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Abstract 

Background:  Captive wild animals in zoos infected with Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bie-
neusi, and Blastocystis sp. can be sources of zoonotic infections and diseases. Therefore, to investigate the distribution 
of these pathogens in captive wild animals of zoos in Henan, China, a total of 429 fresh fecal samples were collected 
from six zoos in Henan, China. The infection rates of Cryptosporidium spp., G. duodenalis, E. bieneusi, and Blastocystis sp. 
were determined by PCR analysis of corresponding loci. Positive results for Cryptosporidium (C. parvum and C. hominis) 
were subtyped based on the (gp60) gene.

Results:  The overall prevalence was 43.1% (185/429), and the prevalence of Cryptosporidium, Giardia duodenalis, 
Enterocytozoon bieneusi, and Blastocystis sp. were 2.8% (12/429), 0.5% (2/429), 20.8% (89/429), and 19.1% (82/429), 
respectively. Five Cryptosporidium species, namely, C. hominis, C. parvum, C. muris, C. andersoni, and C. macropodum, 
were identified in this study. Cryptosporidium parvum was further subtyped as IIdA19G1. Two Giardia duodenalis 
assemblages (A and E) were also identified. A total of 20 Enterocytozoon bieneusi genotypes were detected, including 
18 known (BEB6, D, HND-1, CD7, SDD1, Henan-IV, KIN-1, CHK1, Peru8, Henan-V, CHG11, CHG-1, CHS9, CHG21, Type-
IV, CHC9, CM5, and CHB1) and 2 novel genotypes (CHWD1 and CHPM1). A total of nine subtypes of Blastocystis sp. 
(ST1, ST2, ST3, ST5, ST6, ST7, ST10, ST13, and ST14) were identified in captive wild animals in zoos in the present study. 
Cryptosporidium andersoni, nine Enterocytozoon bieneusi genotypes, and five Blastocystis subtypes were here first iden-
tified in new hosts.

Conclusions:  Our study has expanded the host ranges of these four pathogens. The data indicate that animals in 
zoos can commonly be infected with these four zoonotic pathogens, and animals in zoos are potential sources of 
zoonotic infections in humans.
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Background
Cryptosporidium spp., Giardia duodenalis, Enterocy-
tozoon bieneusi, and Blastocystis sp. are four common 
opportunistic pathogens with wide host ranges that 
include livestock, wildlife, and humans [1–4]. Infections 
with these pathogens can cause diarrhea and several 
other gastrointestinal illnesses in humans and animals 
[1–4]. The fecal-oral route is the main transmission path-
way of the four pathogens, and infection can also result 
from contaminated food or water [2, 4].

Currently, at least 44 valid species and about 70 gen-
otypes of Cryptosporidium have been described, and 
at least 20 species and 5 genotypes have been detected 
in humans [4, 5]. Giardia duodenalis is considered 
a species complex with at least eight distinct assem-
blages (A-H), and assemblages A and B are infectious 
to humans and other mammals as well as a wide range 
of hosts [6]. Over 474 Enterocytozoon bieneusi geno-
types were distributed in several genetically isolated 
populations comprising 11 major groups in a phylo-
genetic analysis, including zoonotic group 1 and sev-
eral host-adapted groups [3, 7]. Among 17 approved 
subtypes (ST1-ST17) of Blastocystis sp., ST1–ST9 
and ST12 have been observed in humans. Two sub-
types (ST9 and ST12) are specific to humans, and the 
remaining subtypes have been detected in non-human 
hosts [8, 9].

For many animal species, life in a zoo is very differ-
ent from natural free-range conditions. Due to the 
limitations of living space, the prevalence of parasites 
in captive animals is often higher than that of wild ani-
mals [10]. Animal keepers can be in close contact with 
animals through feeding, washing, and cleaning, and 
visitors can indirectly contact animals by petting or by 
giving food. Previous studies have found Cryptosporid-
ium and Blastocystis in zoo animals and their keepers 
[11–13]. There is a potential for zoonotic transmission 
between animals and humans in zoos [14]. The objec-
tives of this study are to examine the prevalence and 

determine the genetic distributions of Cryptosporid-
ium, G. duodenalis, E. bieneusi, and Blastocystis and 
to identify genotypes/assemblages of human health 
importance..

