King AMQ: Picornaviridae (Seventh report of the International Committee for the Taxonomy of Viruses). Virus Taxonomy: Classification and Nomenclature of Viruses. Edited by: Van Regenmortel MHV, Fauquet CM, Bishop DHL.x Academic Press; Academic Press,2000,:657-673.
Google Scholar
Berger HG, Straub OC, Ahl R, Tesar M, Marquardt O: Identification of foot-and-mouth disease virus replication in vaccinated cattle by antibodies to non-structural virus proteins. Vaccine. 1990, 8 (3): 213-216. 10.1016/0264-410X(90)90048-Q.
Article
CAS
PubMed
Google Scholar
Sørensen KJ, Madekurozwa RL, Dawe P: Foot-and-mouth disease: detection of antibodies in cattle sera by blocking ELISA. Vet Microbiol. 1992, 32 (3-4): 253-265. 10.1016/0378-1135(92)90148-M.
Article
PubMed
Google Scholar
Sørensen KJ, Hansen CM, Madsen ES, Madsen KG: Blocking ELISAs using the FMDV nonstructural proteins 3D, 3AB, and 3ABC produced in the Baculovirus expression system. Vet Q. 1998, 20: S17-S20.
Article
PubMed
Google Scholar
Lubroth J, Brown F: Identification of native foot-and-mouth disease virus non-structural protein 2C as a serological indicator to differentiate infected from vaccinated livestock. Res Vet Sci. 1995, 59 (1): 70-78. 10.1016/0034-5288(95)90034-9.
Article
CAS
PubMed
Google Scholar
De Diego M, Brocchi E, Mackay D, De Simone F: The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch Virol. 1997, 142 (10): 2021-2033. 10.1007/s007050050219.
Article
CAS
PubMed
Google Scholar
Neitzert E, Beck E, Augede-Melo P, Gomes I, Bergmann IE: Expression of aphthovirus RNA polymerare gene in E.coli and its use together with other bioengineered non-structural antigens in detection of late persistent infection. Virology. 1991, 184: 799-804. 10.1016/0042-6822(91)90456-L.
Article
CAS
PubMed
Google Scholar
Bergmann IE, de Mello PA, Neitzert E, Beck E, Gomes I: Diagnosis of persistent aphthovirus infection and its differentiation from vaccination response in cattle by use of enzyme-linked immunoelectrotransfer blot analysis with bioengineered nonstructural viral antigens. Am J Vet Res. 1993, 54 (6): 825-831.
CAS
PubMed
Google Scholar
Malirat V, Neitzert E, Bergmann IE, Maradei E, Beck E: Detection of cattle exposed to foot-and-mouth disease virus by means of an indirect ELISA test using bioengineered nonstructural polyprotein 3ABC. Vet Q. 1998, 20 Suppl 2: S24-6.
Article
CAS
PubMed
Google Scholar
Bergmann IE, Malirat V, Neitzert E, Beck E, Panizzutti N, Sanchez C, Falczuk A: Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA-3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch Virol. 2000, 145 (3): 473-489. 10.1007/s007050050040.
Article
CAS
PubMed
Google Scholar
Hutber AM, Kitching RP, Conway DA: Control of foot-and-mouth disease through vaccination and the isolation of infected animals. Trop Anim Health Prod. 1998, 30 (4): 217-227. 10.1023/A:1005071027414.
Article
CAS
PubMed
Google Scholar
Alexandersen S, Zhang ZD, Donaldson AI: Aspects of the persistence of foot-and-mouth disease virus in animals - the carrier problem. Microbes Infect. 2002, 4 (10): 1099-1110. 10.1016/S1286-4579(02)01634-9.
Article
PubMed
Google Scholar
Sutmoller P, McVicar JW, Cottral GE: The epizootiological importance of foot-and-mouth disease carriers. Archiv für die gesamte Virusforschung. 1968, 23: 227-235. 10.1007/BF01241895.
Article
CAS
PubMed
Google Scholar
Golding SM, Hedger RS, Talbot P: Radial immuno-diffusion and serum nestralisation techniques for the assay of antibodies to swine vesicular disease. Research in Veterinary Science. 1976, 20 (2): 142-147.
CAS
PubMed
Google Scholar
Hamblin C, Barnett ITR, Crowther JR: A new enzyme-linked-immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus.2. Application. 0022-1759. 1986, 93 (1): 123-129.
