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Abstract

Background: Staphylococcus aureus (S. aureus), especially methicillin-resistant Staphylococcus aureus (MRSA), is
considered a common zoonotic pathogen, causing severe infections. The objective of this study was to investigate
the antimicrobial susceptibility, resistance genes and molecular epidemiology among MRSA and methicillin-
susceptible Staphylococcus aureus (MSSA) isolated from food animals in Sichuan Province, China.

Methods: This study was conducted on 236 S. aureus isolates. All isolates were subjected to antimicrobial
susceptibility testing by using a standard microbroth dilution method. The Polymerase Chain Reaction (PCR) was
performed to identify genes encoding the B-lactams resistance (blaZ, mecA), macrolides (ermA, ermB, erm() and
aminoglycosides (aacA-aphD). The molecular structures and genomic relatedness of MRSA isolates were determined
by staphylococcal chromosome cassette mec (SCCmec) typing and pulsed-field gel electrophoresis (PFGE),
respectively.

Results: Among 236 isolates, 24 (10.17 %) were recognized as MRSA. MRSA isolates showed different resistance
rates to 11 antimicrobials ranging from 33.33 to 100 %, while for MSSA isolates the rates varied from 8.02 to

91.51 %. Multi-drug resistance phenotype was found in all MRSA isolates. The ermC gene encoding macrolides-
lincosamides-streptogramin B was the most prevalent gene detected in 87.29 % of the S. aureus isolates, followed
by ermB (83.05 %), blaZ (63.98 %), aacA-aphD (44.07 %), ermA (11.44 %) and mecA (11.02 %) genes. The prevalence of
resistance genes in MRSA isolates was significantly higher than that of MSSA. Regarding the molecular morphology,
SCCmec Il (12/24, 50 %) was the most common SCCmec type. Furthermore, the PFGE typing showed that 24 MRSA
were divided into 15 cluster groups (A to O), the major pulsotype J encompassed 25 % of MRSA isolates.

Conclusions: The S. aureus isolates from food animals in Sichuan province of China have severe antimicrobials
resistance with various resistance genes, especially MRSA isolates. Additionally, the genetic pool of MRSA isolates is
diverse and complex, and further investigation is necessary.
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Background

Staphylococcus aureus (S. aureus) is one of the important
potential pathogens that can cause acute and chronic dis-
eases, such as mastitis, endocarditis, sepsis, bacteremia,
and toxic shock syndrome [1]. It has been reported that S.
aureus can cause mastitis in dairy cows, dermatitis and
sepsis in pigs, septic arthritis and subdermal abscesses in
poultry [2]. Antibiotic therapy plays an important role in
controlling infections caused by S. aureus. However, ex-
cessive use of antibiotics has resulted the development of
resistant S. aureus strains, especially methicillin-resistant
Staphylococcus aureus (MRSA), posing severe threat to
humans and animals health [3]. Methicillin-susceptible
Staphylococcus aureus (MSSA) generally evolves to MRSA
through the acquisition and insertion of staphylococcal
chromosome cassette mec elements (SCCmec), which can
transfer horizontally and carry resistance gene mecA that
codes penicillin-binding protein (PBP2a) with low affinity
for B-lactam antibiotics [4]. The first occurrence of MRSA
was reported in 1961, and the prevalence of MRSA
increased year by year. The outbreaks of MRSA has been
reported in many countries in the 1980s with high mor-
bidity and mortality [5, 6]. In the USA, MRSA infection
has been recognized in more than 320,000 cases and
caused more than 10,000 deaths in 2017 [7]. Meanwhile,
over 50 % of nosocomial S. aureus were associated with
MRSA in most of the Asian countries [8]. In China,
although the methicillin resistance rate had a trend of
reduction since 2005, the prevalence of MRSA was still
high [9, 10]. According to CHINET surveillance system in
2019, 31.4% of all clinical isolates had been recognized as
MRSA [10].

