmidt M, Urbańska K, Grodzik M, Orłowski P, Sawosz E, Wierzbicki M, et al. Morphology of human glioblastoma model cultured in Ovo. Bull Vet Inst Pulawy [Internet]. 2012;56:261–6. [cited 2015 Jun 29] Available from: http://bulletin.piwet.pulawy.pl/images/stories/pdf/20122/20122261266.pdf
Google Scholar
Balke M, Neumann A, Kersting C, Agelopoulos K, Gebert C, Gosheger G, et al. Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane. BMC Res Notes [Internet]. 2010;3:58. [cited 2015 Jun 29] Available from: http://www.biomedcentral.com/1756-0500/3/58
Article
Google Scholar
Xiao X, Zhou X, Ming H, Zhang J, Huang G, Zhang Z, et al. Chick chorioallantoic membrane assay: a 3D animal model for study of human nasopharyngeal carcinoma. PLoS One. 2015; doi:10.1371/journal.pone.0130935.
Lokman NA, Elder ASF, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci. 2012;13:9959–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Scanlon CS, Banerjee R, Russo N, Inglehart RC, Willis AL, et al. The Histone Methyltransferase EZH2 mediates tumor progression on the chick chorioallantoic membrane assay, a novel model of head and neck squamous cell carcinoma. Transl Oncol [Internet]. 2013;6:273–81. Neoplasia Press, Inc. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3660795&tool=pmcentrez&rendertype=abstract
Article
Google Scholar
Zabielska K, Lechowski R, Krol M, Pawlowski KM, Motyl T, Dolka I, et al. Derivation of feline vaccine-associated fibrosarcoma cell line and its growth on chick embryo chorioallantoic membrane -a new in vivo model for veterinary oncological studies. Vet Res Commun. 2012;36:227–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zabielska-Koczywąs K, Dolka I, Król M, Żbikowski A, Lewandowski W, Mieczkowski J, et al. Doxorubicin conjugated to glutathione stabilized gold nanoparticles (Au-GSH-Dox) as an effective therapeutic agent for feline injection-site sarcomas - chick embryo chorioallantoic membrane study. Molecules. 2017; doi:10.3390/molecules22020253.
Pang LY, Gatenby EL, Kamida A, Whitelaw BA, Hupp TR, Argyle DJ. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation. PLoS One. 2014;9:1–13.
Article
Google Scholar
Pang LY, Blacking TM, Else RW, Sherman A, Sang HM, Whitelaw BA, et al. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway. Vet J. 2013;196:414–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walewska M, Dolka I, Małek A, Wojtalewicz A, Wojtkowska A, et al. Experimental tumor growth from canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies). Acta Vet Scan. 2017; doi:10.1186/s13028-017-0298-8.
Nowak M, Madej JA, Dziegiel P. Expression of E-cadherin, B-catenin and Ki-67 antigen and their reciprocal relationships in mammary adenocarcinomas in bitches. Ir Vet J. 2015; doi:10.1186/s13620-016-0068-3.
Hoos A, Stojadinovic A, Mastorides S, Urist MJ, Polsky D, Di Como CJ, et al. High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas. Cancer. 2001;92:869–74.
Article
CAS
PubMed
Google Scholar
Vail DM, Moore a S, Ogilvie GK, Volk LM. Feline lymphoma (145 cases): proliferation indices, cluster of differentiation 3 immunoreactivity, and their association with prognosis in 90 cats. J Vet Intern Med. 1998;12:349–54.
