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Abstract 

Background:  African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive 
global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order 
to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly 
virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately 
virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, 
we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical dis-
tributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based 
disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clini-
cal signs, severe clinical signs, or daily mortality.

Results:  Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild 
clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the 
extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 
2.4 - 7.2 days).

Conclusion:  These transmission model parameter estimates and estimated time to detection via clinical signs 
provide valuable information that can be used not only to support emergency preparedness but also to inform other 
simulation models of evaluating regional disease spread.

Keywords:  Surveillance, Mortality triggers, Modeling, Clinical signs detection, African Swine Fever, Moderately 
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Introduction
African swine fever (ASF) is a highly contagious pig dis-
ease caused by ASF virus (ASFV), a large, enveloped dou-
ble stranded DNA virus from the genus Asfivirus. The 

disease is endemic in sub-Saharan Africa and was first 
described by Montgomery in Kenya in 1921 [1]. Start-
ing from an outbreak of genotype II ASFV in Georgia in 
2007, the virus spread widely and affected several coun-
tries in eastern Europe and Russia [2]. Genotype II ASFV 
strains were subsequently introduced into China in 2018 
devasting swine populations in several Asian countries 
and causing extensive economic losses [3].
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The highly virulent form of the disease is characterized 
by high fever, anorexia, recumbency and severe dissemi-
nated hemorrhage with mortality rates approaching 100 
percent [4, 5]. Moderately virulent strains produce lower 
mortality and less severe clinical signs such as reduced 
feed intake, lethargy, and reddening of the skin [6]. The 
clinical presentations of pigs infected with highly virulent 
or moderately virulent strains and the duration of the 
peracute, acute, subacute, and chronic disease states have 
been reviewed by Sanchez-Vizcaino et al., [7]. Although 
high fever and loss of appetite are typical during the 
peracute and acute phases of ASF infection regardless 
of strain virulence, the other clinical signs are quite vari-
able [4]. Furthermore, the subacute and chronic phases 
of disease are usually only attributed to moderately viru-
lent strains [7]. A sizable fraction of the pigs may recover 
from clinical disease caused by moderately virulent 
ASF strains but remain viremic for a long duration [8]. 
Although genotype II ASFV strains are typically highly 
virulent, some recent studies of strains from Estonia sug-
gest that circulating viruses have evolved into moderately 
virulent strains [2] resulting in a decrease in severity of 
clinical disease observed, more comparable to the ASF 
outbreaks in Spain and Portugal in the 1960s [9].

Understanding ASF transmission dynamics within a 
herd is important to inform several aspects of emergency 
preparedness and response such as surveillance design, 
business continuity planning and development of effec-
tive outbreak control strategies. Although several articles 
have estimated transmission parameters for the highly 
virulent genotype ASFV strains, relatively few studies 
focused on moderately virulent strains [10, 11]. Consid-
ering moderately virulent strains in emergency prepared-
ness activities is important to develop robust plans given 
the possibility that highly virulent strains may evolve into 
moderately virulent strains overtime. de Carvalho Fer-
reira et al.  estimated the adequate contact rate (trans-
mission parameter) and the infectious period for two 
moderately virulent strains of ASFV, Malta 78 and Neth-
erlands 86 [8]. However, additional transmission model 
parameters such as the time to onset and duration of 
various types of clinical signs and latently infected period 
were not estimated in that study. These parameters are 
essential to estimate the time to detection via observation 
of clinical signs, increased mortality, and diagnostic test-
ing targeting sampling of the sick and dead pigs.

To obtain these essential parameters, we performed 
this study in which we estimated the transmission param-
eters for moderately virulent ASFV strains using data 
from de Carvalho Ferreira et al. (2013). Separate infec-
tious period durations were estimated for pigs that die 
in the acute disease phase and those that recover from 
clinical disease and shed over a longer duration. We then 

used a discrete individual based simulation model to esti-
mate the time to detect ASF infection in a herd based on 
increased mortality or via presence of clinical signs. The 
estimated parameters and the predicted time to detect 
ASFV via clinical signs are useful for informing outbreak 
response planning, surveillance evaluation and for esti-
mating inputs for regional disease spread models.