Apart from human studies, MRSA has also been
known to exist in animals for a long time. MRSA col-
onies and infections have been reported in domestic
livestock, companion animals and wildlife [11]. Pro-
longed misuse and abuse of antibiotics at farms largely
contributed to the wide distribution of MRSA among
food animals. It has been revealed that more than 40 %
of pigs, 20 % of cattle, and 20-90 % of turkey farms have
been affected by MRSA in Germany [12, 13], about 23—
32 % of pig farmers were colonized with MRSA in swine
farms in the Netherlands [14, 15]. In North America, the
prevalence of MRSA had been found to be about 20 %
[16]. Whereas in China, the prevalence of MRSA in dairy
cow, pigs, and chicken ranches were 6.6 %, 49 %, and
2.1-3.5%, respectively [17-19]. MRSA in food animals
may cause not only animal diseases but also a zoonotic
issue between animals and humans through direct con-
tact, environmental contamination, and contaminated
animal products [20, 21]. Overall, these findings sug-
gested that the resistance and epidemiological studies of
MRSA isolated from animals are necessary for both ani-
mal and human health.

Page 2 of 10

Sichuan province is one of the largest producers of
food animals, and areas for the production and use of
animal drugs. However, there are scant studies re-
garding the prevalence of MRSA in food animals in
Sichuan province. The purpose of the study was to
evaluate resistance phenotypes and genotypes of
MRSA and MSSA isolates among 236 S. aureus iso-
lates from livestock and poultry in Sichuan province.
Furthermore, the molecular types of MRSA isolates
were analyzed by staphylococcal chromosome cassette
mec (SCCmec) typing and pulsed-field gel electro-
phoresis (PFGE).

Results

Antimicrobial susceptibility testing

There were 236 S. aureus isolates isolated from sick chick-
ens (1 =97), ducks (n = 124), swine (7 = 11) and cows (1 =
4). 24/236 (10.17 %) were MRSA and 212/236 (89.83 %)
were MSSA. MRSA isolates showed different resistance
rates to 11 antimicrobials ranging from 33.33 to 100 %.
The serious resistance was not only to p-lactam antibi-
otics, but also to erythromycin and sulfafurazole (100 %
resistance rate each). MRSA isolates were significantly re-
sistant to all other antibiotics except for penicillin, tetra-
cycline, and ciprofloxacin (P < 0.05 or P <0.01) compared
with MSSA isolates (Fig. 1). Furthermore, 100 % of MRSA
isolates were multi-drug resistant whereas only 80.66 % of
MSSA showed multi-drug resistance (Fig. 2).

Detection of resistance genes in S. aureus isolates

A total of 236 S. aureus isolates were tested for six anti-
biotic resistance genes including the B-lactamases blaZ
gene (blaZ), methicillin resistance determinant (mecA),
erythromycin ribosome methylase genes (ermA, ermB,
ermC) and the bifunctional aminoglycoside N-
acetyltransferase and aminoglycoside phosphotransferase
(aacA-aphD) gene (Table 1). Among these genes, the
main genotypes were ermC, ermB and blaZ (detection
rate > 60 %). All MRSA isolates harboured mecA, ermB
and ermC genes, while blaZ, ermA and aacA-aphD were
detected in 87.50 %, 79.17% and 70.83 % of MRSA, re-
spectively. Subsequent statistical analysis showed that
prevalence of all resistance genes in MRSA isolates was
significantly higher than that of MSSA (P<0.05 or P<
0.01). As shown in Table 2, aacA-aphD-positive MRSA
isolates showed resistance to aminoglycosides (gentami-
cin, kanamycin, amikacin) suggesting that the phenotype
was in accordance with the genotype. In addition, all
MRSA isolates harbored four or more resistance genes
in this study. The most common multiple resistance
gene combination profile was blaZ/mecA/ermA/ermB/
ermC/aacA-aphD (54.17 %, 13/24) (Table 2)
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Fig. 1 Comparison of resistance of MRSA and MSSA isolates to antimicrobials. PEN, penicillin; AMP, ampicillin; OXA, oxacillin; GEN, gentamicin;
KAN, kanamycin; AMK, amikacin; TET, tetracycline; ERY, erythromycin; AZM, azithromycin; CIP, ciprofloxacin; SIZ, sulfafurazole. * indicates significant
difference (P<0.05), ** indicates extremely significant difference (P<0.01) of resistance rate between MRSA and MSSA

