
http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-021-02977-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yangheng2008.cool@163.com
mailto:641975232@qq.com


Background
Epizootic haemorrhagic disease virus (EHDV) and the
Palyam serogroup viruses (PALV) are members of the
genus Orbivirus in the family Reoviridae, which ex-
hibit some common morphological and structural
characteristics [1, 2]. The genomes of the viruses con-
sist of 10 double-stranded RNA segments (Seg-1–Seg-
10) encoding seven structural (VP1–VP7) and four
non-structural (NS1–NS3 and NS3a) proteins. The
outer capsid proteins, VP2 and VP5, are responsible
for viral serotypes [2, 3]. Unlike EHDV, which is
transmitted by Culicoides midges, PALV is transmit-
ted by a variety of arthropod vectors, such as mosqui-
toes, ticks andCulicoidesmidges [1, 2].

EHDV infection often leads to death in white-tailed
deer and only Ibaraki virus belonging to EHDV-2 was
previously known to cause bluetongue-like illness in cat-
tle, whereas PALV is usually associated with abortion
and teratogenesis in ruminants, principally cattle [2, 4,
5]. EHDV and PALV have contributed to considerable
economic losses in livestock production sector globally;
especially, EHDV-1,-6 and -7, which have resulted in
significant reductions in dairy production in Turkey,
Israel and Japan over the last few years [6–10]. Several
serotypes of EHDV (EHDV-1, -5, -6, -7 and -10) and
PALV including Chuzan virus (CHUV), Bunyip Creek
virus (BCV), and D’ Aguilar virus (DAV) are prevalent in
China (unpublished data) [11–14]. In addition, EHDV
and PALV can be transmitted through bites by blood-
sucking midges of theCulicoidesspp., thereby increasing
risk of co-infection by the two viruses, which poses a po-
tential threat to the cattle breeding industry in China.

Introduction of sensitive and specific diagnostic tests
is critical for virus detection, monitoring, and effective
control and elimination of orbiviral diseases. Accurate
diagnosis presents a major challenge because the clinical
symptoms associated with EHDV and PALV are gener-
ally non-specific or clinically inapparent [2, 15, 16]. Poly-
merase chain reaction (PCR) and enzyme-linked
immunosorbent assay (ELISA) are the most routinely
used techniques to detect pathogen nucleic acids and
antibodies globally [17–19]. However, the techniques
typically depend on expensive equipment and well-
trained personnel, which in turn limits their current use
in endemic field settings.

Over the last few decades, several isothermal amplifi-
cation methods, such as loop-mediated isothermal amp-
lification (LAMP) and recombinase polymerase
amplification (RPA), have been developed and used to
detect multiple pathogens [20–24]. Taking RPA as an
example, an RPA reaction usually requires the participa-
tion of three major proteins, including a recombinase to
separate DNA duplex, single-strand DNA-binding pro-
teins to stabilize the open complex, and polymerase to

synthesize DNA [24]. Although both LAMP and RPA
are isothermal amplification methods, LAMP-mediated
amplified reaction requires at least two pairs of primers,
and its application in the co-detection of multiple patho-
gens is challenging due to formation of dimers between
primers [25]. By contrast, one RPA reaction use only
two opposing primers (with one labeled probe), and is
achieved at a low and constant temperature. The ampli-
fied products can be detected by a specific lateral flow
dipstick (LFD) and observed with naked eyes [23, 24].
LFD is a technology that utilizes antibodies to recognize
the antigens incorporated into the amplified products,
and presents results on the membrane carrier [22–24].
Therefore, RPA assay could present more potential pros-
pects than other detection methods with reference to
the detection efficiency and rapid on-site diagnosis.

In the present study, we aimed to develop an RPA-
LFD assay for the co-detection of EHDV and PALV in
clinical blood samples and to evaluate its efficacy in
comparison with quantitative real-time polymerase chain
reaction (qRT-PCR).