CAS
PubMed
Google Scholar
Hamblin C, Barnett ITR, Hedger RS: A New Enzyme-Linked-Immunosorbent-Assay (ELISA) For the Detection of Antibodies Against Foot-and-Mouth-Disease Virus .1. Development and Method of ELISA. J Immunol Methods. 1986, 93 (1): 115-121. 10.1016/0022-1759(86)90441-2.
Article
CAS
PubMed
Google Scholar
Hamblin C, Kitching RP, Donaldson AI, Crowther JR, Barnett ITR: Enzyme-Linked Immunosorbent-Assay (ELISA) For the Detection of Antibodies Against Foot-and-Mouth-Disease Virus .3. Evaluation of Antibodies After Infection and Vaccination. Epidemiol Infect. 1987, 99 (3): 733-744.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hedger RS: Observations on the carrier state and related antibody titres during an outbreak of foot-and-mouth disease. Journal of Hygiene Cambridge. 1970, 68: 53-60.
Article
CAS
Google Scholar
Moonen P, Jacobs L, Crienen A, Dekker A: Detection of carriers of foot-and-mouth disease virus among vaccinated cattle. Vet Microbiol. 2004, 103 (3-4): 151-160. 10.1016/j.vetmic.2004.07.005.
Article
CAS
PubMed
Google Scholar
Davies G: The foot and mouth disease (FMD) epidemic in the United Kingdom 2001. Comp Immunol Microbiol Infect Dis. 2002, 25 (5-6): 331-343. 10.1016/S0147-9571(02)00030-9.
Article
PubMed
Google Scholar
Bergmann IE, Neitzert E, Malirat V, Ortiz S, Colling A, Sanchez C, Melo EC: Rapid serological profiling by enzyme-linked immunosorbent assay and its use as an epidemiological indicator of foot-and- mouth disease viral activity. Arch Virol. 2003, 148 (5): 891-901. 10.1007/s00705-002-0965-5.
Article
CAS
PubMed
Google Scholar
Brocchi E, De Diego MI, Berlinzani A, Gamba D, De Simone F: Diagnostic potential of Mab-based ELISAs for antibodies to non-structural proteins of foot-and-mouth disease virus to differentiate infection from vaccination. Vet Q. 1998, 20 Suppl 2: S20-4.
Article
CAS
PubMed
Google Scholar
Sørensen KJ, Madsen KG, Madsen ES, Salt JS, Nqindi J, Mackay DKJ: Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus. Arch Virol. 1998, 143 (8): 1461-1476. 10.1007/s007050050390.
Article
PubMed
Google Scholar
Bronsvoort BMC, Sørensen KJ, Anderson J, Corteyn A, Tanya VN, Kitching RP, Morgan KL: A comparison of two 3ABC ELISA's in a cattle population with endemic, multiple serotype foot-and-mouth disease. Journal of Clinical Microbiology. 2004, 42 (5): 2108-2114. 10.1128/JCM.42.5.2108-2114.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Enoe C, Georgiadis MP, Johnson WO: Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Prev Vet Med. 2000, 45 (1-2): 61-81. 10.1016/S0167-5877(00)00117-3.
Article
CAS
PubMed
Google Scholar
Hui SL, Walter SD: Estimating the error rates of diagnostic tests. Biometrics. 1980, 36: 167-171. 10.2307/2530508.
Article
CAS
PubMed
Google Scholar
Garrett ES, Eaton WW, Zeger S: Methods for evaluating the performance of diagnostic tests in the absence of a gold standard: a latent class model approach. Statistics in Medicine. 2002, 21 (9): 1289-1307. 10.1002/sim.1105.
Article
PubMed
Google Scholar
Bronsvoort BMC, Renz A, Tchakoute V, Tanya VN, Ekale E, Trees AJ: Repeated high doses of avermectins cause prolonged sterilisation, but do not kill, Onchoceca ochengi adult worms in African cattle. Filaria Journal. 2005, 4: 8-10.1186/1475-2883-4-8.
Article
PubMed
Google Scholar
Bronsvoort BMC, Radford A, Tanya VN, Kitching RP, Morgan KL: The molecular epidemiology of foot-and-mouth disease viruses in the Adamawa Province of Cameroon. Journal of Clinical Microbiology. 2004, 42 (5): 2186-2196. 10.1128/JCM.42.5.2186-2196.2004.
