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crystallin with fold changes of 4.6, 4.2, 3.9, 3.8, and 3.8
respectively. We have listed top 30 up-regulated DAPs
and top 30 down-regulated DAPs identified from cattleyak
relative to yak (Tables1 and 2, respectively).

Gene ontology (GO) analysis of the differentially
abundant proteins
Gene ontology (GO) analysis was conducted to better
understand the functions of the all down-regulated and
up-regulated DAPs identified by iTRAQ between yak
and cattleyak based on biological process, cellular com-
ponent, and molecular function categories. 35 GO terms
were significantly enriched for down-regulated DAPs, in-
cluding 22 biological process terms, 6 cellular compo-
nent terms, and 7 molecular function terms. Majority of

these down-regulated enriched GO terms relating to
biological processes were mainly associated with acetyl-
ation of protein components, negative regulatory activity,
and positive regulatory activity, from which top three
listed enriched GO terms were negative regulation of
endopeptidase activity (p = 0.002923), negative regula-
tion of peptidase activity (p = 0.003519) and histone H3
acetylation (p = 0.005172). According to the down-
regulated cellular components, most of enriched GO
terms were associated with acetyltransferase complex,
among which the top three listed enriched GO terms in-
clude histone acetyltransferase complex (p = 0.002818),
acetyltransferase complex (p = 0.004352) and protein
acetyltransferase complex (p = 0.004352). From down-
regulated molecular functions, majority of enriched GO
terms were involved in inhibitor activity and regulator
activity, among which top three listed enriched GO
terms include peptidase regulator activity (p = 0.011867),
antigen binding (p = 0.020786), and endopeptidase in-
hibitor activity (p = 0.021568) (Fig.3A), while, among
the up-regulated DAPs, 48 GO terms were significantly
enriched between yak and cattleyak epididymis, includ-
ing 18 biological process terms, 7 cellular component
terms, and 23 molecular function terms. Most of the up-
regulated DAPs enriched GO terms in particular to bio-
logical processes were involved in metabolic processes,
protein localization and catabolic processes, among
which top three listed enriched GO terms include orga-
nonitrogen compound catabolic process (p = 0.004521),
receptor-mediated endocytosis (p = 0.005261) and cellu-
lar modified amino acid metabolic process (p =
0.006143). With respect to cellular component, the most
important up-regulated enriched GO terms were lyso-
some and sperm part, in which top three listed enriched
GO terms were lysosome (p = 0.001189), lytic vacuole
(p = 0.001189) and blood microparticle (p = 0.005987).
Significantly up-regulated enriched GO terms based on
molecular function were associated with binding, inhibi-
tor activity, and hydrolase activity, in which top three
enriched GO terms were hydrolase activity (p = 1.26E-
05), vitamin D binding (p = 0.000388) and steroid bind-
ing (p = 0.001698) (Fig.3B).

KEGG pathway enrichment analysis of DAPs
Pathway analysis for identified proteins can deepen our
understanding of the metabolic capacity of the species,
biological processes information, and related diseases. In
this study, we have mapped 87 down-regulated DAPs
and 136 up-regulated DAPs to the reference pathways in
the KEGG database to determine biological pathways re-
lated to sperm function. In total, five up-regulated DAPs
were significantly enriched in KEGG pathways whereas
none of the down-regulated DAPs were significantly
enriched in KEGG pathways. For the up-regulated DAPs,

Fig. 2 Peptide sequence coverage and identification of number of
peptides. TheA shows the proportion of proteins in different
coverage ranges. The different colors representing different ranges
of sequence coverage. The brackets show the number of proteins in
different coverage ranges and their proportion to the total protein.
TheB shows the distribution of the number of peptides contained
in the identified protein. The x-axis is the range of peptides covering
the protein, and the y-axis is the number of proteins
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Epididymal sperm maturation
The functional analysis identified a number of down-
regulated DAPs involved in epididymal maturation in
cattleyak (Table 1). Phosphatidylethanolamine-binding
protein 4 (PEBP4) was studied in fertile, low fertile, and
infertile bulls and found that the novel seminal PEBP4
expression was significantly higher in fertile bulls relative
to low fertile and infertile bulls, implying that PEBP4
could play important roles in spermiogenesis, epididymal