Results
Designing and screening of RPA primers and LFD-probe
sets
RPA primers and LFD-probes were designed against
the highly conserved regions of Seg-1 and Seg-3 open
reading frames of EHDV and PALV strains isolated
from Asia and Australia (TableS1). To screen candi-
date primers and probes, EHDV-1 and CHUV gen-
omic cDNAs served as templates, TwistAmp nfo
reactions were performed at 39� for 20 min, and the
amplified products subsequently analyzed using LFD
detectors and 3 % agarose gel. Results revealed that
primer sets of EHDV RPA-2, EHDV RPA-3, PALV
RPA-2, and PALV RPA-3 with respective LFD-probe
yielded specific amplifications for the established
RPA-LFD assay, and generated products with ex-
pected size of 259 bp, 321 bp, 250 bp, and 353 bp
(Fig. 1). RPA primers and LFD-probe sets of EHDV
were paired with RPA primers and probe sets of
PALV in succession, and subsequently evaluated the
amplification and detection effects. EHDV RPA-3
primers and probe set in conjunction with PALV
RPA-2 primers and probe set exhibited superior re-
sults (Fig.1). RPA-LFD test lines of the primers and
probe sets appeared in 10 min.

Specificity and analytical sensitivity of the RPA-LFD assay
Considering that many different viruses are members of
the Orbivirus genus and they share many similarities in
genomic sequence characteristics, the specificity of the
established RPA-LFD assay was determined by testing
cDNAs transcribed from genomic RNAs of EHDV-1, -2,
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-5, -6, -7, -8, -10, BCV, CHUV, DAV, African horse sick-
ness (AHS) inactivated vaccine, bluetongue virus sero-
type 1 (BTV-1) and BTV-16 strains,Guangxi orbivirus
(GXOV), Tibet orbivirus (TIBOV) and Yunnan orbivirus
(YUOV). Results revealed that none of the cDNAs of
AHS inactivated vaccine, BTV-1, -16 strains, GXOV,
TIBOV and YUOV exhibited positive results using the
established RPA-LFD assay, which suggested that the
primers and probe sets were specific for EHDV and
PALV (Fig.2).

The concentrations of amplified and purified EHDV
and PALV Seg-1 DNA fragments were 91.5 ng/µL
and 71.3 ng/µL, respectively, and the quantities of
copies were 7.1 × 1013 copies/µL and 6.8 × 1013 copies/
µL, respectively. The analytical sensitivity of the
established RPA-LFD assay was determined using a
ten-fold serial dilution of purified EHDV and PALV
Seg-1 DNA fragments from 100 to 105 copies/µL as
templates, which were performed three times to en-
sure repeatability of the results. The results revealed
that the established RPA-LFD assay could rapidly de-
tect 7.1 copies of EHDV Seg-1 DNA and 6.8 copies
of PALV Seg-1 DNA in 30 min (Fig.3), which dem-
onstrated the sensitivity and rapid performance of the
RPA-LFD assay.

Clinical performance of the RPA-LFD assay in the
detection of EHDV and PALV
The established RPA assay could accurately detect a
total of 68 strains of EHDV and PALV viruses (unpub-
lished data), including 11 strains of EHDV-1, 9 strains of
EHDV-5, 12 strains of EHDV-6, 4 strains of EHDV-7, 3
strains of EHDV-10, 7 strains of BCV, 17 strains of
CHUV, and 5 strains of DAV (Table1 and Table S2).
The established RPA assay was subsequently used to test
blood samples from which EHDV or PALV strains had
been isolated between 2014 and 2019. qRT-PCR was ini-
tially employed to screen the samples because some
blood samples have been stored at 4� for more than
four years, and 56 samples with cycle threshold (CT)
values below or equal to 38.0 were selected for the RPA-
LFD assay. RPA assay failed to detect positive results in
2 of the 56 blood samples when compared to qRT-PCR,
and the coincidence rate of the two detection assays was
96.4 % (Table1 and TableS2).

