Faria AMC, Maron R, Ficker SM, Slavin AJ, Spahn T, Weiner HL. Oral tolerance induced by continuous feeding: enhanced up-regulation of transforming growth factor-beta/interleukin-10 and suppression of experimental autoimmune encephalomyelitis. J Autoimmun. 2003;20(2):135–45.
Article
CAS
PubMed
Google Scholar
Faria AMC, Weiner HL. Oral tolerance. Immunol Rev. 2005;206(1):232–59.
Article
CAS
PubMed
Google Scholar
Wannemuehler MJ, Kiyono H, Babb JL, Michalek SM, Mcghee JR. Lipopolysaccharide (Lps) Regulation of the Immune-Response - Lps Converts Germ-Free Mice to Sensitivity to Oral Tolerance Induction. J Immunol. 1982;129(3):959–65.
CAS
PubMed
Google Scholar
Sudo N, Sawamura SA, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol. 1997;159(4):1739–45.
CAS
PubMed
Google Scholar
Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci. 2011;1(1):20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med. 2006;203(3):519–27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alpan O, Rudomen G, Matzinger P. The role of dendritic cells, B cells, and M cells in gut-oriented immune responses. J Immunol. 2001;166(8):4843–52.
Article
CAS
PubMed
Google Scholar
Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med. 2001;193(2):F5–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tezuka H, Ohteki T. Regulation of intestinal homeostasis by dendritic cells. Immunol Rev. 2010;234(1):247–58.
Article
CAS
PubMed
Google Scholar
Pasetti MF, Simon JK, Sztein MB, Levine MM. Immunology of gut mucosal vaccines. Immunol Revs. 2011;239(1):125–48.
Article
CAS
Google Scholar
Medina E, Guzmán CA. Modulation of immune responses following antigen administration by mucosal route. FEMS Immunol Med Microbiol. 2000;27(4):305–11.
Article
CAS
PubMed
Google Scholar
Nguyen TV, Yuan L, Azevedo MS, Jeong KI, Gonzalez AM, Saif LJ. Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet Immunol Immunopathol. 2007;117(3–4):236–48.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lecce JG, Matrone G. Porcine neonatal nutrition: the effect of diet on blood serum proteins and performance of the baby pig. J Nutr. 1960;70:13–20.
CAS
PubMed
Google Scholar
Nechvatalova K, Kudlackova H, Leva L, Babickova K, Faldyna M. Transfer of humoral and cell-mediated immunity via colostrum in pigs. Vet Immunol Immunopathol. 2011;142(1–2):95–100.
Article
CAS
PubMed
Google Scholar
Bandrick M, Ariza-Nieto C, Baidoo SK, Molitor TW. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets. Dev Comp Immunol. 2014;43(1):114–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stott GH, Marx DB, Menefee BE, Nightengale GT. Colostral immunoglobulin transfer in calves I. Period of absorption. J Dairy Sci. 1979;62(10):1632–8.
Article
CAS
PubMed
Google Scholar
Jensen AR, Elnif J, Burrin DG, Sangild PT. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J Nutr. 2001;131(12):3259–65.
CAS
PubMed
Google Scholar
Halliday R. The absorption of antibodies from immune sera by the gut of the young rat. Proc R Soc Lond B Biol Sci. 1955;143(912):408–13.
Article
CAS
PubMed
Google Scholar
Appleby P, Catty D. Transmission of immunoglobulin to foetal and neonatal mice. J Reprod Immunol. 1983;5(4):203–13.
Article
CAS
PubMed
Google Scholar
Wenzl HH, Schimpl G, Feierl G, Steinwender G. Time course of spontaneous bacterial translocation from gastrointestinal tract and its relationship to intestinal microflora in conventionally reared infant rats. Dig Dis Sci. 2001;46(5):1120–6.
Article
CAS
PubMed
Google Scholar
Vukavic T. Timing of the gut closure. J Pediatr Gastroenterol Nutr. 1984;3(5):700–3.
Article
CAS
PubMed
Google Scholar
Brandtzaeg P, Nilssen DE, Rognum TO, Thrane PS. Ontogeny of the mucosal immune system and IgA deficiency. Gastroenterol Clin North Am. 1991;20(3):397–439.
CAS
PubMed
Google Scholar
Lorenz RG, Newberry RD. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann N Y Acad Sci. 2004;1029:44–57.