Materials and Methods
We estimated disease state durations using experimental 
data for moderately virulent strains Malta 78 and Neth-
erlands 86 used to inoculate pigs in de Carvalho Ferreira 
et  al. [8]. Disease state durations, e.g., latently infected 
period, the infectious period for pigs that die, and the 
infectious period for those that recover, were assumed to 
be Gamma distributed and estimated using a maximum 
likelihood estimation approach. The likelihood expres-
sion accounted for censored data where pigs were moni-
tored at daily intervals. Data from all three tables in de 
Carvalho Ferreira et al. were combined to enhance statis-
tical power. For estimating the duration of pig level latent 
and infectious periods, we used the criterion of qPCR 
detected equivalent virus titer ≥1.92 log TCID50 in oro-
pharyngeal swab to classify a pig as infectious (see crite-
rion 2 in de Carvalho Ferreira et al., [8]). The parameters 
for the estimated disease state durations are summarized 
in Table  1. Further details on the estimation of disease 
state durations are provided in the supplement.

The timing of onset of clinical signs and their dura-
tions varied considerably. The clinical signs were catego-
rized as mild or severe (Table 2 in de Carvalho Ferreira 
et al., 2012) [12]. Specifically, pigs with any of the follow-
ing symptoms were considered to have severe clinical 
signs: neurological signs, labored respiration, vomiting, 
skin discoloration at level 2 or 3, diarrhea at level 3, body 
shape at level 2 or 3, or any bloody discharge. Pigs with 
other signs (e.g., reduced liveliness, loss of appetite, red 
skin) excluding the severe clinical signs were regarded 
as having mild clinical signs. The estimated disease state 
durations and associated parameters are summarized in 
Table 1.

We used an approximate Bayesian computation algo-
rithm to estimate the adequate contact rate from the 
experimental data sets in de Carvalho Ferreira et al. 
(2013). In this algorithm, the adequate contact rate 
(β) values in each iteration were sampled from a wide 
uniform prior (0.2-15 per day). Iterations where the 
simulated times of infection and time to onset of infec-
tiousness among the contact pigs match the experi-
mental data were selected to obtain the posterior 
distribution. The contact rates were estimated for the 
individual data sets both separately and jointly, combin-
ing all three data sets in alternative estimation scenarios. 
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The parameter estimation algorithm was coded in R and 
C and the library Rmpi was used to implement the code 
under a parallel computing framework. Details of the 
transmission parameter estimation are provided in the 
supplement.

We used a stochastic individual based transmission 
model to simulate ASF spread within a population (e.g., a 
barn), and predict the time to detection via clinical signs. 
Similar to other ASF transmission studies, we assumed 
that transmission was frequency dependent [13]. Given 
this formulation, the number of newly infected pigs in 
a period C(t) is binomially distributed with probability 
Pnew(t)

Eq. 1
Here N(t) is the total number of pigs in the population, 
I(t) is the number of infectious pigs in the population, and 
β is the adequate contact rate. The model simulates the 
number of pigs in Susceptible (S), Latent (E), Infectious 
(I) and recovered(R) or dead (D) states in 0.01 day time 
steps. The disease state durations were all modeled to 
be Gamma distributed. An infectious pig may transition 

Pnew(t) = 1− Exp

(

−βI(t)

N (t)

)

to the dead state with a probability Pmort or transition to 
recovered state otherwise. Regardless of the pig’s tran-
sition to the dead or recovered state, the pig remained 
infectious with separate infectious period distributions 
used for pigs that recovered versus pigs that died. This 
is consistent with the available experimental data which 
indicated a much shorter infectious period for pigs that 
died. Clinical signs were modeled as an additional attrib-
ute for an infectious pig or a non-infectious pig that has 
recovered and is no longer shedding virus. We modeled 
that only a proportion of infected pigs exhibit one or 
more severe clinical signs depending on the probability 
Pclin.