The diagnostic validity of the established RPA-LFD
assay was further evaluated by comparing test results of
fresh clinical blood samples with those obtained using
qRT-PCR. Total RNA was extracted from EDTA blood
samples collected from sentinel cattle infected with
EHDV or PALV in 2020, transcribed into cDNAs, and

Fig. 1 Screening of RPA-LFD primers and probe sets used for the co-detection of EHDV and PALV. Top: Results of RPA nfo reactions detected by
LFD detectors; bottom: results of RPA nfo reactions analyzed by agarose gel electrophoresis. Lane 1–6: three sets of primers and probe used for
the detection of EHDV and PALV, respectively; lane 7–10: four sets of primers and probes used for the co-detection of EHDV and PALV; lane 11:
negative control; lane 12: 100 bp DNA marker (TIANGEN Biotech)
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subsequently tested using the established RPA-LFD
assay and qRT-PCR simultaneously. The RPA-LFD assay
test results were basically consistent with those of qRT-
PCR, except for the PALV detection results obtained on
14th, May 2020 (Figs.4 and 5), in which qRT-PCR ex-
hibited a CT value of 39.3, whereas the RPA-LFD assay
detection results were negative (Fig.5).

An additional 96 EDTA blood samples collected from
cattle farms in Jinghong City were analyzed using qRT-
PCR and the established RPA-LFD assay, respectively to
determine the proportion of EHDV and PALV infection
(Table S3). It was found that the infection rate of EHDV
in cattle herds was 25.0 % (24/96), and the coincidence
rate of qRT-PCR and the established RPA-LFD assay
was 95.8 %. The infection rates of PALV in cattle herds
obtained by qRT-PCR and the RPA-LFD assay were
20.8 % (20/96) and 19.8 % (19/96) respectively, and the
coincidence rate was 96.9 %. The positive rates of EHDV
and PALV co-infection detected by qRT-PCR and RPA-
LFD assay were 13.5 % (13/96) and 12.5 % (12/96), re-
spectively, and the coincidence rate was 94.8 % (Table2
and TableS3).

Discussion
In the past, outbreaks of EHD and Chuzan virus-
related diseases have caused considerable losses in the

cattle industry in East Asia for many years. Presently,
with the growth of global transportation networks
and intensification of climate warming, the geograph-
ical range and active period of arthropod vectors have
expanded, which could in turn lead to the spread of
the arboviruses to higher-latitude regions, and in pre-
viously non-endemic areas. The monitoring system
for the spread and prevalence of EHDV and PALV
should be strengthened to prevent anticipated losses
in the cattle industry [10–14, 26, 27].

Seg-1 and Seg-3 are relatively larger fragments in the
10 genome segments of the members of genusOrbivirus.
The sequences of Seg-1 and Seg-3 are highly conserved
within strains of identicalOrbivirus species [2, 28, 29].
The characteristics of Seg-1 and Seg-3 ensure that ap-
propriate primers and probes based on the specifications
of the RPA method can be screened. Furthermore, a
high degree of nucleotide sequence identity was ob-
served among isolates of identicalOrbivirus species from
the same geographical region, and isolates of EHDV and
PALV globally, can be segregated into distinct‘eastern’
(Asia and Australia) and‘western’ (Americas, Africa,
Mediterranean Basin) topotypes [29, 30]. Consequently,
primers and probes against the highly conserved regions
of Seg-1 and Seg-3 belonging to the‘eastern topotype’
were designed for the present study. The screening

Fig. 2 Specificity of the RPA-LFD assay in the detection of EHDV and PALV. Top: Results of RPA nfo reactions detected by LFD detectors; bottom:
results of RPA nfo reaction analyzed by agarose gel electrophoresis. Lane 1–7: cDNAs of EHDV-1, -2, -5, -6, -7, -8 and − 10 strains served as
templates; lane 8–10: cDNAs of BCV, CHUV and DAV strains served as templates; lane 11–16: cDNAs of AHS inactivated vaccine strain, BTV-1, -16
strains, GXOV, TIBOV and YUOV served as templates; lane 17: negative control; lane 18: 100 bp DNA marker
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results of the primers and probe sets revealed that only
the primers and probe sets targeting on Seg-1 obtained
better co-detection effect, although the primers and
probe sets targeting Seg-1 and Seg-3 performed well
when EHDV or PALV were detected in isolation (Fig.1).

