Argüello A, Castro N, Capote J, Tyler JW, Holloway NM: Effect of colostrum administration practices on serum IgG in goat kids. Livest Prod Sci. 2004, 90: 235-239. 10.1016/j.livprodsci.2004.06.006.
Article
Google Scholar
Castro N, Capote J, Alvarez S, Arguello A: Effects of lyophilized colostrum and different colostrum feeding regimens on passive transfer of immunoglobulin g in Majorera goat kids. J Dairy Sci. 2005, 88: 3650-3654. 10.3168/jds.S0022-0302(05)73050-2.
Article
PubMed
Google Scholar
Castro N, Capote J, Bruckmaier RM, Arguello A: Management effects on colostrogenesis in small ruminants: a review. J Appl Anim Res. 2011, 39: 85-93. 10.1080/09712119.2011.581625.
Article
Google Scholar
Castro N, Capote J, Morales-Delanuez A, Rodriguez C, Arguello A: Effects of newborn characteristics and length of colostrum feeding period on passive immune transfer in goat kids. J Dairy Sci. 2009, 92: 1616-1619. 10.3168/jds.2008-1397.
Article
PubMed
Google Scholar
Ontsouka CE, Bruckmaier RM, Blum JW: Fractionized milk composition during removal of colostrum and mature milk. J Dairy Sci. 2003, 86: 2005-2011. 10.3168/jds.S0022-0302(03)73789-8.
Article
PubMed
Google Scholar
Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I: Farm animal proteomics - a review. J Proteomics. 2011, 74: 282-293. 10.1016/j.jprot.2010.11.005.
Article
PubMed
Google Scholar
Groves ML: The isolation of a red protein from Milk2. J Am Chem Soc. 1960, 82: 3345-3350. 10.1021/ja01498a029.
Article
Google Scholar
Paulik S, Slanina L, Polacek M: [Lysozyme in the colostrum and blood of calves and dairy cows]. Vet Med (Praha). 1985, 30: 21-28.
Google Scholar
Reiter B: The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Oxigen Free Radicals and Tissue Damage (Ciba Foundation Symp) Volume 65. Edited by: Excepta Medica. Amsterdam, Oxford, New York; 1979:285-294.
Google Scholar
Pakkanen R, Aalto J: Growth factors and antimicrobial factors of bovine colostrum. Int Dairy J. 1997, 7: 285-297. 10.1016/S0958-6946(97)00022-8.
Article
Google Scholar
Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT: Immune components of bovine colostrum and milk. J Anim Sci. 2009, 87: 3-9. 10.2527/jas.2008-1430.
Article
PubMed
Google Scholar
Danielsen M, Pedersen LJ, Bendixen E: An in vivo characterization of colostrum protein uptake in porcine gut during early lactation. J Proteomics. 2011, 74: 101-109. 10.1016/j.jprot.2010.08.011.
Article
PubMed
Google Scholar
Moore M, Tyler JW, Chigerwe M, Dawes ME, Middleton JR: Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. Javma-J Am Vet Med A. 2005, 226: 1375-1377. 10.2460/javma.2005.226.1375.
Article
Google Scholar
Nowak R, Poindron P: From birth to colostrum: early steps leading to lamb survival. Reprod Nutr Dev. 2006, 46: 431-446. 10.1051/rnd:2006023.
Article
PubMed
Google Scholar
Ahmad R, Khan A, Javed MT, Hussain I: The level of immunoglobulins in relation to neonatal Lamb mortality in Pak-Karakul sheep. Vet Arhiv. 2000, 70: 129-139.
Google Scholar
Reinhardt TA, Lippolis JD: Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci. 2008, 91: 2307-2318. 10.3168/jds.2007-0952.
Article
PubMed
Google Scholar
Nissen A, Bendixen E, Ingvartsen KL, Rontved CM: In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques. Proteomics. 2012, 12: 2866-2878. 10.1002/pmic.201200231.
Article
PubMed
Google Scholar
Reinhardt TA, Lippolis JD: Bovine milk fat globule membrane proteome. J Dairy Res. 2006, 73: 406-416. 10.1017/S0022029906001889.