Molecular typing of MRSA isolates

The genetic spectrum of the MRSA isolates was varied
as revealed by the two typing approaches (Table 2). The
characterization of the SCCmec cassettes revealed four
different types in MRSA isolates: type I, III, IV, and V.
SCCmec 111 was identified as the main SCCmec type, ac-
counting for 50 % (12/24). Nevertheless, SCCmec 1, 1V,
V and unidentified types were detected in 20.83 % (5/

24), 8.33% (2/24), 12.50 % (3/24) and 8.33 % (2/24), re-
spectively. Non-typeable (NT) types were defined as iso-
lates showing unexpected fragments. PFGE of Smal-
digested genomic identified the presence of 15 pulso-
types designated as A to O. PFGE pulsotype ] was the
largest one, encompassing 25% (6/24) of isolates,
followed by pulsotypes E, H, L and N, each containing
two isolates. Each of the remaining pulsotypes (A, B, C,
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Table 1 Detection of resistance genes among S. aureus isolates

Resistance Percentage of positive isolates (%) (n)

genes MRSA (n1=24)  MSSA (1=212)  Total (n=236)
blaz 87.50 (21)* 61.32 (130) 63.98 (151)
mecA 100.00 (24)** 0.94 (2) 11.02 (26)
ermA 79.17 (19)** 3.77 (8) 1144 (27)
ermB 100.00 (24)* 81.13 (172) 83.05 (196)
ermC 100.00 (24)* 85.85 (182) 87.29 (206)
aacA-aphD 70.83 (17)** 41.04 (87) 44.07 (104)

MRSA methicillin-resistant Staphylococcus aureus, MSSA methicillin-susceptible
Staphylococcus aureus. *indicates significant difference (P < 0.05), **indicates
extremely significant difference (P < 0.01) between MRSA and MSSA

D, F, G, L, K, M, O) contained one isolate (Figs. 3 and 4).
As shown in Table 2, the isolates belonging to pulsotype
] were all identified as SCCmec 111, suggesting the results
of the two methods were consistent. But compared with
SCCmec typing, PFGE distinguished the MRSA strains
more specifically and detected more types.
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Discussion

Inappropriate empirical use of antibiotics is a major
cause of aggravation of drug resistance and poor curative
effect. The emergence of MRSA in food animals associ-
ates with the presence of MRSA in human consumption
foods. Further exploring the mechanisms of resistance
and molecular epidemiology of S. aureus from animals is
a key process in alleviating this crisis. In this study, anti-
microbial susceptibility, resistance genes, and molecular
epidemiology of the S. aureus isolated from food animals
in Sichuan Province, China, were characterized.

In order to do a thorough screening of MRSA, we
typed each isolate with both phenotype and genotype.
The prevalence of MRSA in this study was 10.17 %,
which is lower than the 14.2 % in Xinjiang [22], China,
the 23.3 % in Brazil [23], and the 13 % in Denmark [24],
whereas it is higher than that of the 6.8 % of a previous
study in Sichuan [25], the 6.6 % in other provinces of
China [17], the 9.2% in Italy [26], and the 9.8% in
Germany [27]. The difference of prevalence may be due
to different regions that were studied or the different

Table 2 The resistance genes profile and molecular typing of MRSA isolates in the study