ASF detection via increased mortality was based on the 
timing of when the mortality exceeded levels expected in 
routine production triggering further diagnostic investi-
gation. The time to detection via increased mortality was 
calculated as the first day post exposure when the simu-
lated daily mortality exceeded a specified fraction of the 
herd (i.e., the first day the mortality trigger threshold was 
reached). To estimate the time to detection, we superim-
posed the daily disease mortality predictions from the 
transmission model with predictions of normal mortality 
unrelated to ASFV. The time to detection was estimated 
under two contact rate scenarios, baseline and slow. The 
baseline scenario used a contact rate of 3.15 (1.80 - 10.62) 

Table 1  Disease state duration parameter estimates for moderately virulent ASF strains based on data from de Carvalho Ferreira et al. 
(2013)

Parameter Distribution details Value

Latently infected period Gamma(shape=13.299, scale=0.3384482) 4.501(95% P.I.,2.417,7.223) days

Infectious period for recovered Gamma(shape=55.42012, scale= 0.7950162) 44.06(95% P.I.,33.23,56.394) days

Infectious period for dead Gamma(shape =9.632, scale =0.862) 8.306(95% P.I.,3.918,14.314) days

Time to onset of severe clinical signs Gamma(shape =41.969, scale =0.259) 10.868(95% P.I,7.832,14.394) days

Time to onset of mild clinical signs Gamma(shape =26.257, scale =0.214) 5.614(95% P.I.,3.675,7.956) days

Duration of mild clinical signs Gamma(shape =3.418,scale =3.2) 10.936(95% P.I.,2.58,25.212) days

Duration of severe clinical signs (severe) Gamma(shape =1.027, scale =6.515) 6.694(95% P.I.,0.184,24.408) days

Fraction of pigs with severe clinical signs Beta (22,10) 0.688 (95 % P.I., 0.52,0.833)

Fraction of pigs dying due ASF Beta (13,19) 0.407(95 % P.I., 0.24,0.57)

Table 2  Transmission parameter estimates from ASFV experimental data sets provided in de Carvalho Ferreira et al. (2013)

Experimental data set Adequate contact 
rate Mode, (95% 
C.I.)

Malta 78 ASFV low dose (Table 2 in de Carvalho Ferreira et al., 2013) 3.25 (0.90-9.14)

Malta 78 ASFV high dose (Table 3 in de Carvalho Ferreira et al., 2013) 8.63 (2.71-14.63)

Netherlands 86 ASFV (Table 4 in de Carvalho Ferreira et al., 2013) 1.2 (0.52-2.33)

Malta 78 ASFV high and low dose experiments 3.15 (1.8-10.62)

Malta 78 ASFV high and low dose and Netherlands 86 ASF combined (Tables 2-4 de Carvalho Ferreira et al., 2013) 1.64 (1-2.74)
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per day based on the combined estimate for Malta 78 
ASFV while a contact rate of 1.64 (1.00 - 2.74) per day 
was used in the slow scenario. Normal mortality associ-
ated with routine production causes unrelated to ASFV 
was simulated as an empirical distribution based on 
weekly mortality data for 248 pig herds from 4 pig farm-
ing systems in North America. The mean weekly mortal-
ity fraction in the pig production data was 0.00331 (95% 
P.I., 0, 0.013). In each simulation iteration, weekly mor-
tality fractions for the required number of weeks were 
obtained from a randomly selected herd. The variability 
in daily mortality within each week was then simulated 
as a Poisson distribution with mean equal to herd size 
multiplied by weekly mortality fraction divided by seven. 
A Pert distribution with minimum, most likely and max-
imum values of 1000, 2496, 5000 pigs was used for the 
number of swine in the population representative of large 
finisher swine operations in Minnesota [14].