Article
PubMed Central
PubMed
Google Scholar
Nielsen SS, Toft N: Optimisation of the validity of ELISA and faecal culture tests for paratuberculosis: Selection of population or correction by population characteristics?: June 11-14 2002; Bilbao, Spain.Edited by: Juste RAGMVGJME. 2002, , 400-405.
Google Scholar
Bachrach HL: Foot-and-mouth disease. Annual Review of Microbiology. 1968, 22: 201-244. 10.1146/annurev.mi.22.100168.001221.
Article
CAS
PubMed
Google Scholar
Cuncliffe HR: Observations on the duration of immunity in cattle after experimental infection with foot-and-mouth disease. Cornell Vet. 1962, 54: 501-510.
Google Scholar
Chung WB, Sørensen KJ, Liao PC, Yang PC, Jong MH: Differentiation of foot-and-mouth disease virus-infected from vaccinated pigs by enzyme-linked immunosorbent assay using nonstructural protein 3AB as the antigen and application to an eradication program. J Clin Microbiol. 2002, 40 (8): 2843-2848. 10.1128/JCM.40.8.2843-2848.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clavijo A, Wright P, Kitching P: Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet J. 2004, 167 (1): 9-22. 10.1016/S1090-0233(03)00087-X.
Article
CAS
PubMed
Google Scholar
Toft N, Nielsen LR, Højsgaard S: Exploring the definitions of Salmonella dublin in latent class analysis: Vina del Mar 3.2003.
Google Scholar
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A: Bayesian measures of model complexity and fit (with discussion). J Roy Stat Soc, Ser B: Stat Methodol. 2002, 64 (4): 583-639. 10.1111/1467-9868.00353.
Article
Google Scholar
Bronsvoort BMC, Tanya VN, Kitching RP, Nfon C, Hamman SM, Morgan KL: Foot-and-mouth disease and livestock husbandry practices in the Adamawa Province of Cameroon. Trop anim health prod. 2003, 35 (6): 491-507. 10.1023/A:1027302525301.
Article
PubMed
Google Scholar
Bronsvoort BMC, Anderson J, Corteyn A, Hamblin P, Kitching RP, Nfon C, Tanya VN, Morgan KL: Geographical and age-stratified distributions of foot-and-mouth disease virus-seropositive and probang-positive cattle herds in the Adamawa province of Cameroon. Vet Rec. 2006, 159 (10): 299-308.
Article
Google Scholar
Niedbalski W: Comparison of three ELISA kits for the detection of antibodies against foot-and-mouth disease virus non-structural proteins. Bull Vet Inst Pulawy. 2005, 49 (2): 147-151.
Google Scholar
Sørensen JH, de Stricker K, Dyrting K, Grazioli S, Haas B: Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody. Archives of Virology. 2005, 150 (4): 805-814. 10.1007/s00705-004-0455-z.
Article
PubMed
Google Scholar
Brocchi E, Bergmann IE, Dekker A, Paton DJ, Sammin DJ, Greiner M, Grazioli S, De Simone F, Yadin H, Haas B: Comparative evaluation of six ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus. Vaccine. 2006, In Press:
Google Scholar
Greiner M, Gardner IA: Epidemiologic issues in the validation of veterinary diagnostic tests. Prev Vet Med. 2000, 45 (1-2): 3-22. 10.1016/S0167-5877(00)00114-8.
Article
CAS
PubMed
Google Scholar
Cameron A: Survey Toolbox. http://wwwausvetcomau/contentphp?page=res_software#st. 2006
Google Scholar
Cannon RM, Roe RT: Livestock Disease Surveys: A Field Manual for Veterinarians. Canberra, Australian Government Publishing Service 1982.
Google Scholar
Anon.: Chapter 2.1.1, Foot and Mouth Disease. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2005, O.I.E., 28/04/05, 5
Google Scholar
Toft N, Jørgensen E, Højsgaard S: Diagnosing diagnostic tests: evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard. Preventive Veterinary Medicine. 2005, 68 (1): 19-33. 10.1016/j.prevetmed.2005.01.006.
Article
PubMed
Google Scholar
Spiegelhalter DJ, Thomas A, Best NG: Winbugs Version 1.4 User Manual. MRC Biostatistics Unit: 2003.
Google Scholar
Brooks SP, Gelman A: Alternative methods for monitoring convergence of iterative simulations. J Comp Graph Stat. 1998, 7: 434-455. 10.2307/1390675.
Google Scholar