Aly LAA, El- Menoufy H, Ragae A, Rashed LA, Sabry D. Adipose stem cells as alternatives for bone marrow mesenchymal stem cells in oral ulcer healing. International Journal of Stem Cells. 2012;5:104–14.
Article
Google Scholar
Alamoudi NM, El Ashiry EA, Farsi NM, El Derwi DA, Atta HM. Treatment of oral ulcers in dogs using adipose tissue-derived mesenchymal stem cells. J Clin Pediatr Dent. 2014;38:215.
Article
CAS
PubMed
Google Scholar
Filho ELR, de Araújo Larrazabal MC, Ferreira da Costa L, Monteiro dos Santos S, Monteiro dos Santos R, de Andrade Aguiar JL. Effect of autologous stem cells on regenerated bone during distraction osteogenesis by Ilizarov technique in the radius of dogs. Histomorphometric analysis. Acta Cir Bras. 2013;28:574–81.
Article
Google Scholar
Koyanagi H, Ae K, Maehara H, Yuasa M, Masaoka T, Yamada T, Taniyama T, Saito M, Funauchi Y, Yoshii T, Okawa T, Sotome S. Massive bone reconstruction with heat-treated bone graft loaded autologous bone marrow-derived stromal cells and b-tricalcium phosphate composites in canine models. J Orthop Res. 2003;31:1308–11.
Article
Google Scholar
Chen T, Wang Y, Bu L. Construction of functional tissue-engineered bone using cell sheet technology in a canine model. Exp Ther Med. 2014;7:958–62.
CAS
PubMed
PubMed Central
Google Scholar
Yun J-H, Han S-H, Choi S-H, Lee M-H, Lee S-J, Song S-U, Oh N. Effects of bone marrow derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: Preliminary study in canine three-wall intrabony defects. Journal of Biomedical Materials B: Applied Biomaterials. 2014;102B:1021–30.
Article
CAS
Google Scholar
Black LL, Gaynor J, Gahring D, Adams C. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxfemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther. 2007;8:273–84.
Google Scholar
Black LL, Gaynor J, Adams C, Dhupa S, Sams A. Effect of adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of elbow joint in dogs. Vet Ther. 2008;9:192–200.
PubMed
Google Scholar
Wood JA, Chung D-J, Park SA, Zwingerberger AL, Reilly CM, Ly J, Walker NJ, Vernau W, Hayashi K, Wisner ER, Canno MS, Kass PH, Cherry SR, Boyesson DL, Russel P, Murphy CJ. Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study. J Ocul Pharmacol Ther. 2012;28:307–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, Cugat R, Sopena J, Carrillo JM. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res. 2014;10:143.
Article
PubMed
PubMed Central
Google Scholar
Lim J-H, Byeon Y-E, Ryu H-H, Jeong Y-H, Lee Y-W, Kim WH, Kang K-S, Kweon K-J. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci. 2008;8:275–82.
Article
Google Scholar
Jung D-I, Ha J, Kang B-T, Kim J-W, Quan F-S, Lee J-H, Woo E-J, Park H-M. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. Journal of Neurological Sciences. 2009;285:67–77.
Article
Google Scholar
Ryu H-H, Lim J-H, Byeon Y-E, Park J-R, Seo M-S, Lee Y-W, Kim WH, Kang K-S, Kweon O-K. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci. 2009;10:273–84.
Article
PubMed
PubMed Central
Google Scholar
Penha EM, Santana Meira C, Teixeira Guimarães F, Pinheiro Mendonça MV, Gravely FA, Bahia Pinheiro CM, Bahia Pinheiro TM, Barrouin-Melo SM, Ribeiro-dos-Santos R, PereiraSoares MB. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. ᅟ: Hindawi Publishing Corporation Stem Cells International; 2014. p. 1–8.
Google Scholar
Chung D-J, Choi C-B, Lee S-H, Kang E-H, Lee J-H, Hwang S-H, Han H, Lee JH, Choe BY, Lee S-Y, Kim H-Y. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res. 2009;87:3554–67.
Article
CAS
PubMed
Google Scholar
Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterisation of a new class of contrast agents for MR imaging. Radiology. 1999;175:489–93.