Results
Occurrence of Cryptosporidium, Giardia duodenalis, 
Enterocytozoon bieneusi, and Blastocystis
The overall infection rate was 43.1% (185/429, 95% CI: 
39.33–48.77%, χ2 = 25.048, df = 5, P < 0.001) among 
six zoos. The prevalence of Cryptosporidium spp., 
Giardia duodenalis, Enterocytozoon bieneusi, and Blas-
tocystis sp. were 2.8% (12/429, 95% CI: 1.23–4.36%, 
χ2 = 23.613, df = 5, P < 0.001), 0.5% (2/429, 95% CI: 
0–1.11%, χ2 = 21.936, df = 5, P < 0.001), 20.8% (89/429, 
95% CI: 16.89–24.59%, χ2 = 25.877, df = 5, p < 0.001), and 
19.1% (82/429, 95% CI: 16.24–23.85%, χ2 = 7.696, df = 5, 
p > 0.05), respectively (Table  1). Co-infection results 
showed that 29 samples were infected by two kinds of 
parasites; the infected species were sika deer (n = 6), 
white kangaroos (n = 4), macaques (n = 4), black-and-
white colobus monkeys (n = 3), two giraffes (n = 2), a 
Bactrian camel (n = 1), a patas monkey (n = 1), a peafowl 
(n = 1), a pony (n = 1), a leopard (n = 1), a golden sub-
nosed monkey (n = 1), a white-browed monkey (n = 1), 
a green monkey (n = 1), a squirrel monkey (n = 1), and a 
northern pigtail macaque (n = 1).

Cryptosporidium species and subtypes
Five Cryptosporidium species, namely C. hominis, C. par-
vum, C. andersoni, C. muris, and C. macropodum were 
identified in this study (Table  2). The Cryptosporidium 
hominis and C. parvum samples were further subtyped 
based on gp60 gene sequence analysis, with all C. par-
vum identified as subtype IIdA19G1. Cryptosporidium 
hominis was not successfully identified. The three gp60 
sequences showed 99.7% nucleotide sequence identity 
to the isolates from dairy cattle (MF074761) and Homo 
sapiens (JQ796092) from China.

Table 1  Occurrence of Cryptosporidium spp., G. duodenalis, E. bieneusi, and Blastocystis sp. in this study

Note: Negative results denoted by hyphen (“-”)

Collection site Sample size Prevalence (%) (95% CI)

Cryptosporidium spp. G. duodenalis E. bieneusi Blastocystis sp. Total

Xinxiang Zoo 23 – – 13.0 (0.0–30.0) 13.0 (0.0–30.0) 26.1 (6.0–46.2)

Kaifeng Zoo 36 11.1 (0.0–22.8) 5.6 (0.0–14.4) 2.8 (0.0–9.5) 11.1 (0.0–22.8) 30.6 (14.1–47.0)

Luoyang Zoo 27 – – 18.5 (2.0–35.0) 22.2 (4.7–39.8) 40.8 (20.4–61.1)

Shangqiu Zoo 24 – – 20.8 (2.5–39.5) 12.5 (0.0–26.0) 33.3 (24.5–42.2)

Swan Lake Zoo 120 6.7 (1.8–11.6) – 11.7 (5.5–17.8) 15.0 (8.2–21.8) 33.3 (24.5–42.2)

Zhengzhou Zoo 199 – – 30.7 (24.4–37.3) 25.1 (18.9–31.4) 55.8 (48.6–62.9)

Total 429 2.8 (1.1–4.5) 0.5 (0.0–1.2) 20.8 (16.8–24.7) 19.1 (16.1–24.0) 43.1 (39.2–48.9)
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Giardia duodenalis assemblages
Two Giardia duodenalis assemblages, A and E were 
detected based on SSU rRNA and gdh loci (Table  2). 
Assemblage A shared 100% similarity with the sequence 
from Brazilian Panthera (HM134217), and Assemblage 
E was identical to the isolate derived from dairy cattle in 
China (KF843926).

Enterocytozoon bieneusi genotypes
A total of 20 genotypes of Enterocytozoon bieneusi were 
identified in the present study, including 18 known gen-
otypes: BEB6, D, HND-1, CD7, SDD1 Henan-IV, KIN-
1, CHK1, Peru8, Henan-V, CHG11, CHG-1, CHS9, 
CHG21, Type-IV, CHC9, CM5, and CHB1. However, a 
novel genotype CHPM1 was found in a patas monkey, 
and CHWD1 was found in a white-lipped deer. Addi-
tionally, SDD1, BEB6, CD7, HDN-1, CHG-1, CHC9, D, 
Peru8, and Type-IV were identified for the first time in 
animal hosts. The most prevalent E. bieneusi genotype 
was BEB6 (32/89, 36.0%) followed by D (16/89, 18.0%) 
(Table  3). Compared with genotype D (KX383624), 
novel genotypes CHPM1 and CHWD1 had one and 
three SNPs based on the ITS region, respectively (Table 
S2). Phylogenetic analysis of E. bieneusi showed that 
genotypes D, Peru8, SDD1, HND-I, Type-IV, KIN-
1, Henan-IV, Henan-V, CHPM1, and CHWD1 were 
clustered in Group 1, whereas CHG11, CHG-1, BEB6, 
CM5, CHC9, and CHS9 were clustered into Group 2. 
CHG21, CD7 and CHB1, CHK1were clustered into 
Group 9, Group 11 and Group10, respectively (Fig. 1).

Blastocystis subtypes
A total of nine Blastocystis subtypes were found, 
including ST1, ST2, ST3, ST5, ST6, ST7, ST10, ST13, 
and ST14. However, the other six subtypes were iden-
tified in new hosts for the first time: ST2, ST3, ST5, 
ST6, ST7, and ST10 were detected in ponies, an oran-
gutan, a gorilla, sika deer, white kangaroos, a blue 
eared-pheasant, a whooper swan, and giraffes. The 

most prevalent Blastocystis subtype was ST5 (19/86, 
22.1%) followed by ST10 (18/86, 20.1%) (Table 4).

Discussion
In the present study, the Cryptosporidium prevalence 
was 2.8%, which is lower than the rates (70.0%) reported 
in Xining Zoo in China [15] and zoo mammals (35.8%) 
in Barcelona, Spain [16]. However, the infection rate was 
higher than those in zoos (2.0%) in Alberta and Manitoba 
of Canada [17] and Zhengzhou Zoo (1.6%) in China [18]. 
For Giardia duodenalis, the prevalence was 0.5%, which 
is lower than the rate found in most studies conducted 
in zoos worldwide, for example the 2.5% in Zhengzhou 
Zoo in China [18], 3.3% in the zoo in Aprilia, Italy [19], 
and 24.0% in a zoological garden in Poland [20]. The over-
all infection rate of E. bieneusi was 20.8%, lower than in 
a previous study conducted in the zoo (32.5%) of How-
ard County in America [21] and higher than in Zheng-
zhou Zoo (15.8%) in China [18]. Concerning Blastocystis, 
the infection rate was 19.1%, which was higher than the 
6.6% found in four zoos in Italy [21] and 12.3% in a zoo-
logical garden in Poland [20]. In contrast, the prevalence 
was lower than that (40.2%) in Qinling Zoo in China [8]. 
Infection rates may be influenced by many factors, includ-
ing the zoo management model, living conditions, the 
immune status of the animals, climate, and geography.

This study demonstrates a high sample prevalence and 
diversity of intestinal parasites in captive wild animals in 
zoos in Henan, China. The present study indicated that 
Giardia duodenalis was only found in Kaifeng Zoo, and 
Cryptosporidium spp. was found in Kaifeng Zoo and 
Swan Lake Zoo. Enterocytozoon bieneusi and Blastocystis 
sp. were found in 6 zoos. It can be concluded that Entero-
cytozoon bieneusi and Blastocystis sp. are common in 
some zoos in Henan Province, and among the 6 zoos, the 
infection rate of Enterocytozoon bieneusi is different. The 
highest infection rate is Zhengzhou Zoo and the lowest 
is Kaifeng Zoo. The result of Blastocystis sp. is consistent 
with E. bieneusi. So the prevalence and diversity varied 
with geographic region.

Table 2  Distribution of Cryptosporidium and Giardia duodenalis in this study

Note: New genotypes or new hosts are indicated in bold

Species/Assemblages Common name (Positive no.) Accession number

Cryptosporidium spp. C. muris (n = 4) Bactrian camel (4) MN038146

C. parvum (n = 3) Squirrel monkey (1) MT648440; Pony (1) MT648441; Ostrich (1) MT648442

C. andersoni (n = 3) Whooper Swan (2) MT648437; South China tiger (1) MT648443
C. hominis (n = 1) Black-capped capuchins (1) MT648439

C. macropodum (n = 1) White kangaroo (1) MT648438

Giardia duodenalis A (n = 1) Bactrian camel (1) MN047217

E (n = 1) Bactrian camel (1) MN047216
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Zoonotic Cryptosporidium species (C. hominis, C. par-
vum, C. muris, and C. andersoni) and C. macropodum were 
identified in the present study. Cryptosporidium hominis 
and C. parvum are responsible for most cases of crypto-
sporidiosis in humans [22, 23]. Cryptosporidium parvum 
subtyping revealed IIdA19G1 in our study that has previ-
ously been found in humans, dairy cattle, and yaks in China 
[24]. Since the first report of C. muris in human samples 
in 2000, evidence of human infection with C. muris has 
been accumulating [25]. Including diarrhea patients cat-
tle, sheep, and the cactus mouse [24, 26], C. andersoni was 
found in a south China tiger in the present study, thereby 
expanding the host range of C. andersoni. Cryptosporidium 
macropodum (only detected in Australia previously) [27] 
was detected for the first time in a white kangaroo in China.

Similar to previous reports [28], we identified two G. 
duodenalis assemblages (A and E) in the Bactrian camel. 
Assemblage A was one of the two species of G. duodena-
lis most commonly detected in human samples, and this 
assemblage has also been detected in livestock, companion 
animals, and non-human primates (NHPs) [2]. Assemblage 
E has been reported as an assemblage with host specificity, 

mainly infecting cattle, sheep, goats, and pigs. However, 
there are still some studies reporting the presence in human 
[29]. Therefore, the data indicate that animals in these zoos 
may serve as reservoirs of G. duodenalis assemblages with 
the potential for zoonotic infection in humans. However, 
this speculation needs further research and data to confirm.

A total of 20 Enterocytozoon bieneusi genotypes were 
observed in 89 positive specimens. BEB6 was the pre-
dominant E. bieneusi genotype in the current study; it has 
been found in NHPs, sheep and goats, companion ani-
mals (cats and dogs), chinchillas, rabbits, meerkats, and 
bats. The genotypes D, type IV, and Peru8 were previously 
detected in humans, goats, pigs, and NHPs, and they 
have been frequently found in different water sources, 
suggesting the likelihood of zoonotic or waterborne 
transmission [30–33]. Indeed, previous reports have 
found genotype BEB6, D, type IV, and Peru8 in humans 
and wildlife in various countries [22, 34, 35]. Therefore, 
these findings indicate that zoonotic transmission to 
humans and between wildlife species may occur in the 
zoos investigated in the present research. We also found 
the newly identified genotypes CHPM1and CHWD1 in 

Table 3  Enterocytozoon bieneusi ITS genotypes identified in this study

Note: New genotypes or new hosts are indicated in bold

Genotype Common name (Positive no.) Accession number

BEB6 Giraffe (1) MT652649; White kangaroo (1) MT652664; Rhinos (1) MT652665; Rhyticeros (2) 
MT652666; Macaws (1) MT652667; Yellow-billed Parrot (1) MT652675; Toucan (1) MT652676; Black-
necked crane (1) MT652668; Emu (7) MT652669; Elephant (2) MT652670; Sika deer (5) MT652672; 
Wildebeest (2) MT652673; Stump-tailed macaque (1) MT652674; Red-crowned crane (2) MT652677; 
Northern raccoon (1) MT652678; Golden monkey (1) MT652679; Eastern Black-and-white colobus 
(1) MT652683; Gibbon (1) MT652685

D Emu (1) MT652645; Giraffe (1) MT652647; White lion (2) MT652650; Leopard (1) MT652653; Lion (2) 
MT652654; Serval (1) MT652655; Brown bear (3) MT652657; Siberian tiger (2) MT652661; Golden 
monkey (1) MT652680; Northern pigtail macaque (1) MT65268; Reeves’s pheasant (1) MT652690

Henan-IV South China tiger (1) MT652662; White browed monkey (1) MT652686; Green monkey (1) MT652687

KIN-1 White lion (1) MT652651; Black bear (1) MT652656; Squirrel monkey (1) MT652688

CHK1 White kangaroo (3) MT652663

SDD1 Emu (1) MT652646; Macaque (2) MT652659; Whooper Swan (1) MT652689
Peru8 Emu (1) MT652643; Eastern Black-and-white Colobus (1) MT652684

CHG11 Giraffe (1) MT652648; Macaque (1) MT652660

Type-IV Emu (1) MT652644
CHG-1 leopard (1) MT652652; Peafowl (1) MT652691

CHB1 Brown bear (1) MT652658

CM5 Golden monkey (1) MT652681

CHC9 Elephant (1) MT652671
Henan-V Macaque (2) MT674937

HND-1 Sike deer (5) MT652692; Fallow deer (1) MK931402
CD7 White-lipped deer (1) MK931406; Sika deer (2) MK931407; Bactrian camel (3) MK931405

CHS9 Bactrian camel (1) MK931400

CHG21 Eastern Black-and-white colobus (1) MK931399

CHPM1 Patas monkey (1) MK931403

CHWD1 White-lipped deer (1) MK931404
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white-lipped deer and patas monkeys, respectively. Inter-
estingly, the isolation of novel genotypes from white-
lipped deer, as well as the three novel genotypes identified 
by the study of Li et al., suggest that genetic variability in 
deer-derived E. bieneusi may be common [3]. Phyloge-
netic analysis showed that genotypes D, Peru8, SDD1, 
HND-I, Type-IV, KIN-1, Henan-IV, Henan-V, CHPM1, 
and CHWD1 were clustered in Group 1, which was 

composed of zoonotic genotypes. Genotypes CHG11, 
CHG-1, BEB6, CM5, CHC9, and CHS9 were clustered in 
Group 2, and other data indicated that the genotypes in 
Group 2 may have zoonotic potential. Accumulating evi-
dence indicates that some Group 2 genotypes (I, J, BEB4, 
and BEB6) can also be detected in humans.

A total of nine subtypes were detected in Blastocystis, 
including ST1, ST2, ST3, ST5, ST6, ST7, ST10, ST13, and 

Fig. 1  Locations where specimens were collected in this study. The figure was originally designed by the authors using the software ArcGIS 10.2. 
No copyright permission was required. The original vector diagram imported in ArcGIS was adapted from Natural Earth (http://​www.​natur​alear​
thdata.​com)

Table 4  Distribution of Blastocystis sp. in the wildlife in this study

Note: New genotypes or new hosts are indicated in bold

Subtypes Common name (Positive no.) Accession number

ST1 Macaque (6) MT661531; Golden monkey (1) MT661544; Northern pigtail macaque (1) MT661546; Green monkey (2) MT661549; Eastern 
black-and-white colobus (1) MK930348; Crab-eating macaque (1) MT661550; Japanese macaque (1) MT661551; Northern raccoon (1) 
MT661552; Squirrel monkey (1) MT661553; White kangaroo (2)

ST2 Chimpanzee (1) MT661543; Pony (2) MT661555; Macaque (2) MT661556

ST3 Macaque (3) MT661530; Chimpanzee (1) MT661540; Orangutan (1) MT661541; Gorilla (1) MT661542; Patas monkey (2) MT661545; Eastern 
black-and-white colobus (2) MT661547; White browed monkey (2) MT661548

ST5 Giraffe (1) MT661528; leopard (1) MT661529; White kangaroo (5) MT661532; Ostrich (6) MT661533; Sika deer (6) MT661537
ST6 Blue-eared pheasant (1) MT661557; Peafowl (3) MT661558

ST7 Turkey (1) MT661534; Whooper Swan (1) MT661554

ST10 Giraffe (2) MT661527; Sika deer (12) MT661536; Bactrian camel (1) MT661538; Yak (2) MT661539; White-lipped deer (1) MK930352

ST13 White kangaroo (4) MT672637

ST14 Bactrian camel (1) MK930360

http://www.naturalearthdata.com
http://www.naturalearthdata.com
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ST14. Studies indicated that ST1 to ST9 and ST12 have the 
ability to infect humans [8]. For example, ST1, ST3, and 
ST5 have been found in NHPs and their keepers, in south-
ern hairy-nosed wombats and their keepers, and in pigs 
and their workers, respectively [12, 13]. Although the fecal 
samples of animal keepers were not considered in the pre-
sent study, the possibility of transmission between animals 
and animal keepers is undeniable. Therefore, subtypes ST1, 
ST2, ST3, and ST5 may have potential risk for zoonotic 
transmission between animals and humans. Present study 
indicated that the dominant species of Blastocystis sub-
types in NHPs is ST1-ST3, which is consistent with other 
results [36–39]. In addition, we found that ostriches can be 
infected by ST5, a subtype that has been isolated sporadi-
cally from many other animals, including NHPs, camels, 
the black rhinoceros, and rodents [13, 40]. ST6 was found 
in blue-eared pheasant and peafowl, and ST7 was found in 
turkeys and the whooper swan, similar to previous find-
ings [36]. ST10 was previously identified in fallow deer and 
camels [41]. Similarly, ST10 was detected in sika deer and 
yellow deer in the present study. Only ST14 was found in 
Bactrian camels here, which is consistent with previous 
findings [36]. The above results demonstrate that these sub-
types can infect animal species in zoos as well as humans, 
and thus more attention should be paid to these parasites.

Some species, genotypes and subtypes of these parasites 
were detected in some new hosts in present study. How-
ever, what can not be determined is that whether these 
animals are natural hosts or carriers of theses pathogens 
and whether these parasites can cause infections in new 
hosts. Animals could get infected via eating food or drink-
ing water which contain viable pathogens. Considering the 
specificity of zoo environment, where different species of 
animals are kept in seperate areas, the risk of cryptosporid-
iosis transmission through contaminated food or water 
seems relatively low. Due to the rarity of wild captive ani-
mals and the limitation of the amount of pathogen infec-
tion, it is difficult for us to demonstrate cross-transmission 
in different species of wild captive animals. We only suc-
cessfully infected BALB/c mice with the oocysts of C. 
muris [42]. Efforts should be made in the following study 
to conduct more investigative research on these problems.

Conclusion
Our results indicate that animals in zoos can be infected 
with human pathogenic Cryptosporidium spp., Giardia 
duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. 
These animals can serve as reservoirs of human crypto-
sporidiosis, giardiasis, microsporidiosis, and blastocysto-
sis. Effort should be made to conduct more experimental 
work to reveal the genetic characteristics and assess the 
zoonotic risks of these parasites.

