Bauchart D, Gruffat D, Durand D: Lipid absorption and hepatic metabolism in ruminants. P Nutr Soc. 1996, 55: 39-47. 10.1079/PNS19960010.
Article
CAS
Google Scholar
Bell AW: Lipid metabolism in the liver and selected tissues and in the whole body of ruminant animals. Prog Lipid Res. 1981, 18: 117-164.
Article
Google Scholar
Emery RS, Liesman JS, Herdt TH: Metabolism of long chain fatty acids by ruminant liver. J Nutr. 1992, 122: 832-837.
CAS
PubMed
Google Scholar
Gruffat D, Gobert M, Durand D, Bauchart D: Distinct metabolism of linoleic and linolenic acids in liver and adipose tissues of finishing Normande cull cows. Animal. 2011, 5: 1090-1098. 10.1017/S1751731111000073.
Article
CAS
PubMed
Google Scholar
Prates JAM, Bessa RJB: Trans and n-3 fatty acids. Handbook of Muscle Foods Analysis. Edited by: Nollet LML, Tóldra F. 2009, Boca Raton: CRC Press, Taylor and Francis Group, 399-417.
Google Scholar
Noci F, Monahan FJ, French P, Moloney AP: The fatty acid composition of muscle fat and subcutaneous adipose tissue of pasture-fed beef heifers: influence of the duration of grazing. J Anim Sci. 2005, 83: 1167-1178.
CAS
PubMed
Google Scholar
Raes K, Fievez V, Chow TT, Ansorena D, Demeyer D, De Smet S: Effect of diet and dietary fatty acids on the transformation and incorporation of C18 fatty acids in double-muscled Belgian Blue young bulls. J Agric Food Chem. 2004, 52: 6035-6041. 10.1021/jf035089h.
Article
CAS
PubMed
Google Scholar
Bauchart D, Gladine C, Gruffat D, Leloutre L, Durand D: Effects of diets supplemented with oil seeds and vitamin E on specific fatty acids of rectus abdominis muscle in Charolais fattening bulls. Indicators of Milk and Beef Quality. Edited by: Hocquette JF, Gigli S. 2005, Rome: EAAP, 431-436.
Google Scholar
Bessa RJB, Alves SP, Jerónimo E, Alfaia CM, Prates JAM, Santos_Silva J: Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur J Lipid Sci Technol. 2007, 109: 868-878. 10.1002/ejlt.200600311.
Article
CAS
Google Scholar
Nakamura MT, Nara TY: Structure, function, and dietary regulation of delat6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004, 24: 345-376. 10.1146/annurev.nutr.24.121803.063211.
Article
CAS
PubMed
Google Scholar
Chearfaoui M, Durand D, Bonnet M, Cassar-Malek I, Bauchart D, Thomas A, Gruffat D: Expression of enzymes and transcription factors involved in n-3 long chain PUFA biosynthesis in Limousin bull tissues. Lipids. 2012, 47: 391-401. 10.1007/s11745-011-3644-z.
Article
Google Scholar
Costa ASH, Lopes PA, Estevão M, Martins SV, Alves SP, Pinto RMA, Pissarra H, Correia JJ, Pinho M, Fontes CMGA, Prates JAM: Contrasting cellularity and fatty acid composition in Fat depots from alentejana and barrosã bovine breeds Fed high and Low forage diets. Int J Biol Sci. 2012, 8: 214-227.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costa ASH, Silva MP, Alfaia CPM, Pires VMR, Fontes CMGA, Bessa RJB, Prates JAM: Genetic background and diet impact beef fatty acid composition and stearoyl-CoA desaturase mRNA expression. Lipids. 2013, 48: 369-381. 10.1007/s11745-013-3776-4.
Article
CAS
PubMed
Google Scholar
Beja-Pereira A, Alexandrino P, Bessa I, Carretero Y, Dunner S, Ferrand N, Jordana J, Laloe D, Moazami-Goudarzi K, Sanchez A, Cañon J: Genetic characterization of Southwestern European bovine breeds: a historical and biogeographical reassessment with a set of 16 microsatellites. J Hered. 2003, 94: 243-250. 10.1093/jhered/esg055.
Article
CAS
PubMed
Google Scholar
Taniguchi M, Mannen H, Oyama K, Shimakura Y, Oka A, Watanabe H, Kojima T, Komatsu M, Harper GS, Tsuji S: Differences in stearoyl-CoA desaturase mRNA levels between Japanese Black and Holstein cattle. Livest Prod Sci. 2004, 87: 215-220. 10.1016/j.livprodsci.2003.07.008.
