This study has provided a description of horses and home facilities related to a single equestrian show in southern Ontario, Canada in July 2014. This study has also described the network of potential contacts associated with this show. The findings presented in this study contribute to a better understanding of the contact patterns of horses attending an equestrian show. The inclusion of the secondary contacts in the network demonstrated the high amount of connectivity beyond the horses that were present at the show, highlighting the importance of describing these contacts when estimating the risk of disease spread in the population.
The sampling method for this study was a convenience sample of horse owners/trainers/riders at the show, and therefore may not be representative of the general Ontario equine population. However, the high response rate for the questionnaire suggests that the network is fairly well characterized for horses associated with this particular show. Previous contact networks in veterinary medicine have been constructed using databases of animal movements [11, 20] or information obtained through registries [21], however, such information is not available in Ontario. Simply using a complete list of registrants at the show would not have allowed for the detailed collection of data about individual home facilities, or the identification of secondary contacts at these home facilities.
Most horses were boarded at home facilities less than 50 km away from the fairgrounds, suggesting that potential disease spread initiating at the show would have a higher probability of being contained in the local area due to the majority of contacts residing in close geographic proximity. Since only a small proportion of horses were boarded at locations farther away from the show location, wide geographic spread of a potential disease via horses travelling back to their facilities would be less likely. The majority of horses residing in close geographic proximity to the show location could be explained by the equestrian sport of interest (dressage) and the type (silver level competition) of equestrian show being studied. In Canada, dressage has three competition levels that relate to the type of membership purchased: bronze, silver, and gold. Each level may attract a different group of competitors based on the competitiveness of their horse and if they wish to compete locally (bronze), provincially (silver), or nationally (gold) [15]. Differences in the contact network structure could be expected between different competition levels or equestrian sports. For instance, a network of horses that exclusively competed at the gold level might have more contacts over a wide geographic range. The potential difference in network structure between competition levels and equestrian sports is an area identified for future research.
The horses in this study were vaccinated for most equine diseases, and had an owner-reported vaccine coverage level that was much higher than previously reported for Ontario horses [22]. The differences in vaccination coverage reported previously for Ontario horses may be attributed to the differences in study populations. The population of the previous study was involved in an investigation of respiratory disease outbreaks in Ontario, which may suggest why the proportion of horses that were vaccinated prior to the outbreaks was low [22]. Alternatively, the horses in the current study may be highly vaccinated due to their frequent participation in equestrian events. Although vaccination is not required to participate in most shows in Ontario, it is recommended practice for horses that travel frequently [23].
The absence of a statistically significant difference between opportunities for contact at the home facility and while away from home could be due to the small sample size in this study. Regardless, questionnaire responses indicated that participants reported decreased horse-to-horse contact when travelling away from home. This indicated that the potential for disease transmission while travelling away from home may be reduced due to an owner’s awareness of good biosecurity practices. These results might be an overestimate due to obsequiousness bias, where participants could have responded with what they deemed would be an acceptable answer (i.e. that they vaccinate their horse because it is recommended practice, even if they do not). Steps to minimize this bias were taken by emphasizing the anonymous nature of the questionnaire and through the use of the locked questionnaire submission box.
The majority of horses in the one-mode network were secondary contacts, demonstrating the high amount of connectivity beyond the primary horses that attended the show. Simply planning disease intervention strategies based on the horses that attended the show without explicit consideration of secondary contacts would severely underestimate the resources required to control a potential outbreak. The quantification of contacts at an equestrian show can aid in developing disease management plans in the event of a future inadvertent introduction of an equine disease. In addition, visualizing the contact network associated with an equestrian show can act as an education tool to demonstrate the importance of practicing good biosecurity behaviours.
The low density of the network indicates that the likelihood of an infectious disease spreading to every horse in the network by direct contact is low. However, the impact of this effect is difficult to measure without the consideration of incoming and outgoing infection chains, which can only be measured in directed networks while considering the chronological order of the contacts [24]. The high clustering coefficient was likely due to the naturally clustered nature of equine facilities, as horses in the same location had direct connections with one another, creating multiple clusters of horses. The high clustering coefficient might indicate that a highly infectious disease could potentially spread quickly within a single facility.
The two horses with the highest betweenness and closeness centrality scores had contact with horses in three locations, indicating that they were the most important horses for potential disease spread in the network. In terms of disease transmission, centrality measures can indicate influential nodes in the network; betweenness centrality can indicate gatekeepers for transmission, and closeness centrality indicates a horse that is a short distance from most others, so a disease from a random horse in the network could potentially reach the central horse quickly [10, 18]. The two horses with the highest scores acted as cutpoints between two separate locations at the fairgrounds, allowing horses in these locations to be connected in the network. This type of information could be useful during the design/planning stages of boarding locations at equestrian shows. If these two horses had co-boarded at the same location at the fairgrounds, the network would consist of three separate components, which would lead to a reduced risk of disease since horses from each component would not be reachable from the others.
Nodes with high betweenness centrality values but low Eigenvector values can act as important gatekeepers for disease transmission because they connect otherwise isolated horses to the central core of the network [13]. The horse with these corresponding scores was the only horse from its home facility that participated in the show, which means that potential disease spread to/from the home facility could only occur through that horse. Nodes with low betweenness scores but high Eigenvector values have direct contact to important nodes in the network [13]. The two horses with these corresponding scores were neighbours to the horses that acted as the central connecting nodes between the coverall barn and the field.
Limitations of this study include the potential for recall bias, as participants completed the questionnaire on-site and did not have access to their horse’s records to answer questions regarding their previous travel patterns and vaccination status. Some questions were designed to minimize recall bias by providing categories for participants to select an answer (i.e. questions about the number of owners per facility and the average range of horses transported on/off the facility per month). Individuals that travelled with their horse more often might have been less precise in their estimate of the number of times their horse travelled in the 6 months prior to the show date, while those that travelled less often might have been more likely to recall the number of times that they had travelled. Limitations of the network analyses include the static nature of the network, as this does not consider the effect of changing contact structure as horses move in and out of the home facility. It is important to note that the static nature of the network means that the network measures calculated in this study may not persist beyond the study period. In addition, the network structure and characteristics may change if movements beyond this competition were incorporated. Further research should explore the effect of ongoing movements within the equine population on the network structure and potential disease dynamics.
Previous equine contact networks have used a variety of definitions for connections between horses and locations, including connections between racehorse trainers while racing together [20] and connections between equine facilities as horses moved between them [11]. Co-attending the same competitions has been used previously in the UK sheep population as a proxy for a connection in network analysis [21]. In the absence of detailed data on direct contacts within facilities, the definition of a contact in this current study may be an oversimplification because it assumes that all horses in the same location have the same probability of contacting one another. Additionally, the definition of a contact between horses may depend on the specific disease of interest. For example, an assumption that horses are in contact with one another at the same location may be reasonable for respiratory diseases such as equine influenza, which can be transmitted via airborne respiratory droplets [25]. Further investigations are required to determine the frequency and intensity of direct contact between horses co-boarding in the same location.