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Abstract

Background: Real time RT-PCR (qPCR) is a useful and powerful tool for quantitative measurement of gene
expression. The proper choice of internal standards such as reference genes is crucial for correct data evaluation. In
female dogs, as in other species, the reproductive tract is continuously undergoing hormonal and cycle stage-
dependent morphological changes, which are associated with altered gene expression. However, there have been
few attempts published so far targeted to the dog aimed at determining optimal reference genes for the
reproductive organs. Most of these approaches relied on genes previously described in other species. Large-scale
transcriptome-based experiments are promising tools for defining potential candidate reference genes, but were
never considered in this context in canine research.

Results: Here, using available microarray and RNA-seq datasets derived from reproductive organs (corpus luteum,
placenta, healthy and diseased uteri) of dogs, we have performed multistudy analysis to identify the most stably
expressed genes for expression studies, in each tissue separately and collectively for different tissues. The stability of
newly identified reference genes (EIF4H, KDELR2, KDM4A and PTK2) has been determined and ranked relative to
previously used reference genes, i.e, GAPDH, B-actin and cyclophillin A/PPIA, using RefFinder and NormFinder
algorithms. Finally, expression of selected target genes (luteal IL-71b and MHCII, placental COX2 and VEGFA, and
uterine IGF2 and LHR) was re-evaluated and normalized. All proposed candidate reference genes were more stable,
ranked higher and introduced less variation than previously used genes.

Conclusions: Based on our analyses, we recommend applying KDM4A and PTK2 for normalization of gene
expression in the canine CL and placenta. The inclusion of a third reference gene, EIF4H, is suggested for healthy
uteri. With this, the interpretation of gPCR data will be more reliable, allowing better understanding of canine
reproductive physiology.
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Background

Among the final steps of large-scale expression experi-
ments, like microarray or RNA-seq (Next Generation Se-
quencing, NGS), are analysis and validation of data [1, 2].
Therefore, expression of chosen candidate genes of inter-
est is investigated by real-time RT-PCR (qPCR) with
higher numbers of biological replicates. While qPCR has
become a routine and well-established method for gene
expression analysis, data normalization still remains prob-
lematic and is subject to frequent criticism [3-5]. The
most often applied normalization strategy is the use of in-
ternal controls, i.e., reference genes [6]. These genes are
supposed to be stably expressed in the examined tissues
and among experimental groups, and, if properly vali-
dated, allow controlling for errors that might be intro-
duced during the procedure. Furthermore, it has to be
emphasized that proper normalization is of utmost im-
portance since it also allows overcoming of pitfalls related
to sample preparation and processing. These include, i.a.,
RNA extraction technique, sample quality, applied DNase
treatment and RT method. Thus, proper validation of ref-
erence genes is crucial for generating reliable data. Poor
validation of reference genes can lead to overlooking of
discrete changes in gene expression, thereby generating
false data, or can result in misunderstanding of underlying
biological processes [3].

For validation of transcriptome data derived from
microarray or RNA-seq experiments, it is a good prac-
tice to use as reference genes the most stably expressed
genes, according to the data set generated. Notably, tran-
scriptome results provide information not only about
differentially expressed genes (DEG), which are typically
of primary research interest, but also about stably-
expressed genes. The latter are often underrated and
omitted by researchers, although they may include
promising potential reference genes [7].

Regarding the canine species (Canis lupus familiaris),
available reference genes were adapted from other species
[8—10]. Although these genes are not assumed to be “per-
fect” for normalization, they are constantly used for qPCR
data evaluation, and include genes preferably selected
from different functional families (e.g., glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), f-actin, cyclophilin
A (PPIA), 18S rRNA, or succinate dehydrogenase complex
flavoprotein subunit A (SDHA)). Moreover, based on our
literature search [8, 9], all previous attempts to evaluate
potential reference genes in the dog, aimed at screening
through various samples such as bone marrow, duode-
num, heart, kidney, liver, lung or lymph nodes, were based
on groups of animals that were heterologous with respect
to breed, sex, age, body weight and health status. Finally,
not surprisingly, the conclusion was drawn [8, 9, 11] that
none of the evaluated genes would be universally suitable
for normalization of gene expression in all canine tissues.
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These results led us to conclude that perhaps reliable ref-
erence genes should be validated first for particular organs
or systems, such as the reproductive system which is our
particular research interest.