Article
CAS
PubMed
Google Scholar
Cesta MF. Normal Structure, Function, and Histology of Mucosa-Associated Lymphoid Tissue. Tox Pathol. 2006;34(5):599–608.
Article
Google Scholar
Buchanan R, Tetland S, Wilson HL. Low dose antigen exposure for a finite period in newborn rats triggers mucosal immunity rather than tolerance in later life. PLoS ONE. 2012;7(12):e51437.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchanan R, Mertins S, Wilson H. Oral antigen exposure in extreme early life in lambs influences the magnitude of the immune response which can be generated in later life. BMC Vet Res. 2013;9:160. doi:10.1186/1746-6148-9-160.
Article
PubMed Central
PubMed
Google Scholar
Pasternak JA, Ng SH, Wilson HL. A single, low dose oral antigen exposure in newborn piglets primes mucosal immunity if administered with CpG oligodeoxynucleotides and polyphosphazene adjuvants. Vet Immunol Immunopathol. 2014;161(3–4):211–21.
Article
CAS
PubMed
Google Scholar
Haverson K, Corfield G, Jones PH, Kenny M, Fowler J, Bailey M, et al. Effect of Oral Antigen and Antibody Exposure at Birth on Subsequent Immune Status. Int Arch Allergy Imm. 2009;150(2):192–204.
Article
CAS
Google Scholar
Strobel S, Ferguson A. Immune responses to fed protein antigens in mice. 3. Systemic tolerance or priming is related to age at which antigen is first encountered. Pediatr Res. 1984;18(7):588–94.
Article
CAS
PubMed
Google Scholar
Miller A, Lider O, Abramsky O, Weiner HL. Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. Eur J Immunol. 1994;24(5):1026–32.
Article
CAS
PubMed
Google Scholar
Tobagus IT, Thomas WR, Holt PG. Adjuvant costimulation during secondary antigen challenge directs qualitative aspects of oral tolerance induction, particularly during the neonatal period. J Immunol. 2004;172(4):2274–85.
Article
CAS
PubMed
Google Scholar
Strobel S. Immunity induced after a feed of antigen during early life: oral tolerance v. sensitisation. Proc Nutr Soc. 2001;60(4):437–42.
Article
CAS
PubMed
Google Scholar
Wilson HL, Kovacs-Nolan J, Latimer L, Buchanan R, Gomis S, Babiuk L, et al. A novel triple adjuvant formulation promotes strong, Th1-biased immune responses and significant antigen retention at the site of injection. Vaccine. 2010;28(52):8288–99.
Article
CAS
PubMed
Google Scholar
Garlapati S, Eng NF, Wilson HL, Buchanan R, Mutwiri GK, Babiuk LA, et al. PCPP (poly[di(carboxylatophenoxy)-phosphazene]) microparticles co-encapsulating ovalbumin and CpG oligo-deoxynucleotides are potent enhancers of antigen specific Th1 immune responses in mice. Vaccine. 2010;28(52):8306–14.
Article
CAS
PubMed
Google Scholar
Awate S, Wilson HL, Lai K, Babiuk LA, Mutwiri G. Activation of adjuvant core response genes by the novel adjuvant PCEP. Mol Immunol. 2012;51(3–4):292–303.
Article
CAS
PubMed
Google Scholar
Mutwiri G, Benjamin P, Soita H, Townsend H, Yost R, Roberts B, et al. Poly[di(sodium carboxylatoethylphenoxy) phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine. 2007;25(7):1204–13.
Article
CAS
PubMed
Google Scholar
Mutwiri G, Bowersock TL, Babiuk LA. Microparticles for oral delivery of vaccines. Expert Opin Drug Deliv. 2005;2(5):791–806.
Article
CAS
PubMed
Google Scholar
Mowat AM. The regulation of immune responses to dietary protein antigens. Immunol Today. 1987;8(3):93–8.
Article
CAS
PubMed
Google Scholar
Wilson HL, Obradovic MR. Evidence for a common mucosal immune system in the pig. Mol Immunol. 2014. doi: 10.1016/j.molimm.2014.09.004.
McNeilly TN, McClure SJ, Huntley JF. Mucosal immunity in sheep and implications for mucosal vaccine development. Sm Ruminant Res. 2008;76(1–2):83–91.
Article
Google Scholar
McGhee JR, Xu-Amano J, Miller CJ, Jackson RJ, Fujihashi K, Staats HF, et al. The common mucosal immune system: from basic principles to enteric vaccines with relevance for the female reproductive tract. Reprod Fertil Dev. 1994;6(3):369–79.