Isolates Source Resistance profiles Resistance genes PFGE groups SCCmec types
XCCow3 Cattle PEN/AMP/OXA/ERY/AZM/SIZ blaZ/mecA/ermA/ermB/ermC A NT
BMD20  Duck PEN/AMP/OXA/ERY/SIZ blaZ/mecA/ermA/ermB/ermC E Il
BMD6E9  Duck PEN/AMP/OXA/ERY/AZM/SIZ blaZ/mecA/ermA/ermB/ermC E Il
BMD23  Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/AZN/SIZ blaz/mecA/ermA/ermB/ermC/aacA-aphD  F Il
BMD9 Duck PEN/AMP/OXA/ERY/AZM/SIZ blaz/mecA/ermA/ermB/ermC G M1l
BMD68  Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/AZM/SIZ blaZ/mecA/ermA/ermB/ermC/aacA-aphD | Il
BMD17  Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/SIZ blaz/mecA/ermA/ermB/ermC/aacA-aphD ) Il
BMD18  Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/AZM/SIZ blaZ/mecA/ermA/ermB/ermC/aacA-aphD ) M1l
BMD24  Duck PEN/AMP/OXA/GEN/KAN/ERY/AZM/SIZ blaZ/mecA/ermA/ermB/ermC/aacA-aphD ) Il
BMD30  Duck PEN/AMP/OXA/ERY/AZM/SIZ blaZ/mecA/ermA/ermB/ermC J Il
BMD41 Duck PEN/AMP/OXA/GEN/KAN/ERY/AZM/SIZ blaz/mecA/ermA/ermB/ermC/aacA-aphD ) Il
BMD74  Duck PEN/AMP/OXA/ERY/AZM/CIP/SIZ mecA/ermA/ermB/ermC J I
BMD42  Duck PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - blaZ/mecA/ermA/ermB/ermC/aacA-aphD B Il
YAD2 Duck PEN/AMP/OXA/GEN/KAN/ERY/AZM/SIZ blaz/mecA/ermA/ermB/ermC/aacA-aphD O \%
YAD3 Duck PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - blaZ/mecA/ermA/ermB/ermC/aacA-aphD D v
YAD4 Duck PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - blaz/mecA/ermA/ermB/ermC/aacA-aphD  C v
GLD51 Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/SIZ blaZ/mecA/ ermB/ermC/aacA-aphD L I
GLD54  Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/AZM/CIP/SIZ blaZ/mecA /ermB/ermC L I
GLD59  Duck PEN/AMP/OXA/GEN/KAN/AMK/ERY/CIP/SIZ blaz/mecA/ ermB/ermC/aacA-aphD H I
GLD83  Duck PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - mecA /ermB/ermC/aacA-aphD H I
GLD93  Duck PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - mecA/ ermB/ermC/aacA-aphD M I
YACT Chicken  PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - blaZ/mecA/ermA/ermB/ermC/aacA-aphD N %
YAC2 Chicken  PEN/AMP/OXA/GEN/KAN/AMK/TET/ERY/AZM/CIP/SIZ - blaZ/mecA/ermA/ermB/ermC/aacA-aphD N v
YAC4 Chicken  PEN/AMP/OXA/GEN/KAN/AMK/ERY/AZNV/SIZ blaZ/mecA/ermA/ermB/ermC/aacA-aphD K NT

PEN penicillin, AMP ampicillin, OXA oxacillin, GEN gentamicin, KAN kanamycin, AMK amikacin, TET tetracycline, ERY erythromycin, AZM azithromycin, CIP
ciprofloxacin, SIZ sulfafurazole, SCCmec staphylococcal chromosome cassette mec, PFGE pulsed-field gel electrophoresis, NT non-typeable
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lane was made by mistake); 1 and 14, same as the 1 and 15 in a

Fig. 3 The gels images of MRSA isolates by PFGE typing. a: 2, BMD18; 3, BMD24; 4, XCCow3; 5, YAD4; 6, YAD2; 7, GLD51; 8, GLD54; 9, YAC4; 10,
BMD41; 11, BMD74; 12, BMD30; 13, BMD17; 14, YAD3; 1 and 15, Xba-digested DNA of Salmonella Braenderup H9812 used as DNA molecular size
marker; b: 2, BMD42; 3, GLD59; 5, YACT; 6, BMD68; 7, BMD23; 8, GLD83; 9, YAC2; 10, GLD93; 11, BMDY; 12, BMD20; 13, BMD69; 4, error (The forth
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species and physical status (healthy or sick) of the ani-
mals. Except for oxacillin, S. aureus isolates in this study
showed high resistance to the antibiotics tested. The
high resistance rates imply the misuse of antimicrobials
in farms. However, oxacillin and amikacin, which were
less used in veterinary medicine, still showed drug resist-
ance, which indicates the potential of cross-resistance.
Similar to the findings of Meng et al. [22] and Zayda
et al. [28], MRSA isolates were found to be resistant to a
broader spectrum of antimicrobials than MSSA isolates
in the current study. Resistance rates of the MRSA iso-
lates were significantly higher to gentamicin, kanamycin,
amikacin, erythromycin, azithromycin and sulfafurazole
compared with those of MSSA isolates, attributing to
the existence of SCCmec in MRSA strains so that MRSA
anchored more resistance genes than MSSA [29, 30].
However, there were no significant differences in the re-
sistance rates of penicillin, tetracycline and ciprofloxacin
between MRSA and MSSA (P > 0.05). The penicillin re-
sistance rate was extremely high in both MSSA and
MRSA isolates. The long-term use of antimicrobials is
one of main driving force towards antimicrobial resist-
ance. The reason behind the stable resistance rate maybe
because penicillin, being a commonly used drug, was
widely preferred for the treatment of Staphylococcal in-
fections for a long time and established considerably
stable resistance in S. aureus. Hence, the majority of S.
aureus (either MRSA or MSSA) harbour the penicillin-
ase encoded by blaZ that can hydrolyse penicillin.
Multi-drug resistance (MDR) was defined as resistance