Article
Google Scholar
Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med. 2005;53:329–38.
Article
PubMed
Google Scholar
Küstermann E, Himmelreich U, Kandal K, Geelen T, Ketkar A, Wiedermann D, Strecker C, Esser J, Arnhold S, Hoehn M. Efficient stem cell labeling for MRI studies. Contrast Media and Molecular Imaging. 2008;3:27–37.
Article
PubMed
Google Scholar
Nohroudi K, Arnhold S, Berhorn T, Addicks K, Hoehn M, Himmelreich U. In vivo MRI stem cell tracking requires balancing of detection limit and cell viability. Cell Transplant. 2008;19:431–41.
Article
Google Scholar
Sykova E, Jendelova P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ. 2007;14:1336–42.
Article
CAS
PubMed
Google Scholar
Bulte JWM. In vivo MRI cell tracking: clinical studies. Am J Roentgenol. 2009;193:314–25.
Article
Google Scholar
Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells – a comperative study. Veterinary Research Communication. 2012;36:139–48.
Article
Google Scholar
Sykova E, Jendelova P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegenerative Diseases. 2006;3:62–7.
Article
PubMed
Google Scholar
Urdzikova L, Jendelova P, Glogarova K, Burian M, Hajek M, Sykova E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rat. J Neurotrauma. 2006;23:1379–91.
Article
PubMed
Google Scholar
Kedziorek DA, Kraitchman DL. Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Methods Mol Biol. 2010;660:171–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorek DLJ, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials. 2008;29:3583–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Scotti G, Martino G, Pluchino S. Magnetic resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells. 2007;25:2583–92.
Article
PubMed
Google Scholar
Seonen SJH, Himmelreich U, Nuytten N, De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labeling. Biomaterials. 2011;32:195–205.
Article
Google Scholar
Bulte JWM, Kraitchman DL, Mackay AM, Pittenger M. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labelling with ferumoxides. Blood. 2004;104:3410–3.
Article
CAS
PubMed
Google Scholar
Kostura L, Kraitchmann DL, Mackay AM, Pittenger MF, Bulte JWM. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomedicine. 2004;17:513–7.
Article
Google Scholar
Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood. 2004;104:1217–23.
Article
CAS
PubMed
Google Scholar
Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, Kadosawa I, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp Hematol. 2004;32:502–9.
Article
CAS
PubMed
Google Scholar
Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH, Bulte JWM. Clinically applicable labeling of mammalian stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003;228:480–7.
Article
PubMed
Google Scholar
Mosmann T. Rapid colometric assay for cellular growth and survival: application to proliferation and cytotoxitcity assays. Journal of Immunological Assays. 1983;65(1-2):55–63.
CAS
Google Scholar
Yoo JH, Park C, Jung D-I, Lim C-Y, Kang B-T, Kim JH, Park JW, Kim JH, Park HM. In vivo cell tracking of canine allogenic mesenchymal stem cells administrationvia renal arterial catheterization and physiopathological effects on the kidney in two healthy dogs. J Vet Med Sci. 2011;73(2):269–74.
Article
PubMed
Google Scholar
Lu S-S, Liu S, Zu Q-Q, Xu X-Q, Yu J, Wang J, Zhang Y, Shi H. In vivo MR imaging of intraarterially delivered magnetically labeled mesenchymal stem cells in a canine stroke model. PLoS One. 2013;8:2.
Google Scholar
Kim U, Shin DG, Park JS, Kim YJ, Park SI, Moon YM, Jeong KS. Homing of adipose-derived stem cells to radiofrequency catheter ablated canine atrium and differentiation into cardiomyocyte-like cells. Int J Cardiol. 2011;146:371–8.
Article
PubMed
Google Scholar
Ittrich H, Lange C, Dahnke H, Zander AR, Adam G, Nolte-Ernsting C. Untersuchung zur Markierung von mesenchymalen Stammzellen mit unterschiedlichen superparamagnetischen Eisenoxidpartikeln und Nachweisbarkeit in der MRT bei 3 T. Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 2005;177:1151–63.
Article
CAS
Google Scholar