The time to detection via morbidity was calculated as 
the first day post exposure when the number of pigs with 
mild (or severe) clinical signs exceeded a specified per-
cent of the herd (i.e., the first day the morbidity trigger 
threshold for mild (or severe) clinical signs was reached). 
Robust data on the frequency of clinical signs due to 
other production or disease issues unrelated to ASFV 
was not available. Therefore, we simulated the fraction of 
pigs with mild clinical signs using a Pert (0.0025, 0.005, 
0.04) distribution based on North American swine indus-
try expert opinion. Severe clinical signs due to causes 
other than ASFV were not simulated as they would be 
infrequent under routine production.

We performed 10,000 iterations of the ASF within 
herd disease transmission model coded in the program-
ming languages R and C as described above to predict 

the time to detection under various trigger thresholds 
for mild clinical signs, severe clinical signs, and increased 
mortality. The mean time to detection and the two sided 
90 percent prediction interval were calculated directly 
based on the simulation results for the 10,000 iterations. 
False trigger rates for various daily and weekly mortality 
thresholds were estimated from 10,000 iterations of sim-
ulated normal mortality using routine production data as 
described above.

Results
The estimated disease state durations are provided in 
Table 1. We observe that the time to onset of mild clini-
cal signs, 5.61 (95% P.I., 3.68 - 7.96) days, is comparable 
to the latently infected period of 4.5 (95% P.I., 2.42 - 7.20) 
days. Not surprisingly, severe clinical signs occurred 
much later in the disease course relative to mild clinical 
signs. In addition, there was a greater variability associ-
ated with severe clinical signs with only a fraction of 
the exposed pigs having these severe clinical signs. The 
transmission parameter estimates varied between differ-
ent experimental data sets with the Netherlands 86 ASFV 
strain having a lower contact rate indicative of slower 
spread (Table 2).

The predicted time to detection given various morbid-
ity trigger threshold levels for severe clinical signs above 
is shown in Fig. 1. The simulation results indicated that it 
may take two weeks or more post-exposure of the herd 
to detect ASF via severe clinical signs. For instance the 
predicted time to detection via severe clinical signs using 
a 1% morbidity trigger threshold was 21 (95% P.I., 17 - 26) 
days for the baseline contact rate scenario and 28 (95% 
P.I., 21 - 37) days under the slow contact scenario.

Fig. 1  Time to detect ASF in a large finisher herd using various morbidity trigger thresholds for severe clinical signs under the baseline and slow 
adequate contact rate scenarios
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The predicted time to detect ASF in finisher herds via 
mild clinical signs is shown in Fig.  2. At a conservative 
morbidity trigger threshold of 9% of the herd on a day, 
the predicted time to detection via mild clinical signs was 
20 (95% P.I., 16 - 25) and 28 (95% P.I., 21 - 40) days under 
the baseline and slow contact rates respectively. The 
time to detection decreases rapidly for morbidity trigger 
thresholds less than 2% as many mild clinical signs are 
nonspecific and may occur due to other reasons in rou-
tine pig farm production.

Figure 3 shows the mean time to detection via an abso-
lute daily mortality trigger threshold and the correspond-
ing false trigger rate estimated from routine production 
data unrelated to ASF. The false trigger rate at a thresh-
old of 0.005 was 0.47%. Given this daily mortality trigger 
threshold , the predicted time to detection was 22 (95% 
P.I., 17 - 28) days and 31 (95% P.I., 22 - 43) under the 
baseline and slow contact rate scenarios.