to three or more families of antibiotics. Further compari-
son of MDR in MRSA and MSSA isolates, MDR was
identified in all MRSA isolates and the proportion of
multi-drug resistant strains in MRSA was almost three
times higher than that of MSSA, which was in line with
a previous study [31]. All these findings indicate the se-
verity of antimicrobial resistance of MRSA isolates,
which may be attributed to the increase in affinity of
MRSA in acquiring mobile genetic elements (MGEs),
such as transposons or conjugative plasmids carrying
antimicrobial resistance genes [28, 30].

In our study, the majority of isolates possessed 1 to 6
resistance genes. The ermC gene was the most common
one, which was detected in 87.29 % of S. aureus isolates.
This finding is consistent with a previous report in
China [32], but is different from the another study [33].
The ermB and blaZ genes were detected in 83.05 and
63.98 % of S. aureus isolates, respectively. These results
indicate that the majority of S. aureus have the ability to
acquire the three detected genes. In accord with previ-
ous studies [22, 32], a higher proportion of six genes en-
coding antibiotic-resistance were detected in MRSA
isolates than in MSSA isolates. The prevalence of ermA
and aacA-aphD in MRSA was significantly higher than
that in MSSA (P <0.01). Nearly 1% (0.94 %) of isolates
harboured the mecA gene but showed sensitivity to oxa-
cillin and cefoxitin. This cryptic antibiotic-resistant S.
aureus has been described in a Taiwanese study involv-
ing 91 S. aureus isolates with MIC 2.0 pug/ml, 57.1 % of
which were mecA positive. The study also showed that
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Fig. 4 The clusters diagram of 24 MRSA isolates generated by PFGE typing. XCCow3, BMDA42, YAD4, YAD3, BMD20, BMD69, BMD23, BMD9, GLD59,
GLD83, BMD68, BMD74, BMD17, BMD30, BMD18, BMD24, BMD41, YAC4, GLD51, GLD54, GLD93, YACT, YAC2, YAD2: strain numbers
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3.3% of 180 S. aureus having 1 pg/ml MIC against oxa-
cillin were mecA positive isolates [34]. Numerous genes
may influence methicillin resistance phenotypes, for
example the reason mecA-positive S. aureus showing
sensitivity to oxacillin and cefoxitin may be because [3-
lactams regulatory genes affect the expression of resist-
ance [35]. Strains with functional mec regulatory genes,
such as mecl and mecR1 may produce little or no PBP2a,
or the expressed protein may be inactivated, leading to a
partially or completely suppressed expression of resist-
ance [36, 37]. The ermB and ermC genes were detected
in all MRSA isolates, and the gene blaZ was detected in
all MRSA except three isolates, while they were only
81.13%, 85.85% and 61.32% in MSSA, respectively.

Moreover, MRSA carried more abundant multidrug re-
sistance genes compared with those of MSSA. Most of
MSSA isolates carried two to four types, while all MRSA
carried at least four resistance genes. The broader resist-
ance gene spectrum of MRSA was consistent with its
higher drug resistance compared with that of MSSA iso-
lates, suggesting that the phenotype mostly reflects the
resistance genotype.