Article
CAS
PubMed
Google Scholar
Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 1987;7(4):265–76.
Article
CAS
PubMed
Google Scholar
Brandtzaeg P. Regionalized immune function of tonsils and adenoids. Immunol Today. 1999;20(8):383–4.
Article
CAS
PubMed
Google Scholar
Czerkinsky C, Holmgren J. Topical immunization strategies. Mucosal Immunol. 2010;3(6):545–55.
Article
CAS
PubMed
Google Scholar
Bourges D, Chevaleyre C, Wang C, Berri M, Zhang X, Nicaise L, et al. Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae: implications for T- and sIgA+ B-lymphocyte recruitment. Immunology. 2007;122(4):551–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Foss DL, Murtaugh MP. Mucosal immunogenicity and adjuvanticity of cholera toxin in swine. Vaccine. 1999;17(7–8):788–801.
Article
CAS
PubMed
Google Scholar
Verdonck F, De Hauwere V, Bouckaert J, Goddeeris BM, Cox E. Fimbriae of enterotoxigenic Escherichia coli function as a mucosal carrier for a coupled heterologous antigen. J Control Release. 2005;104(2):243–58.
Article
CAS
PubMed
Google Scholar
Kabir S. Cholera vaccines: the current status and problems. Rev Med Microbiol. 2005;16(3):101–16.
Article
Google Scholar
Botner A, Strandbygaard B, Sorensen KJ, Have P, Madsen KG, Madsen ES, et al. Appearance of acute PRRS-like symptoms in sow herds after vaccination with a modified live PRRS vaccine. Vet Rec. 1997;141(19):497–9.
Article
CAS
PubMed
Google Scholar
Storgaard T, Oleksiewicz M, Botner A. Examination of the selective pressures on a live PRRS vaccine virus. Arch Virol. 1999;144(12):2389–401.
Article
CAS
PubMed
Google Scholar
Hu J, Zhang C. Porcine reproductive and respiratory syndrome virus vaccines: current status and strategies to a universal vaccine. Transbound Emerg Dis. 2014;61(2):109–20.
Article
CAS
PubMed
Google Scholar
Delisle B, Calinescu C, Mateescu MA, Fairbrother JM, Nadeau E. Oral immunization with F4 fimbriae and CpG formulated with carboxymethyl starch enhances F4-specific mucosal immune response and modulates Th1 and Th2 cytokines in weaned pigs. J Pharm Pharm Sci. 2012;15(5):642–56.
CAS
PubMed
Google Scholar
Snoeck V, Huyghebaert N, Cox E, Vermeire A, Vancaeneghem S, Remon JP, et al. Enteric-coated pellets of F4 fimbriae for oral vaccination of suckling piglets against enterotoxigenic Escherichia coli infections. Vet Immunol Immunopathol. 2003;96(3–4):219–27.
Article
CAS
PubMed
Google Scholar
Snoeck V, Peters IR, Cox E. The IgA system: a comparison of structure and function in different species. Vet Res. 2006;37(3):455–67.
Article
CAS
PubMed
Google Scholar
Cowdery JS, Chace JH, Yi AK, Krieg AM. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol. 1996;156(12):4570–5.
CAS
PubMed
Google Scholar
Sheldrake RF, Husband AJ, Watson DL. Origin of antibody-containing cells in the ovine mammary gland following intraperitoneal and intramammary immunisation. Res Vet Sci. 1988;45(2):156–9.
CAS
PubMed
Google Scholar
Husband AJ, McDowell GH. Local and systemic immune responses following oral immunization of foetal lambs. Immunology. 1975;29(6):1019–28.
PubMed Central
CAS
PubMed
Google Scholar
Buchanan RM, Popowych Y, Arsic N, Townsend HG, Mutwiri GK, Potter AA, et al. B-cell activating factor (BAFF) promotes CpG ODN-induced B cell activation and proliferation. Cell Immunol. 2011;271(1):16–28.
Article
CAS
PubMed
Google Scholar
Anderson S, Wakeley P, Wibberley G, Webster K, Sawyer J. Development and evaluation of a Luminex multiplex serology assay to detect antibodies to bovine herpes virus 1, parainfluenza 3 virus, bovine viral diarrhoea virus, and bovine respiratory syncytial virus, with comparison to existing ELISA detection methods. J Immunol Methods. 2011;366(1–2):79–88.
Article
CAS
PubMed
Google Scholar