Article
Google Scholar
Wang YH, Bower NI, Reverter A, Tan SH, De Jager N, Wang R, Macwilliam SM, Cafe LM, Greenwood PL, Lenhert SA: Gene expression patterns during intramuscular fat development in cattle. J Anim Sci. 2009, 87: 119-130.
Article
CAS
PubMed
Google Scholar
Albrecht E, Gotoh T, Ebara F, Xu JX, Viergutz T, Nüernberg G, Maak S, Wegner J: Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Sci. 2011, 89: 13-20. 10.1016/j.meatsci.2011.03.012.
Article
CAS
PubMed
Google Scholar
De La Torre A, Gruffat D, Chardigny J-M, Sebedio J-L, Durand D, Loreau O, Bauchart D: In vitro metabolism of rumenic acid in bovine liver slices. Reprod Nutr Dev. 2005, 45: 441-451. 10.1051/rnd:2005039.
Article
CAS
PubMed
Google Scholar
Hocquette JF, Bauchart D: Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals. Reprod Nutr Dev. 1999, 39: 27-48. 10.1051/rnd:19990102.
Article
CAS
PubMed
Google Scholar
Katoh N: Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows. J Vet Med Sci. 2002, 64: 293-307. 10.1292/jvms.64.293.
Article
CAS
PubMed
Google Scholar
Schlegel G, Ringseis R, Windisch W, Schwartz FJ, Eder K: Effects of a rumen-protected mixture of conjugated linoleic acids on hepatic expression of genes involved in lipid metabolism in dairy cows. J Dairy Sci. 2012, 95: 3905-3918. 10.3168/jds.2011-4835.
Article
CAS
PubMed
Google Scholar
Kreipe L, Vernay MCMB, Oppliger A, Wellnitz O, Bruckmaier RM, van Dorland HA: Induced hypoglycemia for 48 hours indicates differential glucose and insulin effects on liver metabolism in dairy cows. J Dairy Sci. 2011, 94: 5435-5448. 10.3168/jds.2011-4208.
Article
CAS
PubMed
Google Scholar
Reid JCW, Husbands DR: Oxidative metabolism of long-chain fatty acids in mitochondria from sheep and rat liver. Biochem J. 1985, 225: 233-237.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Z, Li X, Liu G, Gao L, Guo C, Kong T, Wang H, Gao R, Wang Z, Zhu X: High insulin concentrations repress insulin receptor gene expression in calf hepatocytes cultured in vitro. Cell Physiol Biochem. 2011, 27: 637-640. 10.1159/000330072.
Article
CAS
PubMed
Google Scholar
Trenkle A: Relation of hormonal variations to nutritional studies and metabolism in ruminants. J Dairy Sci. 1978, 61: 281-293. 10.3168/jds.S0022-0302(78)83595-4.
Article
CAS
PubMed
Google Scholar
Wang Y, Xu HY, Zhu Q: Progress in the study on mammalian diacylgycerol acyltransgerase (DGAT) gene and its biological function. Hereditas. 2007, 29: 1167-1172.
Article
CAS
PubMed
Google Scholar
Loor JJ, Dann HM, Guretzky NAJ, Everts RE, Oliveira R, Green CA, Litherland NB, Rodriguez-Zas SL, Lewin HA, Drackley JK: Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. Physiol Genomics. 2006, 27: 29-41. 10.1152/physiolgenomics.00036.2006.
Article
CAS
PubMed
Google Scholar
Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999, 20: 649-688.
CAS
PubMed
Google Scholar
Sprecher H: Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica Et Biophysica Acta. 2000, 1486: 219-231. 10.1016/S1388-1981(00)00077-9.
Article
CAS
PubMed
Google Scholar
Burdge GC, Calder PC: Conversion of a-linoleic acid into longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005, 24: 469-482.
Google Scholar
Sprecher H: Biochemistry of essential fatty acids. Prog Lipid Res. 1981, 20: 13-22.
Article
CAS
PubMed
Google Scholar
Christiansen EN, Lund JS, Rortveit T, Rustan AC: Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim Biophys Acta. 1991, 1082: 57-62. 10.1016/0005-2760(91)90299-W.
Article
CAS
PubMed
Google Scholar
Harnack K, Andersen G, Somoza V: Quantification of alpha-linolenic acid elongation to eicospentaenoic and docosahexaenoic acid as affected by the ratio of n-6/n-3 fatty acids. Nutr Metab. 2009, 6: 8-10.1186/1743-7075-6-8.
Article
Google Scholar
Ide T, Murata M, Sugano M: Stimulation of the activities of hepatic fatty acid oxidation enzymes by dietary fat rich in a-linolelic acid in rats. J Lipid Res. 1996, 37: 448-463.