In order to identify the genetic links of strains and to
control MRSA infections effectively, it is important to
master molecular characteristics. Several molecular typ-
ing methods for exploring molecular features of MRSA,
such as PFGE, SCCmec, the staphylococcal protein A
typing (spa), multilocus sequence typing (MLST), and so
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on are available [38—40]. Each of these techniques is
used for specific purposes. SCCmec is used to recognize
the structure and diversity of staphylococcal chromo-
some cassettes and can be classified as SCCmec type I to
SCCmec XI [41]. MRSA strains may have different
accessory genomes and carry different SCCmec elements
[42]. Traditionally, healthcare-associated MRSA (HA-
MRSA) carries SCCmec types I-III mainly, while
community-associated MRSA (CA-MRSA) or livestock-
associated MRSA (LA-MRSA) tend to harbor smaller
SCCmec elements such as SCCmec type IV or type V
[43, 44]. In the current study, MRSA isolates from the
same areas and source showed the same SCCmec type,
which may imply that the MRSA genotypes can be dif-
ferent in different regions. Most of the isolated MRSA
were found to be SCCmec type III (12 isolates, 50 %), in
accordance with the conclusion of a previous study that
the predominant SCCmec type in Asia is type III [29].
However, the isolates in the current study were collected
from animals, which may be a case of zoonosis. In
addition, we found that the prevalence of combinatorial
genotype blaZ/mecA/ermA/ermB/ermC/aacA-aphD was
significantly higher in SCCmec type III, IV, and V,
whereas this genotype was not detected in SCCmec type
I. This finding was in line with the conclusion of a previ-
ous study that SCCmec type I carried fewer resistance
genes [29]. PFGE, including enzyme restriction of bac-
terial DNA, separation of the restricted DNA bands and
clonal assessment of bacteria, is a very sensitive ap-
proach for bacterial typing. Fifteen different clusters
were obtained by PFGE typing in this study. Overall, no
specific relationships had been identified between mo-
lecular features and origins. Genetic diversity was noted
among animal species and regions, suggesting the com-
plexity of genetic background of the MRSA isolates. All
six MRSA isolates of cluster ] were attributed to SCCmec
type III. However, some MRSA isolates, such as YAD2,
YAD3 and YAD4, from the same origins and with same
resistance genes, were recognized as the same SCCmec
type, while these were further discriminated into mul-
tiple types by PFGE. It has been revealed that PFGE is
considered the “gold standard” for bacterial typing [45].
Results of our current study also indicated that the sen-
sitivity of PFGE was higher than that of SCCmec typing
method.

Conclusions

These findings revealed that the prevalence of antibiotic
resistance of S. aureus from food animals is severe in Si-
chuan province, China, especially the MRSA isolates.
MRSA isolates possess a broader spectrum of resistance
genes than MSSA does. Additionally, the results of strain
characterization suggest that the MRSA isolates from
different origins and regions had genetic diversity and
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complex genetic background. The multiple resistance
gene combination of blaZ/mecA/ermA/ermB/ermC/
aacA-aphD was the most common combination profile
in this study. The severity of drug resistance of these S.
aureus isolates reflects the abuse of antibiotics in food
animals. Therefore, it is of great significance to use anti-
biotics with caution and to strengthen the surveillance
of MRSA at farms.

Methods

S. aureus isolates and identification of MRSA

A total of 236 S. aureus isolates were isolated from 13
locations of Sichuan Province, China between 2016 and
2019 (Fig. 5). All isolates were obtained from infected
food animals including chickens (=97 isolates from
1246 samples), ducks (n =124 isolates from 2155 sam-
ples), swine (n = 11 isolates from 148 samples) and cows
(n =4 isolates from 35 samples), sampling from articular
exudates, livers, lungs and spleens of chickens and ducks
with arthritis, milk of cows with mastitis, and skin swabs
of pigs with skin infections and stored in an ice box after
sampling for transportation. Samples were incubated at
37°C in broth containing 1% tryptone, 7.5% sodium
chloride, 1% mannitol, and 0.25 % yeast extract for 22—
24 h. S. aureus recognition was based on the growth sta-
tus on Mannitol salt agar and CHROMagar™ Staph aur-
eus medium, Gram-staining and standard biochemical
tests. Only one isolate per animal sample was chosen for
further analysis. The presence of MRSA isolates was
confirmed by phenotypic identification methods screen-
ing for oxacillin and cefoxitin resistance [46], followed
by polymerase chain reaction for detection of mecA [47].
The isolates were stored in -80 °C freezer until analysis.