The established RPA-LFD assay exhibited superior
performance with reference to specificity and sensitivity
experiments, and detected EHDV and PALV simultan-
eously to enhance detection efficiency (Figs.2 and 3);
moreover, the assay accurately detected in total of 68

Fig. 3 Analytical sensitivity of the RPA-LFD assay in the co-detection of EHDV and PALV. Top: Results of RPA nfo reactions detected by LFD
detectors; bottom: results of RPA nfo reaction analyzed by agarose gel electrophoresis. Lane 1–6: a ten-fold serial dilution of purified EHDV and
PALV Seg-1 DNA fragments from 105 to 100 copies/µL, which served as templates; lane 7: negative control; lane 8: 100 bp DNA marker

Table 1 Reliability verification of RPA-LFD assay

Serotypes of EHDV or PALV Total

EHDV-1 EHDV-5 EHDV-6 EHDV-7 EHDV-10 BCV CHUV DAV

Virus strains Number of
isolated viruses

11 9 12 4 3 7 17 5 68

RPA-LFD Positive 11 9 12 4 3 7 17 5 68

Negative 0 0 0 0 0 0 0 0 0

Coincidence rate 39/39 × 100 %=100 % 29/29 × 100 %=100 % 68/68 × 100 %=100 %

Blood samples CT values of qRT-
PCR

28.9∼37.5 33.7∼37.8 29.5∼37.7 30.1∼38.0 32.6∼37.9 33.5∼37.6 28.2∼37.1 30.3∼36.3

RPA-LFD Positive 8 7 9 4 3 6 12 5 54

Negative 1 0 0 0 0 0 1 0 2

Coincidence rate 31/32 × 100 %=96.9 % 23/24 × 100 %=95.8 % 54/56 × 100 %=96.4 %
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virus strains including 5 serotypes of EHDV and 3 sero-
types of PALV (Table1); subsequently, the established
assay was used to detect blood samples from which
EHDV or PALV strains had been isolated and trace back
infection dynamics in sentinel cattle. Detection results of
56 blood samples from which the viruses had been iso-
lated revealed that the coincidence rates of the estab-
lished RPA-LFD assay and qRT-PCR were 96.4 %, which
implies that the RPA-LFD assay is reliable (Table1). In
trace back experiments, the detection results obtained
using the established RPA-LFD assay were generally
equivalent to those of qRT-PCR, except for a sample
collected from sentinel animal infected with PALV on
14th, May 2020 (Figs.4 and 5). We calculated the copy
numbers of PALV in blood sample collected on 14th,
May 2020 according to a regression equation of the
PALV group-specific qRT-PCR [31], and established that
the copy numbers were 0.39 per microliter, which

suggested that the results obtained from qRT-PCR were
negative. In summary, the RPA-LFD assay exhibited high
sensitivity in the detection of clinical samples. In
addition, the detection limits of LFD and agarose gel are
0.005 ng and 0.1 ng DNA, respectively, according to the
manufacturer’s instructions on LFD detector and Gold-
View II, and samples with low viral nucleic acid contents
could be detected by LFD after RPA amplification, al-
though with no corresponding bands on agarose gel
(Figs.3, 4 and 5).

The sequence of RPA primers and LFD-probes used in
the present study differed from those of the‘western
topotype’ strains; it was presumed that the primers and
probes could not be used to detect‘western topotype’
strains. However, due to the lack of corresponding nu-
cleic acids, the ability of the RPA-LFD assay to detect
‘western topotype’ strains has not been evaluated. Spe-
cific primers and probes suitable for detecting‘western

Fig. 4 Trace back results of EHDV infection obtained from qRT-PCR and the RPA-LFD assay. Top: Results of RPA nfo reactions detected by LFD
detectors; middle: results of qRT-PCR expressed with CT values; bottom: results of RPA nfo reactions analyzed by agarose gel electrophoresis. Lane
1–12: cDNAs of blood samples collected from sentinel animal infected with EHDV served as templates; lane 13: negative control; lane 14: 100 bp
DNA marker
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