Discussion
In this paper, we estimated disease state durations and 
transmission parameters from data presented in de Car-
valho Ferreira et al. (2013) to update ASF within herd 
transmission models used to inform surveillance and risk 
assessment. The estimated parameters were used in an 
individual based stochastic disease transmission model 
to predict the time to detect ASF in a herd via increased 
morbidity or mortality. Although several studies have 
modeled the transmission dynamics of highly virulent 
genotype ASFV strains, relatively few studies focused 
on moderately virulent strains. Our modeling approach 
helps capture the transmission dynamics of moderately 
virulent ASFV strains more accurately by incorporating 

separate disease state durations for pigs that recover and 
those that die due to ASF. Although de Carvalho Ferreira 
et al. (2013) provided transmission parameter and infec-
tious period estimates, other simulation model parame-
ters, such as statistical distributions for the time to onset 
of clinical signs and latently infected period, were not 
estimated previously [8]. The parameter estimates from 
the current study enable predicting the time to detect 
ASFV via observation of clinical signs and inform input 
parameters for designing active surveillance protocols 
with targeted sampling of sick and dead pigs. The results 
on the predicted time to detection are also beneficial to 
inform between premises simulation models used for 
evaluating regional outcomes and optimize outbreak 
response strategies.

Our simulation results indicate that it may take more 
than two weeks post-exposure to detect moderately 
virulent ASF under most mortality or morbidity trig-
ger thresholds evaluated. One of the factors contribut-
ing to an extended time to detection is the relatively long 
latently infected period at the individual pig level (mean 
4.5 days), which results in relatively slower transmis-
sion during the initial stages of the herd infection. For 
instance, only 2.3 (95% P.I., 1 - 8) pigs were infectious and 
1.1 (95% P.I., 1 - 3) pigs had mild clinical signs at 8 days 
post exposure under the baseline scenario. Nonetheless, 
ASF infection in the herd was detected via clinical signs 
and increased mortality in almost all of the simulation 
iterations. This is because the force of infection and the 
incidence eventually picks up as the number of infec-
tious pigs increases resulting in rapidly increasing mor-
bidity and mortality during an exponential transmission 
phase. The results on the predicted time to detection 

Fig. 2  Time to detect ASF in a large finisher herd using various morbidity trigger thresholds for mild clinical signs under the baseline and slow 
adequate contact rate scenarios
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are beneficial to inform emergency preparedness and 
response plans that provide guidance on disease response 
strategies and science- and risk-based approaches to 
facilitate continuity of business [15]. For example, the 
USDA Highly Pathogenic Avian Influenza response plan 
specifies daily mortality thresholds in the case definitions 
of illness compatible with H5/H7 AI infection. The case 
definitions are used to designate an operation as a sus-
pect premises and initiate further diagnostic investiga-
tion as well as other response steps [16]. The predicted 
time to detection also informs between premises trans-
mission models used to evaluate regional epidemiological 
outcomes and for evaluating alternative response strate-
gies. In addition, the results provide baseline predictions 
to evaluate the relative performance of additional active 
or passive surveillance protocols.

Risk managers would need to consider the trade-off 
between earlier detection and excessive false triggers 
while choosing the appropriate morbidity and mortal-
ity triggers for detection via daily numbers of dead pigs 
or pigs with clinical signs of disease. The results for the 
daily mortality trigger in Fig. 3 show a rapid increase in 
the false trigger rate as the threshold was reduced below 
4 dead per 1000 pigs in both the baseline and slow spread 
scenarios. For example, the false trigger rate increased 
from 0.5% to 1.3% when the daily mortality trigger 
threshold was decreased from 5 per 1000 to 4 per 1000 
pigs. A similar relationship can be observed in the weekly 
mortality trigger results given in Fig.  4 with the inflec-
tion point occurring at a trigger threshold of about 15 per 
1000.

We used swine industry expert opinion to estimate 
the frequency of mild clinical signs as production data 
on this aspect were not available. Swine industry experts 
indicated that the average proportion of pigs with mild 
clinical signs would range from 0.5 – 2.0 percent while 
4.0 - 4.5 percent of the herd represents a higher value 
under routine production. In addition, a morbidity trig-
ger threshold of 9% was suggested as a conservative crite-
rion for an abnormally high proportion of pigs with mild 
clinical signs (i.e., this morbidity trigger threshold would 
be expected to have a very low false trigger rate). The pre-
dicted time to detection with a morbidity trigger thresh-
old of 9% (mean 20; 95% P.I., 16 – 25 days under the 
baseline scenario) was shorter compared to the time to 
detect via daily mortality trigger threshold of 5 per 1000. 
Even though mild clinical signs are non-specific, they 
occur earlier in the course of ASFV infection and result 
in earlier detection at the herd level. Data on severe clini-
cal signs during routine production were not available 
and hence the false trigger rate could not be calculated 
for severe clinical signs. However, swine industry subject 
matter experts opined that one percent of the herd would 
represent a conservative threshold as severe signs occur 
at a much lower frequency during routine production.