Antimicrobial susceptibility testing of MRSA and MSSA
Antimicrobial MICs for MRSA and MSSA isolates were
determined by broth microdilution and interpreted ac-
cording to the CLSI guideline [46]. The antimicrobial
agents included: penicillin G (PEN), ampicillin (AMP),
oxacillin (OXA), gentamicin (GEN), kanamycin (KAN),
amikacin (AMK), tetracycline (TET), erythromycin
(ERY), azithromycin (AZM), ciprofloxacin (CIP) and
sulfafurazole (SIZ). Escherichia coli ATCC 25922 and
Staphylococcus aureus ATCC 25923 (BeNa Culture
Collection, Beijing) were used as control strains. Multi-
drug resistance (MDR) was defined as resistance to 3 or
more families of antibiotics.

PCR amplification and sequencing of resistance genes of
MRSA and MSSA

PCR was used to amplify the P-lactams (blaZ, mecA),
macrolides (ermA, ermB, ermC) and aminoglycosides
(aacA-aphD) antibiotic resistance genes. Six pairs of
primers involved in the PCR reaction (Table 3), the
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Fig. 5 Map of Sichuan showing location of the thirteen areas where S. aureusisolates were collected

mecA primers were cited from a previous study [47], the
primers blaZ, ermA, ermB, ermC and aacA-aphD were
designed by software Primer5. E.Z.N.A.™ Bacterial DNA
Kit and Plasmid Mini Kit I (OMEGA) were used to ex-
tract bacterial DNA according to the manufacturer’s in-
struction. PCR amplification reactions were conducted
in a total volume of 25puL with 1uL of the primer at con-
centration of 10pmol/L, 12.5uL of 2xTaq PCR Master-
Mix (TaKaRa, Dalian Co. Ltd), 1uL DNA template, and

9.5uL sterile deionized water. PCR amplification was car-
ried out as follows: 5 min initial denaturation at 95°C, 30
cycles of denaturation at 95°C for 30 s, annealing for
45 s (see annealing temperature for each gene in
Table 3), extension at 72°C for 45 s and final extension
at 72°C for 15 min. PCR products were analyzed by elec-
trophoresis on 2 % agarose gel containing 0.5 pg/ml of
etidium bromide in 0.5X TBE buffer, and the sequencing
was determined by a commercial company (Qingke

Table 3 The primers used for PCR for resistance genes in S. aureus isolates

Primer name Sequence Annealing temperature(C) Size References
(5-3) (bp)

blaz -F AACACCTGCTGCTTTCGGTA 55.5 314 This study

blaz- R CACTCTTGGCGGTTTCACTT

mecA-F CTTTGCTAGAGTAGCACTCG 555 533 Herold B.C, et al.

mecA-R GCTAGCCATTCCTTTATCTTG

ermA-F CTACACTTGGCTTAGGATGA 56.5 311 This study

ermA-R AGTGACTAAAGAAGCGGTAA

ermB-F TAACGACGAAACTGGCTAA 56.0 414 This study

ermB-R CTGTGGTATGGCGGGTAA

ermC-F GAGGCTCATAGACGAAGAAA 545 375 This study

ermC-R AAGTTCCCAAATTCGAGTAA

aacA-aphD-F ATTGAAGATTTGCCAGAACA 56.5 178 This study

aacA-aphD-R CACTATCATAACCACTACCG

F forward primer, R reverse primer
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Biotechnology, Chengdu). The DNA sequences were an-
alyzed by the BLAST program, available at the NCBI
homepage (http://www.ncbi.nlm.nih.gov/BLAST/).

Molecular typing of MRSA isolates

SCCmec typing for the tested MRSA isolates was deter-
mined by the multiplex PCR method described by else-
where [48]. All MRSA were analyzed by PFGE for their
genetic relatedness. PFGE analysis of MRSA isolates
tested in the study was as follows: the culture of strains,
preparation of agarose gel, DNA digestion by Smal and
electrophoresis, all of which were practiced according to
the protocol described by Bannerman et al. [49]. The
PFGE banding patterns were interpreted with BioNu-
merics version 6.0 (Applied Math) by using UPGMA al-
gorithm [50].

Statistical analysis

Statistical significance for the comparison of resistance
rate was determined using X*- test by software SAS9.0.
P < 0.05 was considered to be statistically significant.
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