sperm maturation, and sperm motility [17]. The existing
evidence suggests that, down-regulation of PEBP4 in cat-
tleyak could compromise sperm maturation processes
and result in infertility. CD63, is a recognized exosome
marker that is found in the apices of epididymal epithe-
lial principal cells and the epididymal microenvironment,
allowing for long-term sperm storage [18]. The protein
facilitates signal transduction functions, which are im-
portant in regulating cellular proliferation, growth, and
motility. Downregulation of CD63 in cattleyak could
have a significant impact on sperm storage and lead to
fertility problems. Seminal plasma contains proteins as-
sociated with sperm progressive motility, including Zinc-
alpha-2-glycoprotein (ZAG) and could play functional
roles during maturation of spermatozoa, from the epi-
didymis through fertilization in the female reproductive
tract [19]. The downregulation of ZAG in cattleyak sug-
gests that sperms may well not develop progressive mo-
tility after ejaculation through into female reproductive
tract.

Glutathione S-transferase Mu 1 (GSTM1–1) and
Fetuin-B were also found to be down-regulated in cattle-
yak compared to yak. The possible role of Glutathione

Fig. 3 GO classification of DAPs in cattleyak compared to yak. TheA describes GO terms of down-regulated DAPs and theB describes the GO
terms of up-regulated DAPs. The x-axis represents the number of GO terms and y-axis representsp-value of each GO terms

Fig. 4 KEGG pathway enrichments analysis of DAPs in cattleyak with
respect to yak. The x-axis displays each of the enriched pathways.
The y-axis shows the number of DAPs in each pathway

Zhaoet al. BMC Veterinary Research         (2021) 17:255 Page 6 of 14



with confidence intervals greater than“identity” were
considered to be known. At least one distinct peptide
aided in protein recognition. Protein quantification was
determined by proteins with at least two distinct spectra.

For protein quantification, it was required that a pro-
tein contains at least two unique spectra. MASCOT was
used for Quantification protein ratios. The significant
differentially abundant proteins (DAPs) were screened
by T-test and proteins with ap-value less than 0.05 and
a fold difference greater than 1.5 (Up regulated) or less
than 0.67 (Down regulated) were considered DAPs.

GO, KEGG and PPI analysis of DAPs
Gene Ontology (GO) terms in the database (http://www.
geneontology.org/) were used for mapping of the DAPs
between yak and cattleyak epididymal tissues. Bonferroni
Correction was used to normally adjust thep-value.
Enrichment of biological pathways of the DAPs utilised
KEGG database (Kyoto Encyclopedia of Genes and
Genomes database). String Protein Interaction Database
was used and the differential protein interaction network
data files were complemented with Cytoscape software
for visual editing.

Enzyme linked immunosorbent assay (ELISA)
ELISA confirmed eight differential abundance proteins,
namely CD63, ELP3, LSM5, GSTM1, GGH, ERAP1,
GPX5 and MUC15. The total protein of each sample
was extracted according to the manufacture’s protocol
of DNA/RNA/protein co-extraction Kit (Tiangen Bio-
tech (Beijing) Co., Ltd., China). The different sample
protein concentration was detected by NanoDrop 3000
Spectrophotometer (Thermo Fisher Scientific, Wilming-
ton, DE, USA) and adjusted to 0.1 mg/mL. ELISA detec-
tion followed [5] and standard curve as well as
regression equation were made using the manufacturer’s
standard samples with each sample analyzed with tripli-
cates. Each well’s OD value detection was noted using
microplate reader, set to 450 nm within 15 min. Using
the regression equation, the targeted protein concentra-
tions were calculated and each protein content was ana-
lyzed from each sample. Statistical analyses were
performed using SPSS 22.0 standard version (IBM,
Armonk, NY, USA). Student’s t-test was employed to
analyze differences of each protein expression level be-
tween the control (yak) and tested groups (cattleyak).
For all tests, statistical significance was taken asp < 0.05.
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