The time to detection via increased mortality from 
our study (22, 95% P.I., 17 – 28 days with a daily mortal-
ity trigger threshold of 5 per 1000 pigs and baseline con-
tact rate) is similar to Halasa et al., 2016 (median 21-28 
days); however, the predicted time to detection from our 
study is substantially longer than the values in Faverjon 
et al., 2020 based on room-level mortality thresholds (8 

Fig. 3  Time to detect ASF in a large finisher herd via increased daily mortality and associated false trigger rate under the baseline adequate contact 
rate scenario (A) and slow adequate contact rate scenario (B)
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days) [17, 18]. Possible factors contributing to the rela-
tively shorter time to detection in Faverjon et al., 2020 
include 1) using highly virulent ASF strain characteris-
tics, 2) starting disease transmission simulations with 
an infectious pig in contrast with initiating transmission 
with a latently infected pig as in this study and 3) employ-
ing lower trigger thresholds for increased mortality. The 
infectious period for pigs dying due to ASF for moder-
ately virulent strains of 8.3 (95% P.I.,3.9,14.3) days was 
substantially longer than that for highly virulent strains 
used in Faverjon et al., 2020. Furthermore, the false trig-
ger frequency was higher in this study due to the greater 
variability in the mortality data. The mean weekly mortal-
ity among the 248 different herds varied considerably (5th 
and 95th percentiles 0.6 and 6.7 per 1000 respectively). In 
addition, some herds had a significant positive autocor-
relation in the mortality for different weeks at 1 or 2 lags.

Active surveillance via rRT-PCR testing is a key out-
break measure for early detection of ASF. The currently 
proposed active surveillance protocols for an ASF Con-
trol Area are often based on targeted sampling of sick 
and dead pigs [15]. Several articles report the aggregate 
clinical score based on the degree of different types of 
clinical signs to capture the progression of clinical signs 
[2, 12]. However, it is not straightforward to model the 
distribution of the clinical score at the herd level to 
inform simulation models used for surveillance design. 
The parameters for the time to onset and duration of 
clinical signs estimated from individual pig level clinical 
signs are more directly applicable in disease transmission 
and surveillance models.

There are several alternative approaches to estimate 
transmission parameters from experimental data. Several 
studies have used a reconstruction of the transmission 
process in conjunction with Generalized Linear Models 
or maximum likelihood estimation to estimate the trans-
mission parameters [8]. However, the reconstruction 
process requires an important simplifying assumption of 
deterministic and integer-valued disease state durations. 
Recently, some studies have used Markov Chain Monte 
Carlo (MCMC) methods to jointly estimate the disease 
state durations and the transmission parameters [19]. 
While this approach has fewer approximations, it neces-
sitates including additional variables for the unobserved 
disease state transition times and may require a longer 
computer run time for convergence in some instances 
[19]. We utilized an acceptance rejection-based approxi-
mate Bayesian computation algorithm to estimate the 
transmission parameter from experimental data. This 
method enables the consideration of the impact of the 
variability in infectious state durations and the latent 
period in the estimation. In addition, the algorithm is 
easily parallelizable and enables the efficient use of high 
performance resources.