Article
CAS
PubMed
Google Scholar
Pontes HAR, Pontes FSC, De Freitas Silva BS, Cury SEV, Fonseca FP, Salim RA, et al. Immunoexpression of Ki67, proliferative cell nuclear antigen, and Bcl-2 proteins in a case of ameloblastic fibrosarcoma. Ann Diagn Pathol [Internet]. 2010;14:447–52. Elsevier Inc.; Available from: http://dx.doi.org/10.1016/j.anndiagpath.2009.10.007
Article
Google Scholar
Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139:539–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drobnjak M, Latres E, Pollack D, Karpeh M, Dudas M, Woodruff JM, et al. Prognostic implications of p53 nuclear overexpression and high proliferation index of Ki-67 in adult soft-tissue sarcomas. J Natl Cancer Inst [Internet]. 1994;86:549–54. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8133539
Article
CAS
Google Scholar
Krzywonos A. The role of proteomic research in clinical diagnosis. J Lab Diagnostic. 2010;46:411–4.
CAS
Google Scholar
Trojani M, Contesso G, Coindre JM, Bull NB, De MASCERALA, Goussot JF, et al. Soft-tissue sarcomas of adults; study. Int J Cancer. 1984;33:37–42.
Article
CAS
PubMed
Google Scholar
Choong PF, Akerman M, Willén H, Andersson C, Gustafson P, Baldetorp B, et al. Prognostic value of Ki-67 expression in 182 soft tissue sarcomas. Proliferation--a marker of metastasis? APMIS [Internet]. 1994;102:915–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7888160
Article
CAS
Google Scholar
Griffey SM, Kraegel SA, Madewell BR. Proliferation indices in spontaneous canine lung cancer: proliferating cell nuclear antigen (PCNA), Ki-67 (MIB1) and mitotic counts. J Comp Pathol. 1999;120:321–32.
Article
CAS
PubMed
Google Scholar
Dolka I, Sapierzyński R, Król M. Retrospective study and immunohistochemical analysis of canine mammary sarcomas. BMC Vet Res [Internet]. 2013;9:248. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4029385&tool=pmcentrez&rendertype=abstract
Article
Google Scholar
Sarli G, PreziosiI R, Benazzi C, Castellani G, Marcato PS. Prognostic value of histological stage and proliferative activity in canine malignant mammary tumors. J Vet Diagnostic Investig. 2002;14:24–32.
Article
Google Scholar
Leary S, Underwood W, Anthony R, Cartner S. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition [Internet]. Am Vet Med Assoc. 2013 Available from: https://www.avma.org/kb/policies/documents/euthanasia.pdf
Lohr CV, Teifke JP, Failing K, Weiss E. Characterization of the proliferation state in canine mammary tumors by the standarized AgNOR method with Postfixation and Immunohistologic detection of Ki-67 and PCNA. Vet Pathol. 1997;34:212–21.
Article
CAS
PubMed
Google Scholar
Eckstein C, Guscetti F, Roos M, Martín de Las Mulas J, Kaser-Hotz B, Rohrer Bley C. A retrospective analysis of radiation therapy for the treatment of feline vaccine-associated sarcoma. Vet Comp Oncol. 2009;7:54–68.
Article
CAS
PubMed
Google Scholar
Couto SS, Griffey SM, Duarte PC, Madewell BR. Feline vaccine-associated fibrosarcoma: morphologic distinctions. Vet Pathol. 2002;39:33–41.
Article
CAS
PubMed
Google Scholar
Erichsen J v, Hecht W, Lohberg-Gruene C, Reinacher M. Cell lines derived from feline fibrosarcoma display unstable chromosomal Aneuploidy and additionally centrosome number aberrations. Vet Pathol. 2012;49:648–57.
Article
Google Scholar
Zacchetti A, van Garderen E, Teske E, Nederbragt H, Dierendonck JH, Rutteman GR. Validation of the use of proliferation markers in canine neoplastic and non-neoplastic tissues: comparison of KI-67 and proliferating cell nuclear antigen (PCNA) expression versus in vivo bromodeoxyuridine labelling by immunohistochemistry. APMIS. 2003;111:430–8.
