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suppression of the self-renewal capacity of MSCs [41].
In cats, Gata6 is assumed to be involved in differenti-
ation similar to humans, but that has yet to be exam-
ined. Studies have described the presence of Gata6 in
feline induced pluripotent stem cells [42] and in cat em-
bryos [36], but ours is the first study to report the pres-
ence of Gata6 in feline adipose MSCs.
SOX17, identified in human adipose derived MSCs

[43], is involved in the capacity of the cells to differenti-
ate into endoderm and eventually to hepatocytes [44] or
pancreatic tissue [33]. Like Gata6, Sox17 has been de-
tected in feline induced pluripotent stem cells [42], but
has not been investigated in feline adipose MSCs. Thus,
this is the first study to identify Sox17 in feline adipose-
derived MSCs.
GATA4 is found in high levels in human ovaries where

it is associated with sex determination along with ovary
growth and function, but not in adipocytes [45]. GATA4
is involved in differentiation into osteoblasts and devel-
opment of the heart and has been reported to be
expressed in only 15 % of rat bone marrow-derived
MSCs based on immunohistochemistry [21]. Thus, it
was not surprising that little was detected in the adipose
MSCs. In fact, minimal expression confirmed that ovar-
ian tissue did not contaminate the reproductive fat
group. Likewise, PDX1 is a biomarker of pancreatic de-
velopment and is farther down the differentiation
lineage. We included Pdx1 detection as a negative con-
trol, thus the lack of Pdx1 was expected.
A major limitation of the study was the fact that be-

cause the reproductive fat was obtained during spaying,
there was a difference in the sex distribution between
groups. Based on a clinically relevant study design that
collected excess tissue from standard procedures on pre-
dominantly community dwelling cats, sex could not be
controlled for as a variable. A much larger clinical study
is warranted to determine possible sex-based differences.
In addition, this study did not analyze the purity or dif-
ferentiation capacity of the cells at any of the passages.
While cells from all three groups studied here had

similar pluripotency profiles, the improved yield
(cells/tissue weight) and initial cell viability was dra-
matically better for the cells harvested from the re-
productive tissue, which can be harvested ethically
during spaying procedures. If the goal is an autolo-
gous product, then reproductive fat harvests would
not be appropriate, but the field is quickly moving to-
ward the allogeneic model. Consequently, fat sur-
rounding the reproductive organs may offer a
consistently high-quality source of MSCs. In addition,
we showed that enzymatic digestion was the best ap-
proach for subcutaneous tissue and the only option
available when working with reproductive tissue due
to the small amount of starting material.

Conclusions
In conclusion, the work summarized here demonstrates
that feline reproductive adipose tissue is a reasonable
source of MSCs to be cultured for eventual therapeutic
application compared to a subcutaneous fat depot. The
age of the donor did not affect the quality of the MSCs
from the reproductive fat. The MSCs should be isolated
via predominantly enzymatic digestion, but further re-
search should be done to continue optimizing a diges-
tion protocol. For example, in certain clinical situations,
long-term cell culture may not be possible and
mechanically-digested subcutaneous fat may be the only
option. In addition, further research should continue to
further characterize feline adipose-derived MSC, includ-
ing the differentiation potentials.

Methods
Adipose Tissue Collection
The adipose tissue was collected from 34 healthy female
cats, including cats undergoing spaying at local animal
shelters and the discarded tissue removed during spaying
(the ovaries and uterine horn) was collected and the fat
dissected. Subcutaneous fat was removed from male and
female cats under anesthesia for unrelated surgical pro-
cedures. Additionally, two samples were obtained from
research animals undergoing euthanasia (sodium pento-
barbital) at the completion of an unrelated study. The
University of Kansas Medical Center’s IACUC deter-
mined that tissue removed during spaying or after eu-
thanasia was exempt from required protocol approval.
As all tissue collected would otherwise have been dis-
carded, no consent was necessary. The licensed veteri-
narians overseeing the animals approved the collection
of the discarded tissue. No exclusion criteria were set for
the study. Table 1 summarizes the donor characteristics.
All donors were standard long or shorthair cats and
were fully immunized at the time of tissue retrieval. Due
to the fact that tissue was retrieved during other proce-
dures, the site of tissue collection (reproductive versus
subcutaneous) could not be randomized. Group assign-
ments were based on convenience of the surgical proce-
dures completed through the duration of the study. Due
to large differences in the tissue mass obtained from the
different sites, blinding of the initial sample groups could
not be done. Analysis of the later passages was com-
pleted in a blinded fashion. Donor characteristics were
provided by the attending veterinarian and included age,
weight, sex, body condition, vaccination history, and
general health status including feline leukemia virus
results.
For subcutaneous fat collection, donors were posi-

tioned in dorsal recumbency and the surgical site was
prepared using standard aseptic surgical procedures. A
1 cm length incision was made at the midline to allow
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260/230 ratio of between 2.0 and 2.2 indicates a pure
sample.
One µg of total RNA was used to make cDNA using

SuperScript IV Reverse Transcriptase (Invitrogen, Cat
#18,090,010) as per the manufacturer’s protocol using
oligo (dT). Primer sequences for the biomarkers were
determined using BLAST (Table 3) and confirmed via
gel electrophoresis.
The cDNA was run through RT-qPCR on the Applied

Biosystems ViiA7 PCR System using Power SYBR Green
PCR Master Mix (Applied Biosystems, Cat #4,367,659)
using the following protocol: 2 min at 95℃ for initial de-
naturation, followed by cycling 15 s at 95℃ for denatur-
ation, 10 s at 60℃ for annealing, and 60 s at 70℃ for
extension. This protocol repeated for 49 cycles, followed by
recording a melt curve. All samples were amplified in tripli-
cate. An automatic threshold was utilized and a cut off of
40 cycles was determined to indicate presence or absence
of biomarkers. Negative controls without template were
run to 50 cycles with no amplification. The cycle threshold
values were normalized to Gapdh. To confirm the results,
amplicons were run on gels to confirm the correct sizes. In
addition, the resulting PCR products were purified and sent
to Genewiz for Sanger sequencing. All results matched the
expected sequences and sizes (Table 3).

Statistical Analysis
Data were analyzed using a one-way analysis of variance
(ANOVA) on ranks with post hoc Dunn’s pairwise com-
parison was performed using SigmaPlot 13.0. P values of
less than 0.05 were considered statistically significant,
noted by symbols in the graphs. Data are presented as
averages ± SEM.
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MSC: multipotent stromal cells; P1, P2 or P3: passage number; RE: reproductive
enzymatic; RT-qPCR: Quantitative reverse transcription polymerase chain
reaction; RNA: ribonucleic acid; SM: subcutaneous mechanical; SE: subcutaneous
enzymatic; T: Time; WU: Wunsch units; Xb: Starting cell number; Xe: Ending cell
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