Although the experimental data used in this study was 
focused on genotype I moderately virulent ASFV strains, 
mortality percent for Genotype II moderately virulent 
strains from Estonia (50%) was in a similar range as 
the disease mortality percent in the current study (95% 
P.I., 24% - 57%) [2]. Moreover the time to detection via 
increased daily mortality is fairly insensitive to the ASF 
disease mortality percent used as the input in the model. 
For instance, the mean time to detection only decreased 

Fig. 4  Time to detect ASF in a large finisher herd via increased weekly mortality and associated false trigger rate under the baseline adequate 
contact rate scenario (A) and slow adequate contact rate scenario (B)
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from 22.4 to 20.6 days when disease mortality percent 
was increased to 90% in an additional scenario. Therefore 
it is possible that the time to detection for genotype II 
moderately virulent strains has a range similar to that for 
genotype I strains in this study, although further evalua-
tion may be necessary.

There are some limitations that must be considered 
while interpreting the study results. We assumed a con-
stant transmission rate even though the level of shedding 
is possibly reduced beyond 30 days post infection after 
the pigs have recovered from the acute infection phase. 
However, the potentially reduced transmission rate from 
recovered pigs would arguably have a lesser impact on 
the time to detection via clinical signs, which would 
mostly depend on the transmission dynamics during the 
initial stage of herd infection [20]. For example, the time 
to detection via increased daily mortality under the fast 
spread scenario remained virtually unchanged even when 
the infectious period for pigs that recover was reduced to 
25 days in an alternative scenario. Several pigs in de Car-
valho Ferreira et al.(2013) were intermittently shedding 
above 1.92 TCID50 per swab after recovering from acute 
ASF infection.

We note that some differences between the field trans-
mission dynamics and the model predictions are to be 
expected due to factors such as swine health manage-
ment practices, housing structure, and co-infections 
that may not be adequately captured by the small-scale, 
controlled experiments informing the model parameters. 
The transmission model in this study assumed homog-
enous transmission within a herd since experimental data 
used did not include any heterogeneous transmission 
rates within and between animal subpopulations such as 
pens or rooms. This may be particularly relevant for large 
swine operations with multiple barns and rooms within 
a barn. Evaluating the time to detection for moderately 
virulent strains using a heterogenous transmission model 
which incorporates the premises and barn structure is 
important an area for future study.

In general, the time it takes for producers to identify 
clinical signs compatible with ASFV infection and then 
notify veterinarians and regulatory authorities depends 
on their disease awareness. The level of ASF-aware-
ness likely varies by producer education and proxim-
ity to infected farms. The adoption of data based trigger 
thresholds for disease morbidity and mortality such as 
those evaluated herein may be beneficial in reducing the 
variability of the time elapsed prior to initiating further 
investigation. Given the impact of the above factors, pro-
ducer outreach regarding the trigger thresholds is critical 
to increase awareness and their adoption in the field.

We focused on predicting the time interval between 
herd exposure and notification by the producers to the 

authorities to initiate further diagnostic investigation 
in the current study. In the event of an ASF outbreak in 
the US, movement restrictions would be placed on sus-
pect herds with clinical signs while awaiting diagnostic 
test results [15]. Such restrictions can reduce further 
ASF spread from infected premises via movements while 
waiting for diagnostic test results. However, sample 
transportation logistics and laboratory capacity may be 
a limiting factor in countries without strong surveillance 
systems. Further research regarding the application of 
syndromic surveillance trigger thresholds together with 
active surveillance in countries with limited diagnostic 
testing capacity would be beneficial.

Conclusion
Understanding ASF transmission dynamics within a 
herd is important to develop effective outbreak manage-
ment strategies. In this study, we estimated the transmis-
sion model parameters for moderately virulent ASFV 
strains and predicted the time to detection in finisher 
swine herds. Our results indicate that it may take two 
weeks or longer to detect ASF in a finisher swine herd via 
mild clinical signs or increased mortality beyond levels 
expected in routine production. A key factor contribut-
ing to the extended time to detection is the long latently 
infected period for an individual pig that results in rela-
tively slower transmission during the initial stages of 
the herd infection. These transmission model parameter 
estimates and predicted time to detection provide valu-
able information to inform emergency preparedness and 
other simulation models used for evaluating regional 
disease spread and designing surveillance sampling 
protocols.
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