Article
CAS
PubMed
Google Scholar
Peña LL, Nieto AI, Pérez-Alenza D, Cuesta P, Castaño M. Immunohistochemical detection of Ki-67 and PCNA in canine mammary tumors: relationship to clinical and pathologic variables. J Vet Diagn Invest [Internet]. 1998;10:237–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9683072
Article
Google Scholar
Reyal F, Hajage D, Savignoni A, Feron JG, Bollet MA, Kirova Y, et al. Long-term prognostic performance of Ki67 rate in early stage, pT1-pT2, pN0, invasive breast carcinoma. PLoS One. 2013;8:1–10.
Article
Google Scholar
López-Lázaro M. Two preclinical tests to evaluate anticancer activity and to help validate drug candidates for clinical trials. Oncoscience. 2015;2:91–8.
Article
PubMed
PubMed Central
Google Scholar
Kliczkowska K, Jankowska U, Jagielski D, Czopowicz M, Sapierzyński R. Epidemiological and morphological analysis of feline injection site sarcomas. Pol J Vet Sci [Internet]. 2015;18:313–22. [cited 2016 Mar 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26172181
CAS
Google Scholar
Vargas A, Zeisser-Labouèbe M, Lange N, Gurny R, Delie F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliv Rev. 2007;59:1162–76.
Article
CAS
PubMed
Google Scholar
Kue CS, Tan KY, Lam ML, Lee HB. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim [Internet] 2015;64:129–138. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4427727
Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc [Internet]. 2016;11:937–48. Available from: http://www.nature.com/doifinder/10.1038/nprot.2016.050
Article
CAS
Google Scholar
Sysel AM, Valli VE, Bauer JA. Immunohistochemical quantification of the cobalamin transport protein, cell surface receptor and Ki-67 in naturally occurring canine and feline malignant tumors and in adjacent normal tissues. Oncotarget [Internet]. 2014;6 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385855/
Nowak M, Madej JA, Dzięgiel P. Extent of metallothionin expression in correlation with expression of Ki-67 antigen in soft tissue fibrosarcomas in dogs. Bull Vet Inst Pulawy. 2007;51:139–44.
Google Scholar
Hasegawa T, Yamamoto S, Yokoyama R, Umeda T, Matsuno Y, Hirohashi S. Prognostic significance of grading and staging systems using MIB-1 score in adult patients with soft tissue sarcoma of the extremities and trunk. Cancer. 2002;95:843–51.
Article
PubMed
Google Scholar
Jensen V, Brandt Sorensen F, Bentzen SM, Ladekarl M, Steen Nielsen O, Keller J, et al. Proliferative activity (MIB-1 index) is an independent prognostic parameter in patients with high-grade soft tissue sarcomas of subtypes other than malignant fibrous histiocytomas: a retrospective immunohistological study including 216 soft tissue sarcoma. Histopathology. 1998;32:536–46.
Article
CAS
PubMed
Google Scholar
Zuccari DAPC, Pavam MV, Terzian ACB, Pereira RS, Ruiz CM, Andrade JC. Immunohistochemical evaluation of e-cadherin, Ki-67 and PCNA in canine mammary neoplasias: correlation of prognostic factors and clinical outcome. Pesqui Vet Brassica. 2008;28:207–15.
Article
Google Scholar
Guzińska-Ustymowicz K, Pryczynicz A, Kemona A, Czyzewska J. Correlation between proliferation markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in colorectal cancer. Anticancer Res. 2009;29:3049–52.
PubMed
Google Scholar
Bologna-Molina R, Mosqueda-Taylor A, Molina-Frechero N, Mori-Estevez AD, Sanchez-Acuna G. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors. Med Oral Patol Oral Cir Bucal. 2013; doi:10.4317/medoral.18573.
Carvalho MI, Pires I, Prada J, Lobo L, Queiroga FL. Ki-67 and PCNA expression in canine mammary tumors and adjacent nonneoplastic mammary glands: prognostic impact by a multivariate survival analysis. Vet Pathol [Internet]. 2016;53:1138–46.
Article
CAS
Google Scholar