CAS
PubMed
Google Scholar
Hagen RM, Rodriguez-Cuenca S, Vidal-Puig A: An allostatic control of membrane lipid composition by SREBP1. FEBS Lett. 2010, 584: 2689-2698. 10.1016/j.febslet.2010.04.004.
Article
CAS
PubMed
Google Scholar
Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HÁ: Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics. 2007, 32: 105-116. 10.1152/physiolgenomics.00188.2007.
Article
CAS
PubMed
Google Scholar
Chang JHP, Lunt DK, Smith SB: Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J Nutr. 1992, 122: 2074-2080.
CAS
PubMed
Google Scholar
Archibeque SL, Lunt DK, Tume RK, Smith SB: Fatty acid indices of stearoyl Co-A desaturase activity do not reflect actual stearoyl Co-A desaturase enzyme activity in adipose tissues of beef steers finished with corn-, flaxseed-, or sorghum-based diets. J Anim Sci. 2005, 83: 1153-1166.
CAS
PubMed
Google Scholar
Chung KY, Lunt DK, Kawachi H, Yano H, Smith SB: Lipogenesis and stearoyl-CoA desaturase gene expression and enzyme activity in adipose tissue of short- and long-fed Angus and Wagyu steers fed corn- or hay-based diets. J Anim Sci. 2007, 85: 380-387. 10.2527/jas.2006-087.
Article
CAS
PubMed
Google Scholar
Lattka E, Illig T, Koletzko B, Heinrich J: Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol. 2010, 21: 64-69. 10.1097/MOL.0b013e3283327ca8.
Article
CAS
PubMed
Google Scholar
Schaeffer LR: Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet. 2006, 123: 218-223. 10.1111/j.1439-0388.2006.00595.x.
Article
CAS
PubMed
Google Scholar
Jakobsson R, Westerberg A, Jacobsson A: Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog Lipid Res. 2006, 45: 237-249. 10.1016/j.plipres.2006.01.004.
Article
CAS
PubMed
Google Scholar
Morais S, Monroig O, Zheng X, Leaver MJ, Tocher DR: Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases. Mar Biotechnol. 2009, 11: 627-639. 10.1007/s10126-009-9179-0.
Article
CAS
PubMed
Google Scholar
Leonard AE, Pereira SL, Sprecher H, Huang Y-S: Elongation of long-chain fatty acids. Prog Lipid Res. 2004, 43: 36-54. 10.1016/S0163-7827(03)00040-7.
Article
CAS
PubMed
Google Scholar
Inagaki K, Aki T, Fukuda Y, Kawamoto S, Shigeta S, Ono K, Suzuki O: Identification and expression of a rat fatty acid elongase involved in the biosynthesis of C18 fatty acids. Biosci Biotechnol Biochem. 2002, 66: 613-621. 10.1271/bbb.66.613.
Article
CAS
PubMed
Google Scholar
Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL: Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA. 2003, 100: 12027-12032. 10.1073/pnas.1534923100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martins AP, Lopes PA, Costa ASH, Martins SV, Santos NC, Prates JAM, Moura TF, Soveral G: Differential mesenteric fat deposition in bovines fed on silage or concentrate is independent of glycerol membrane permeability. Animal. 2011, 5: 1949-1956. 10.1017/S1751731111001091.
Article
CAS
PubMed
Google Scholar
Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low- density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.
CAS
PubMed
Google Scholar
Covaci A, Voorspoels S, Thomsen C, VanBavel B, Neels H: Evaluation of total lipids using enzymatic methods for the normalization of persistent organic pollutant levels in serum. Sci Total Environ. 2006, 366: 361-366. 10.1016/j.scitotenv.2006.03.006.
Article
CAS
PubMed
Google Scholar
Folch J, Lees M, Stanley GHS: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226: 497-509.
CAS
PubMed
Google Scholar
Carlson LA: Extraction of lipids from human whole serum and lipoproteins and from rat liver tissue with methylene chloride-methanol: A comparison with extraction with chloroform-methanol. Clin Chim Acta. 1985, 149: 89-93. 10.1016/0009-8981(85)90277-3.
Article
CAS
PubMed
Google Scholar
Raes K, De Smet S, Demeyer D: Effect of double-muscling in Belgian Blue young bulls on the intramuscular fatty acid composition with emphasis on conjugated linoleic acid and polyunsaturated fatty acids. Anim Sci. 2001, 73: 253-260.
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: 7.
Article
Google Scholar
Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64: 5245-5250. 10.1158/0008-5472.CAN-04-0496.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar