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Abstract

Globally, outbreaks of Avian Influenza Virus (AIV) in poultry continue to burden economies and endanger human,
livestock and wildlife health. Wild waterbirds are often identified as possible sources for poultry infection. Therefore,
it is important to understand the ecological and environmental factors that directly influence infection dynamics in
wild birds, as these factors may thereby indirectly affect outbreaks in poultry. In Australia, where large parts of the
country experience erratic rainfall patterns, intense rainfalls lead to wild waterfowl breeding events at temporary
wetlands and increased proportions of immunologically naïve juvenile birds. It is hypothesized that after breeding,
when the temporary wetlands dry, increasing densities of immunologically naïve waterbirds returning to permanent
water bodies might strongly contribute to AIV prevalence in wild waterfowl in Australia. Since rainfall has been
implicated as an important environmental driver in AIV dynamics in wild waterbirds in southeast Australia and wild
waterbirds are identified globally to have a role in virus spillover into poultry, we hypothesise that rainfall events
have an indirect effect on AIV outbreaks in poultry in southeast Australia. In this study we investigated this
hypothesis by examining the correlation between the timing of AIV outbreaks in poultry in and near the Murray-
Darling basin in relation to temporal patterns in regional rainfall since 1970. Our findings support our hypothesis
and suggest that the risk of AIV outbreaks in poultry increases after a period of high rainfall, with peak AIV risk two
years after the onset of the high-rainfall period. This is presumably triggered by increased rates of waterbird
breeding and consequent higher proportions of immunologically naïve juvenile waterbirds entering the population
directly after major rainfall events, which subsequently aggregate near permanent water bodies when the
landscape dries out.
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Introduction
High pathogenicity outbreaks of Avian Influenza Virus
(AIV) in domestic poultry and the possibility of trans-
mission of AIV to humans can result in extensive socio-
economic costs [1–3]. AIV in its low pathogenicity form
(typically causing only mild or non-detectable clinical

signs in poultry; termed LPAI) occurs naturally in wild
bird populations [4]. In recent years, research has fo-
cused on the wild-bird assisted dispersal of high patho-
genicity forms (typically causing severe clinical signs and
rapid death in gallinaceous poultry; termed HPAI) and
notably AIV-H5-Clade-2.3.4.4, of which wave upon wave
currently causes havoc in poultry industries across the
globe e.g. [5, 6]. Another role for wild birds in the infec-
tion of poultry results from the occasional evolution of a
HPAI in poultry after alleged exposure to LPAI from
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wild birds [7–9]. Virus spillover onto poultry farms
could occur when infected wild birds enter or come
close to poultry barns. These wild birds could either dir-
ectly infect the chickens, ducks and other poultry spe-
cies, or indirectly contaminate water and surfaces from
where the virus is transmitted to the poultry, potentially
assisted by farm workers, pets or transport of equipment
[10, 11]. Therefore, we can assume that the same eco-
logical and environmental factors that foster epizootics
of LPAI in wild birds would indirectly result in increased
incidence of LPAI (and subsequently evolved HPAI) out-
breaks in poultry.
Due to HPAI outbreaks in poultry there is great inter-

est in the ecological and environmental factors that in-
fluence infection dynamics in wild birds and the possible
virus transmissions between wild birds and poultry e.g.
[12]. To date, the majority of research on AIV dynamics
in wild birds has been conducted in ducks in the genus
Anas, being the prime wild bird reservoir of AIV [13,
14], and in the northern hemisphere. The AIV pattern
observed there is strongly seasonal, with a yearly peak in
late summer/early autumn, followed by low prevalence
in winter [15, 16]. Across North America the intensity of
these infection dynamics varies geographically in relation
to the strength of the seasonal patterns which is thought
to drive recruitment patterns [17]. Studies that included
birds from the southern hemisphere showed that peaks
of AIV prevalence in waterfowl communities are lower
there than in the northern hemisphere [18]. Nonetheless,
a shallow seasonal peak was suggested in southern hemi-
sphere birds [19]. Furthermore, recent studies in temper-
ate southeast Australia [18], where dabbling ducks are
also identified as the primary AIV reservoir [20], showed
that AIV prevalence was related to irregular, non-
seasonal rainfall patterns.
Several ecological mechanisms have been studied as

potential drivers of AIV dynamics in wild birds [16,
17, 19, 21]. Among wild waterbird communities, three
ecological mechanisms have been suggested as the
primary drivers of the seasonal AIV dynamics in the
northern hemisphere: (i) the annual congregation of
migratory birds at staging and wintering sites in-
creases contact rates between individuals, and thereby
infection rates [19], (ii) an increase in the abundance
of immunologically naïve young birds results in a
higher number of individuals susceptible to infection
in the waterbird community [16, 22] and (iii) in-
creases in energy-demanding activities, notably in re-
lation to migration, potentially impairing
immunocompetence [21, 23]. In general, the eco-
logical drivers for disease dynamics are importantly
linked to seasonal variation in resources in the north-
ern hemisphere [21, 24, 25]. Large parts of the globe,
however, are far less seasonal [26].

In Australia, for instance, water availability is highly
variable and an important factor in the ecology and stark
variations in numbers of waterfowl [27–29]. Across
much of the Australian continent, climatic conditions
are extreme and non-seasonal [30]. Although regular
rainfall occurs seasonally in the Australian tropics (sum-
mer) and the temperate southeast and southwest regions
(winter-spring), water availability is largely non-seasonal
across the rest of the continent [30, 31]. In southeastern
Australia, inter-annual variation in rainfall is very high,
with higher rainfall being positively related to waterfowl
breeding [31]. Wet and dry periods can each persist for
several years [31], occasionally creating extreme climate
events, such as the ‘Big Dry’ phenomenon in southeast-
ern Australia between 1997 and 2009 [32].
Globally, waterfowl numbers have been found to be

tightly linked to water availability in the landscape e.g.
[33] and it is thus unsurprising that these irregular rain-
fall patterns in Australia strongly influence the move-
ment and breeding biology of many Australian
waterfowl species. During wet periods, bird numbers in-
crease at flooded areas where food sources become avail-
able, creating appropriate conditions for breeding [34,
35]. Afterwards, when flooded areas start to dry and re-
duce in size, waterbirds congregate on the remaining
wetlands [36–38]. Klaassen et al. [39] suggested that the
non-seasonal and often multi-year alternations of wet
and dry periods that influence the breeding ecology of
waterfowl might, in turn, affect the temporal pattern of
AIV prevalence on the Australian continent. Applying
the previously mentioned ecological drivers (i.e. i, ii, iii)
to the climatic conditions in the southern hemisphere,
Klaassen et al. [39] hypothesized that intense rainfall
leads to breeding events and increased numbers of im-
munologically naïve juvenile birds. After breeding, when
the temporary wetlands dry, increasing densities of im-
munologically naïve waterbirds returning to permanent
water bodies might importantly influence AIV preva-
lence in wild waterfowl in Australia. In addition, the re-
duced food availability that accompanies the drying
ephemeral wetlands can lead to reduction in birds’ im-
munocompetence [40] and therefore further increase
AIV infection risk. Ferenczi et al.’s [18] findings from
temperate southeast Australia also support Klaassen
et al.’s [39] hypothesis that irregular rainfall influences
population dynamics and age structure within the duck
community, which may subsequently affect AIV
dynamics.
As (1) rainfall is an important environmental driver in

AIV dynamics in wild Australian waterbirds [18] and (2)
wild waterbirds, especially ducks, are identified globally
to have a role in virus spillover into poultry [41–43] and
(3) all HPAI poultry outbreaks in Australia can be traced
back to an endemic Australian H7 lineage most likely
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spilled over from wild birds [44], we suggest that rainfall
events have an indirect effect on AIV outbreaks in Aus-
tralian poultry. We investigated this hypothesis by exam-
ining the correlation between the timing of AIV
outbreaks in poultry in a region that contains most of
Australia’s poultry-dense areas and accounts for most of
Australia’s poultry production, the Murray-Darling basin
and nearby locations, in relation to temporal patterns in
regional rainfall.

Materials and methods
Avian influenza virus outbreak data
The Australian poultry industry is dominated by the
production of chicken eggs and meat, 60 % of which is
produced within the Murray-Darling Basin. We tabu-
lated the LPAI and HPAI outbreaks on poultry farms in
Australia from the National Avian Influenza Surveillance
Dossier [45], NSW Animal Health Surveillance Newslet-
ters [46], Animal Health in Australia Annual Reports
[47], World Animal Health Information Database
(WAHID) Interface [48] and reports in the primary lit-
erature [49–51]. There is no systematic surveillance for
AIV within the Australian poultry industry and the ma-
jority, if not all, LPAI and HPAI detections were made
upon investigating clinical signs, which, albeit mild,
often also arise upon infection with LPAI. However, de-
tections of HPAI do trigger increased vigilance and the
two novel infections of LPAI within Victoria, one month
after a HPAI outbreak in this state, might have gone un-
detected if that HPAI outbreak had not occurred. We
found that, with one exception in Tasmania and one in
Western Australia [52], all the AIV outbreaks in poultry
in Australia occurred in or in close proximity to the
Murray-Darling basin (i.e. within 100 km of the basin’s
boundary). On a continental scale, the Murray Darling
Basin is a highly significant waterbird area including as
many as 18,500 interconnected wetlands of which 98
support more than 10,000 waterbirds each, notably
ducks [53]. Also, from a poultry-production perspective
the area is of continental significance, which is the prime
rationale for this study to focus on this basin. In our
analysis, we thus included all outbreaks in commercial
poultry from the Murray-Darling basin and sites within
100 km of its boundary. Outbreaks and their timing of
first occurrence (i.e. month and year) were defined as
events with occurrence of severe (in case of HPAI) or
mild (in case of LPAI) clinical signs. In cases where mul-
tiple farms were infected with the same strain only the
initial outbreak was included to capture spillover from
wild birds and not farm-to-farm transmission.

Weather data and statistical analysis
In order to investigate AIV outbreak events in relation
to rainfall, we obtained monthly total rainfall data (mm)

averaged across the entire Murray-Darling basin from
the Australian Bureau of Meteorology [54] between
January 1970 until October 2020. The effects of weather
are not always immediately expressed in ecological pro-
cesses [28, 55], thus there may be a cumulative effect
and/or a time lag between rainfall, waterfowl breeding
events and associated changes in the epidemiology of
AIV within wild bird populations and AIV outbreaks in
poultry. Ecological meaningful rainfall variables that can
potentially predict AIV outbreaks in poultry may thus
vary in (1) the period over which rainfall is integrated
(termed “rainfall period” from here on) and (2) the time
lag between this rainfall period and the increased AIV
prevalence after breeding that ultimately leads to an in-
creased risk of AIV outbreaks in poultry (termed “time
lag period” from here on). We tested 600 models using
logistic regression in R [56], where for each month from
January 1970 to October 2020 we used presence/absence
of an outbreak as the response variable and total
monthly rainfall as the explanatory variable. Each of the
600 models varied in how rainfall was calculated, with
the rainfall period varying one to 24 months and the
time lag period varying from zero to 24 months. For ex-
ample, the rainfall category of two months “rainfall
period” with zero “time lag period” means that total
monthly rainfall was averaged over two months preced-
ing a focal month. As another example, for a rainfall cat-
egory of three months “rainfall period” with one month
“time lag period” means that total monthly rainfall was
averaged over the second, third and fourth month (i.e.
skipping the first month) prior to the focal month. To
appropriately weight incidentally co-occurring outbreaks
(i.e. outbreaks happening within the same month of the
same year; 3 occurrences), one of the outbreaks was
moved to the following month. To select the best
model(s) among the 600 tested, we used Akaike’s Infor-
mation Criterion (AIC) considering the top model to be
the model with the lowest AIC but models within 2 AIC
units also to have substantial support.

Results
We found eight HPAI and eight LPAI outbreaks linked
to unique strains in commercial poultry across the
Murray-Darling basin and close vicinity between 1976
and 2020 to analyse AIV outbreak events in relation to
rainfall (Fig. 1; Table 1). For the 610 months over the
period January 1970 to October 2020, 600 different rain-
fall indices were calculated varying in rainfall and time-
lag period. The best model with the lowest AIC (143.11)
predicted that the likelihood of an outbreak would in-
crease with increased rainfall (slope of the log odds 0.08,
P < 0.002). The rainfall index for this top model was cal-
culated over a period of 14 months and had a subse-
quent time-lag period of also 14 months. Thus,
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according to this model, outbreaks tended to occur 28
months after the onset of a 14-month rainfall period. An
overview of the estimated AICs and log odds slopes
across all 600 tested models are depicted in Fig. 2. An-
other 25 models where within 2 AIC units of the top
model, all with a positive slope of the log odds between
0.04 and 0,08 (in all cases P < 0.007) and should thus
also be considered as good candidate models (Fig. 2).
Fourteen of those had similar rainfall (11–16 months)
and time-lag (12–15 months) periods to the best model.
Ten had considerably shorter rainfall periods (5–9
months) but longer time-lag periods (19–23 months).
Remarkably though, all 26 models tended to predict a
higher chance of AIV outbreaks in poultry around 27
months after the onset of a particularly high rainfall
period (i.e. the sum of rainfall and time-lag period has a
median of 27 months and a range of 25–29 months and
the top models thus all fall along a diagonal in both
panels of Fig. 2).

Discussion
The top models in our analysis indicated that the aver-
age monthly rainfall was significantly higher prior to
outbreaks when allowing for time lags of 12 to 23
months (14 months in the best model). These findings
support our initial hypothesis and suggest that an in-
creased risk of AIV outbreaks in poultry exists after (1) a
period of intense rainfall over a period of four to 16

months (14 months in best model), presumably trigger-
ing increased waterbird breeding and increased numbers
of immunologically naïve juvenile waterbirds, which (2)
enter the population at gradually increasing densities
over a time lag between 12 and 23 months (14 months
in best model). The time lag between intense rainfalls
and outbreaks in poultry are in agreement with Ferenczi
et al.’s [18] findings from southeast Australia, where
higher rainfall three to seven months before higher AIV
prevalence in wild waterbird populations was observed.
That the time lag is substantially longer in the present
study than in Ferenczi et al. [18] probably relates pri-
marily to the extra time needed for AIV to spillover
from wild birds into poultry, which may importantly be
facilitated by increased densities of ducks following a dry
period (see below) and possibly, at least in half of the
cases, the time needed for the LPAI to evolve in a HPAI.
A dominant feature of Australian climate is the

ENSO-linked irregularity in both timing and location of
wet and dry periods [37, 57, 58]. These erratic climate
patterns may relax seasonality in waterfowl breeding,
where reproduction occurs after periods of higher rain-
fall and associated increases in food availability [28, 29,
34]. Ferenczi et al. [18] indicated that after rainfall-
triggered breeding events, the influx of juveniles that ar-
rive from inland areas that mix with locally hatched ju-
veniles, were likely drivers of AIV prevalence dynamics
in two wild duck species on a coastal permanent

Fig. 1 Timeline of avian influenza outbreaks (red triangles) in commercial poultry in the Murray-Darling basin and close vicinity against mean
monthly (grey line) and right-aligned rolling mean rainfall across the basin (blue line; i.e. indicating the mean rainfall in the
preceding twelve-months)
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wetland. Thus the time lag that is observed between
breeding and the increased AIV prevalence in waterfowl
populations after breeding [18] is likely reflected in AIV
outbreaks in poultry.
The delay between a high rainfall period and the oc-

currence of AIV outbreaks in poultry is consistent with
the earlier hypothesised idea that the likelihood of AIV
outbreaks in poultry increases as temporary wetlands
dry up [39]. As inland wetland systems contract with the
onset of dry periods, associated wild waterbirds from
these regions [34, 35] may concentrate on a few
remaining waterbodies, such as farm dams. In these situ-
ations, they may be in direct or indirect contact with
poultry, which increases the likelihood of virus transmis-
sion between wild and domestic birds.
Recognizing the role of rainfall as a major driver of

waterbird population dynamics, Vijaykrishna et al. [59]
showed a decrease in AIV diversity during years when
the rainfall across Australia was below average. To our
knowledge, Vijaykrishna et al.’s [59] rainfall driven evo-
lutionary dynamics of AIV and Ferenczi et al.’s [18] rain-
fall driven viral prevalence in waterfowl are the only
studies that address the idea that non-seasonal rainfall
patterns are a major driver of AIV dynamics in this part

of the world. Although rainfall is considered to be of less
importance in AIV dynamics in the northern hemi-
sphere, a few studies have found it to influence AIV
prevalence in wild and domestic birds [60, 61]. East
et al.’s [62] study of H5N1 HPAI infection risk analysis
in Australia suggested that the areas of highest risk for
introduction of AIV from wild birds into poultry were in
eastern Australia where there are (1) higher densities of
poultry farms; (2) more wetland habitats for waterbirds
and (3) the climate is wetter [62].
Our study, albeit drawing conclusions based on corre-

lations exclusively, highlights the importance of investi-
gating AIV dynamics in both wild and domestic birds in
relation to different environmental and ecological fac-
tors, allowing for a better understanding of AIV trans-
mission risks between them. Additionally, and notably
for systems regularly experiencing extreme weather
events, such studies may allow for an improved under-
standing of the climatic drivers of disease dynamics. Cli-
matic forcing of disease dynamics is commonly assumed
for both humans and wildlife [17, 24, 63]. However, the
evaluation of causality between weather conditions and
disease patterns is often hampered by high levels of sea-
sonality, which notably prevail in the northern

Table 1 High pathogenicity (HPAI) and low pathogenicity (LPAI) avian influenza virus outbreaks in commercial poultry across the
Murray-Darling basin and close vicinity between 1976 and 2020

Year Month State Location Affected stock HPAI / LPAI
subtype

Reference

1976 January Victoria Keysborough
(outer suburbs of Melbourne)

chicken, duck HPAI, H7N7 [45]

1985 May Victoria Bendigo chicken HPAI, H7N7 [45]

1992 July Victoria West Victoria duck LPAI, H3N8 [51]

1992 July Victoria Bendigo chicken, duck HPAI, H7N3 [45, 49]

1994 December Queensland Lowood chicken HPAI, H7N3 [45]

1997 November New South
Wales

Tamworth chicken,
emu

HPAI, H7N4 [45, 50]

2006 October New South
Wales

Sydney Basin chicken, duck LPAI, H6N4 [45]

2010 March New South
Wales

Sydney basin chicken LPAI, H10N7 [46]

2012 January Victoria Melbourne duck LPAI, H5N3 [47, 48]

2012 April New South
Wales

Hunter Valley turkey LPAI, H9N2 [46]

2012 April New South
Wales

North Coast duck LPAI, H4N6 [46]

2012 November New South
Wales

Hunter Valley chicken HPAI, H7N7 [46]

2013 October New South
Wales

Young chicken HPAI, H7N2 [48]

2020 July Victoria Lethbridge chicken HPAI, H7N7 [48]

2020 August Victoria Lethbridge turkey LPAI, H5N2 [48]

2020 August Victoria Kerang emu LPAI, H7N6 [48]
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hemisphere. Disease-dynamics studies in regions of the
world with less predictable climatic conditions, such as
in large parts of Australia and many other areas of the
southern hemisphere, may thus provide important in-
sights in the true drivers of disease dynamics and the
consequences of climate change on disease dynamics
[47, 64].
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