Throughout the reproductive cycle, the female tract is
continuously undergoing hormonal and morphological
changes, associated with alternations of gene expression
profiles that are tissue- and cycle stage-dependent. This
is also characteristic of the domestic dog, which relative
to other domestic animal species exhibits several
species-specific features in its reproductive physiology
(reviewed in [12—15]). Thus, dogs are monoestric, poly-
tocous and aseasonal breeders. The reproductive cycle of
a dog is comprised of four phases: proestrus, estrus, di-
estrus (i.e., the luteal phase) and an obligatory sexual in-
activity phase, anestrus. Because the length of each
phase is highly variable, the whole cycle can last from 5
up to 13 months [12, 13]. It presents unique hormonal
and regulatory features reflected in differential gene ex-
pression among and within the particular reproductive
organs. Due to this unique reproductive physiology,
translational research is frequently limited. In more de-
tail, proestrus is associated with strongly increasing es-
trogen (E2) levels secreted by growing follicles with a
preovulatory peak as high as 120-140 pg/ml [12, 13, 16].
Towards the end of estrus, concentrations of E2 grad-
ually decrease together with simultaneously increasing
progesterone (P4) secreted from preovulatory luteinizing
follicles [12, 15]. This triggers the final LH surge and
leads to ovulation [12]. In the place of a ruptured follicle,
corpora lutea (CLs) are formed and the luteal phase starts.
It needs to be emphasized that the dog is the only domes-
tic animal species that does not produce steroids in the
placenta [17, 18]. In this context, CLs are the only pro-
viders of P4 in the dog, thus having a paramount role in
the maintenance of canine pregnancy [15, 19]. Further-
more, dogs lack a luteolytic signal in the absence of preg-
nancy, resulting in a prolonged luteal phase in non-
pregnant animals referred to as pseudopregnancy [15, 20].
Consequently, secretion of P4 in non-pregnant bitches
lasts for a similar time as during pregnancy (around 60
days) or can even be prolonged beyond this time [13, 15].
In pregnant bitches luteal function is actively terminated
shortly before parturition, at around day 60 of pregnancy
[13, 15]. The lifespan of the CL is terminated by utero-
placental prostaglandin F2a (PGF2a) in an acute process
of prepartum luteolysis [17, 19, 21, 22]. The production of
PGF2a and initiation of the prepartum luteolytic cascade
are regulated at the level of the placental feto-maternal
interface and are mediated by local, i.e., placental, avail-
ability of P4 [22, 23]. Interestingly, preterm luteolysis and,
hence, abortion, can be induced by treatment with an
antigestagen, e.g., aglepristone which blocks the P4 recep-
tor (PGR), thereby initiating the placental luteolytic
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cascade [21, 22]. It has to be emphasized that within the
canine placenta PGR are expressed only in its maternal
part [22, 24], i.e., stroma-derived decidual cells, whereas
the synthesis of PGF2a occurs in trophoblast, i.e., in the
placenta fetalis [22]. A functional interplay between these
two compartments of the placenta, the placenta materna
and placenta fetalis, is thus responsible for initiation of the
luteolytic cascade and thereby for maintenance of preg-
nancy, and initiation of parturition in the dog.

Altogether, there is a highly complex series of bio-
chemical and morphological changes occurring in the
reproductive tract throughout the cycle of the dog.
Moreover, the distinctive physiological features of canine
reproduction, such as prolonged steroidogenic activity of
CLs and prolonged exposure of the endometrium to P4
in non-pregnant bitches, or lack of placental steroido-
genesis, all indicate that application of reference genes
from other species may not be suitable.

To our knowledge, there has been no previous attempt
to perform multistudy analysis of available datasets from
microarray and RNA-seq experiments derived from the
canine species, in order to find novel, stably-expressed ref-
erence genes for normalization of gene expression studies
in the canine reproductive organs. Therefore, here, by
using data sets generated in our own laboratory and those
from laboratories of other researchers, derived from luteal,
placental and uterine (pregnant, non-pregnant, healthy
and diseased) tissues, we attempted to search for, and val-
idate, new reliable reference genes for future research.