Methods
Study area and sample collection
Between October 2018and June 2020, a total of 429 fresh 
fecal samples (77 animal species) were collected from 
captive animals in 6 zoos in Henan, China; these were 
Xinxiang Zoo (n = 23), Kaifeng Zoo (n = 36), Luoyang 
Zoo (n = 27), Shangqiu Zoo (n = 24), Jiaozuo Swan Lake 
Zoo (n = 120) (private zoo), and Zhengzhou Zoo (n = 199) 
(Fig. 2). Some of the specimens tested in this study were 
animals imported from abroad and were ill (slight or 
severe diarrhea, and some adult worms in fecal samples) 
(Table S1). One specimen per animal was used in this 
study. Only the central portion of the fecal material was 
collected during sampling to ensure no environmental 
contamination. Each fresh sample was collected into a 
sterile glove, labeled, and placed into a container with ice 
packs and immediately sent to the lab for DNA extraction.

DNA extraction
200 mg of fecal samples were used to extract DNA with an 
E.Z.N.A.® Stool DNA Kit (Onmega Biotek Inc., Norcross, 
GA, USA), according to the manufacturer’s instructions, 
and the extracted DNA was stored at − 20 °C before PCR 
analysis. The quality of the DNA extracted was deter-
mined by using the NanoDrop absorbance ratio.

PCR amplification
All of the samples were amplified by nested PCR to iden-
tify Cryptosporidium spp. and Giardia duodenalis based 
on the small subunit (SSU) rRNA gene and the glutamate 
dehydrogenase (gdh) gene [43, 44], respectively. Positives 
for Cryptosporidium (C. parvum and C. hominis) were sub-
typed based on the 60-kDa glycoprotein (gp60) gene [45]. 
Enterocytozoon bieneusi and Blastocystis sp. were identified 
based on the ITS region [46] and the SSU rRNA gene [47], 
respectively (Table S3). The amplification was performed 
in 25 μL reaction mixtures. The first reaction mixture con-
tained 1 μL of extracted DNA. The second reaction mix-
ture contained 1 μL of the first PCR amplification product. 
The KOD Plus DNA polymerase (Toyobo Co., Ltd., Osaka, 
Japan) was used for all PCR amplification. Positive and neg-
ative control samples (distilled water) were included in each 
PCR assay, and two replicates of each PCR were run for all 
of the samples. The final PCR products were subjected to 
1.0% agarose gel electrophoresis and visualized by staining 
with DNAGREEN (Tiandz, Inc., Beijing, China).

Sequencing and phylogenetic analysis
All of the final positive PCR products were sequenced 
using the ABI PRISM™ 3730 XL DNA Analyzer with the 
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 
Biosystems, Foster City, CA, USA), and two-directional 
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Fig. 2  Neighbor-joining tree of Enterocytozoon bieneusi ITS genotypes. Phylogenetic relationships of ITS nucleotide sequences of the 
Enterocytozoon bieneusi genotypes identified in this study and other reported genotypes. The phylogeny was inferred by a neighbor-joining 
analysis. Bootstrap values were obtained using 1000 replicates; those with values > 50% are shown on the nodes. The genotypes in this study are 
marked by empty triangles, and the novel genotypes are marked by filled triangles
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sequencing was used to ensure accuracy. To identify 
different species or genotypes, sequences obtained 
were aligned with the reference sequences in GenBank 
(http://​blast.​ncbi.​nlm.​nih.​gov) using the software Clustal 
X 2.1 (http://​www.​clust​al.​org/). The phylogenetic rela-
tionships of E. bieneusi genotypes were analyzed by the 
neighbor-joining algorithm in MEGA 7.0 (http://​www.​
megas​oftwa​re.​net/). Bootstrap values were calculated by 
analyzing 1000 replicates. The established nomenclature 
system was used in the naming of E. bieneusi ITS geno-
types [48].

Statistical analysis
The infection rates with 95% confidence intervals (CI) 
were calculated by Wald’s method in SPSS 22.0 ver-
sion (SPSS Inc., Chicago, IL, United States). Differences 
in corresponding infection rates among locations were 
examined by the Chi-square test, and differences were 
considered significant at P < 0.05.

Abbreviations
SSU rRNA: Small subunit rRNA; gp60: The 60 kDa glycoprotein gene; gdh: Glu-
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