Article
PubMed
Google Scholar
Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE: Bovine milk exosome proteome. J Proteomics. 2012, 75: 1486-1492. 10.1016/j.jprot.2011.11.017.
Article
PubMed
Google Scholar
Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L: Farm animal milk proteomics. J Proteomics. 2012, 75: 4259-4274. 10.1016/j.jprot.2012.05.028.
Article
PubMed
Google Scholar
Marco-Ramell A, Bassols A: Enrichment of low-abundance proteins from bovine and porcine serum samples for proteomic studies. Res Vet Sci. 2010, 89: 340-343. 10.1016/j.rvsc.2010.03.019.
Article
PubMed
Google Scholar
Boschetti E, Righetti PG: The ProteoMiner in the proteomic arena: A non-depleting tool for discovering low-abundance species. J Proteomics. 2008, 71: 255-264. 10.1016/j.jprot.2008.05.002.
Article
PubMed
Google Scholar
Halliday R, Williams MR: Absorption of inmunoglobulin from colostrum by bottle-fed lambs. Ann Rech Vet. 1979, 10: 549-556.
PubMed
Google Scholar
Muller LD, Ellinger DK: Colostral immunoglobulin concentrations among breeds of dairy-cattle. J Dairy Sci. 1981, 64: 1727-1730. 10.3168/jds.S0022-0302(81)82754-3.
Article
PubMed
Google Scholar
Stott GH, Fellah A: Colostral immunoglobulin absorption linearly related to concentration for calves. J Dairy Sci. 1983, 66: 1319-1328. 10.3168/jds.S0022-0302(83)81941-9.
Article
PubMed
Google Scholar
Rodríguez C, Castro N, Capote J, Morales-delaNuez A, Moreno-Indias I, Sanchez-Macias D, Arguello A: Effect of colostrum immunoglobulin concentration on immunity in Majorera goat kids. J Dairy Sci. 2009, 92: 1696-1701. 10.3168/jds.2008-1586.
Article
PubMed
Google Scholar
Stan S, Delvin E, Lambert M, Seidman E, Levy E: Apo A-IV: an update on regulation and physiologic functions. Bba-Mol Cell Biol L. 2003, 1631: 177-187.
Google Scholar
Simon T, Cook VR, Rao A, Weinberg RB: Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. J Lipid Res. 2011, 52: 1984-1994. 10.1194/jlr.M017418.
Article
PubMed Central
PubMed
Google Scholar
Vowinkel T, Mori M, Krieglstein CF, Russell J, Saijo F, Bharwani S, Turnage RH, Davidson WS, Tso P, Granger DN, Kalogeris TJ: Apolipoprotein A-IV inhibits experimental colitis. J Clin Invest. 2004, 114: 260-269. 10.1172/JCI200421233.
Article
PubMed Central
PubMed
Google Scholar
Ogiwara K, Nogami K, Nishiya K, Shima M: Plasmin-induced procoagulant effects in the blood coagulation: a crucial role of coagulation factors V and VIII. Blood Coagul Fibrin. 2010, 21: 568-576. 10.1097/MBC.0b013e32833c9a9f.
Article
Google Scholar
Booth NA, Bachmann F: Plasminogen-plasmin system. Hemostasis and Thrombosis. Edited by: Colman RW. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.
Google Scholar
Dupont D, Remond B, Collin JC: ELISA determination of plasmin and plasminogen in milk of individual cows managed without the dry period. Milchwissenschaft. 1998, 53: 66-69.
Google Scholar
Rebucci R, Fusi E, Pecorini C, Pinotti L, Cheli F, Baldi A: Evaluation of the biological activation of plasmin plasminogen system in sheep and goat milk. Ital J Anim Sci. 2005, 4: 330-332.
Article
Google Scholar
Feric NT, Boffa MB, Johnston SM, Koschinsky ML: Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen: a novel mechanism for lipoprotein(a)-mediated inhibition of plasminogen activation. J Thromb Haemost. 2008, 6: 2113-2120. 10.1111/j.1538-7836.2008.03183.x.
Article
PubMed
Google Scholar
Rouy D, Koschinsky ML, Fleury V, Chapman J, Angles-Cano E: Apolipoprotein(a) and plasminogen interactions with fibrin: a study with recombinant apolipoprotein(a) and isolated plasminogen fragments. Biochemistry. 1992, 31: 6333-6339. 10.1021/bi00142a024.
Article
PubMed
Google Scholar
Renckens R, Roelofs JJTH, Florquin S, van der Poll T: Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J Infect Dis. 2006, 193: 522-530. 10.1086/499601.
Article
PubMed
Google Scholar
Theodorou G, Daskalopoulou M, Chronopoulou R, Baldi A, Dell'Orto V, Politis I: Acute mastitis induces upregulation of expression of plasminogen activator-related genes by blood monocytes and neutrophils in dairy ewes. Vet Immunol Immunop. 2010, 138: 124-128. 10.1016/j.vetimm.2010.07.002.
Article
Google Scholar
O'Mullane MJ, Baker MS: Elevated plasminogen receptor expression occurs as a degradative phase event in cellular apoptosis. Immunol Cell Biol. 1999, 77: 249-255. 10.1046/j.1440-1711.1999.00823.x.
Article
PubMed
Google Scholar
Castro-Alonso A, Castro N, Capote J, Morales-DelaNuez A, Moreno-Indias I, Sanchez-Macias D, Herraez P, Argullo A: Short communication: apoptosis regulates passive immune transfer in newborn kids. J Dairy Sci. 2008, 91: 2086-2088. 10.3168/jds.2007-0814.
Article
PubMed
Google Scholar
Uhlar CM, Whitehead AS: Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem. 1999, 265: 501-523. 10.1046/j.1432-1327.1999.00657.x.
Article
PubMed
Google Scholar
Eckersall PD, Young FJ, Nolan AM, Knight CH, McComb C, Waterston MM, Hogarth CJ, Scott EM, Fitzpatrick JL: Acute phase proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis. J Dairy Sci. 2006, 89: 1488-1501. 10.3168/jds.S0022-0302(06)72216-0.
Article
PubMed
Google Scholar
Pyorala S, Hovinen M, Simojoki H, Fitzpatrick J, Eckersall PD, Orro T: Acute phase proteins in milk in naturally acquired bovine mastitis caused by different pathogens. Vet Rec. 2011, 168: 535-10.1136/vr.d1120.
Article
PubMed
Google Scholar
Soler L, Molenaar A, Merola N, Eckersall PD, Gutierrez A, Ceron JJ, Mulero V, Niewold TA: Why working with porcine circulating serum amyloid A is a pig of a job. J Theor Biol. 2013, 317: 119-125.
Article
PubMed
Google Scholar
Kumon Y, Yasuoka Y, Yamanaka S, Wada A, Takeuchi H, Sugiura T: Acute-phase serum amyloid A is present in human colostrum and milk. Amyloid Int J Exp Clin Investig Offic J Int Soc Amyloid. 2011, 18 (Suppl 1): 11-13.
Article
Google Scholar
McDonald TL, Larson MA, Mack DR, Weber A: Elevated extrahepatic expression and secretion of mammary-associated serum amyloid A 3 (M-SAA3) into colostrum. Vet Immunol Immunop. 2001, 83: 203-211. 10.1016/S0165-2427(01)00380-4.
Article
Google Scholar
Le A, Barton LD, Sanders JT, Zhang Q: Exploration of bovine milk proteome in colostral and mature whey using an ion-exchange approach. J Proteome Res. 2010, 10: 692-704.
Article
PubMed
Google Scholar
Wells B, Innocent GT, Eckersall PD, McCulloch E, Nisbet AJ, Burgess ST: Two major ruminant acute phase proteins, haptoglobin and serum amyloid A, as serum biomarkers during active sheep scab infestation. Vet Res. 2013, 44: 103-10.1186/1297-9716-44-103.
Article
PubMed Central
PubMed
Google Scholar
Badolato R, Wang JM, Murphy WJ, Lloyd AR, Michiel DF, Bausserman LL, Kelvin DJ, Oppenheim JJ: Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med. 1994, 180: 203-209. 10.1084/jem.180.1.203.
Article
PubMed
Google Scholar
Xu L, Badolato R, Murphy WJ, Longo DL, Anver M, Hale S, Oppenheim JJ, Wang JM: A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol. 1995, 155: 1184-1190.
PubMed
Google Scholar
Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM: A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med. 1999, 189: 395-402. 10.1084/jem.189.2.395.
Article
PubMed Central
PubMed
Google Scholar
He R, Sang H, Ye RD: Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood. 2003, 101: 1572-1581. 10.1182/blood-2002-05-1431.
Article
PubMed
Google Scholar
Furlaneto CJ, Campa A: A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Bioph Res Co. 2000, 268: 405-408. 10.1006/bbrc.2000.2143.
Article
Google Scholar
Lee HY, Kim M-K, Park KS, Bae YH, Yun J, Park J-I, Kwak J-Y, Bae Y-S: Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Bioph Res Co. 2005, 330: 989-998. 10.1016/j.bbrc.2005.03.069.
Article
Google Scholar
He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD: Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood. 2009, 113: 429-437.
Article
PubMed Central
PubMed
Google Scholar
Tamzali Y, Guelfi JF, Braun JP: Plasma fibrinogen measurement in the horse: comparison of Millar's technique with a chronometric technique and the QBC-Vet Autoreader. Res Vet Sci. 2001, 71: 213-217. 10.1053/rvsc.2001.0513.
Article
PubMed
Google Scholar
Ganheim C, Hulten C, Carlsson U, Kindahl H, Niskanen R, Waller KP: The acute phase response in calves experimentally infected with bovine viral diarrhoea virus and/or Mannheimia haemolytica. J Vet Med B Infect Dis Vet Publ Health. 2003, 50: 183-190. 10.1046/j.1439-0450.2003.00658.x.
Article
Google Scholar
Yamada M, Murakami K, Wallingford JC, Yuki Y: Identification of low-abundance proteins of bovine colostral and mature milk using two-dimensional electrophoresis followed by microsequencing and mass spectrometry. Electrophoresis. 2002, 23: 1153-1160. 10.1002/1522-2683(200204)23:7/8<1153::AID-ELPS1153>3.0.CO;2-Y.
Article
PubMed
Google Scholar
Ugarova TP, Yakubenko VP: Recognition of fibrinogen by leukocyte integrins. Ann NY Acad Sci. 2001, 936: 368-385.
Article
PubMed
Google Scholar
Ryu JK, Davalos D, Akassoglou K: Fibrinogen signal transduction in the nervous system. J Thromb Haemost. 2009, 7: 151-154.
Article
PubMed Central
PubMed
Google Scholar
Kuhns DB, Nelson EL, Alvord WG, Gallin JI: Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine or leukotriene B(4). J Immunol. 2001, 167: 2869-2878.
Article
PubMed
Google Scholar
Piñan DFO: Guia de Campo de las Razas Autóctonas Españolas. 2010.
Google Scholar
Jarrige R: Alimentation Des Bovins. Inra-Quae: Ovins & Caprins; 1988.
Google Scholar
Castro N, Capote J, Morales L, Quesada E, Briggs H, Arguello A: Short communication: addition of milk replacer to colostrum whey: effect on immunoglobulin G passive transfer in Majorera kids. J Dairy Sci. 2007, 90: 2347-2349. 10.3168/jds.2006-624.
Article
PubMed
Google Scholar
Almeida AM, Campos A, Francisco R, van Harten S, Cardoso LA, Coelho AV: Proteomic investigation of the effects of weight loss in the gastrocnemius muscle of wild and NZW rabbits via 2D-electrophoresis and MALDI-TOF MS. Anim Genet. 2010, 41: 260-272. 10.1111/j.1365-2052.2009.01994.x.
Article
PubMed
Google Scholar
Marcelino I, de Almeida AM, Ventosa M, Pruneau L, Meyer DF, Martinez D, Lefrancois T, Vachiery N, Coelho AV: Tick-borne diseases in cattle: Applications of proteomics to develop new generation vaccines. J Proteomics. 2012, 75: 4232-4250. 10.1016/j.jprot.2012.03.026.
Article
PubMed
Google Scholar