Results

Tissue-specific candidates for reference genes

Applying the criteria described in Methods, we identified
1649 potential candidates for reference genes for placenta
(Fig. 1a), 430 for CL (Fig. 1b) and 18 for all uterine sam-
ples (Fig. 1c). The summary and lists of all identified genes
in a particular dataset are also shown in Supplementary
Material 2. When cumulatively compared, no gene was
found to be common for all three tissue types examined
under all conditions, i.e., with regard to treatments, cycle/
pregnancy stage and health status (Fig. 1d). This made us
conclude that high variations could be introduced by
using uterine samples derived from animals with patho-
logical conditions, ie., pyometra, mucometra or CEH.
Therefore, the analysis for uterus was repeated, excluding
pathological samples, but keeping the controls from each
uterine dataset. Subsequent analysis with only “healthy
uterine samples” identified 1994 genes with potentially
high stability in the uterus (Fig. 1c). Finally, these were
compared with those genes identified in all placenta and
CL samples (including antigestagen- and firocoxib- treated
ones), and 36 genes were found to be common for all tis-
sues (Fig. 1d). Out of these, four genes from different
functional categories were selected for further validation
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and included: eukaryotic translation initiation factor 4H
(EIF4H), endoplasmic reticulum lumen protein-retaining
receptor 2 (KDELR2), lysine-specific demethylase 4A
(KDM#4A) and protein tyrosine kinase 2 (PTK2).

Reference gene expression and stability

Expression of the four (4) selected candidate genes as well
as three (3) previously used reference genes was assessed by
TagMan RT-qPCR in 55 canine samples (uterine, luteal
and placental; details in Methods). Next, this group of 7
genes was ranked according to their stability by RefFinder
(Fig. 2a). KDM4A, EIF4H and PTK2 were placed in com-
prehensive ranking as the most stable genes (Fig. 2a). Fur-
ther, NormFinder recognized lower intragroup variations,
i.e., those within a particular tissue (group identifier in Fig.
2b), when compared to previously used genes, and found
KDM4A to be the most stable gene (Fig. 2b). PTK2 to-
gether with KDM4A was also identified as the best combin-
ation of genes by this software (Fig. 2b). Finally, pairwise
variation analysis with GeNorm showed that, when follow-
ing the recommended criteria for V,, , 1 of 0.15 as the cut-
off [25], two genes appear to be enough for normalization
of gene expression data in CL and placenta, whereas 3
genes are sufficient for the uterus (Fig. 2c).

Comparison of representative target gene expression
normalized with previously used and newly determined
reference genes

Expression of several genes known to vary from previous
studies was evaluated and normalized using either three
previous reference genes or the three best reference
genes indicated from the current analysis (i.e., KDM4A,
EIF4H and PTK2). Following the V,,,,; analysis, the
KDM4A and PTK2 pair was used for evaluating gene ex-
pression in the CL and placenta, whereas all three genes
were used for the uterus. The results are presented in
Fig. 3. Thus, similar expression patterns were observed
for both groups of normalizers. This was also in accord-
ance with previously reported findings [22, 26-28]. Im-
portantly, however, the application of new reference
genes resulted in smaller intragroup variation and, there-
fore, lower P-values were observed, e.g., for luteal ex-
pression of IL-1b and MHCII, or uterine expression of
IGF2 and LHR.

Discussion

gqPCR is considered to be the most accurate and reliable
method for studying gene expression. For proper evalu-
ation of data, reliable reference genes need to be used for
normalization of gene expression. Their levels should be
stable and not influenced by experimental conditions. This
is, however, frequently undervalued and/or overlooked. It
becomes even more challenging when morphologically
complex organ systems, like the reproductive tract with its
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A) Placenta

Nowak et al.

B) Corpus luteum

Zatta et al.

C) Uterus

all uterine samples

D) Common genes

including all uterine samples

genes chosen for further validation

healthy uterine samples

including only “healthy” uterine samples

ABCF3 + EIF4H* KDELR2* « PTK2*
ACTR8 + EPC2 KDM4A* RINT1
ANXA7 + FBX028 KDM6A SETD3
CAPZB + FRMDS8 NUB1 TIAL1
CHD8 -+ HDHD2 PDHA1 « TRIP12
COPB2 -« HECTD3 PGRMC2 + USP7
CPSF7 HNRNPU PHF20 vCcP
DHX40 + IMMT PLAA VPS29
DNM1L « IPO13 PPP1CC YTHDF2

Fig. 1 Stably-expressed genes in canine placenta (a), corpus luteum (b) and uterus (c) including different treatments, cycle/pregnancy stages
and/or health and treatment status, filtered by the following criteria: the coefficient of variation (CV) < 0.2; the base mean value of number of
transcripts > 500. ¢ Analysis of uterine genes was performed with (i) all uterine samples and (i) without diseased tissues (healthy uterine samples).
d Common stable genes identified in data sets from all examined tissues. No gene was found when all uterine samples were included. However,
when excluding pathological uterine samples, 36 potential candidates were identified common for all remaining samples. Asterisk (*) indicates

Tavares Pereira et al.

Legend:
Voorwald et al.
([ Hagmanetal.

[:] Graubner et al.
() Bukowska et al.

Legend:
. placenta
OecL

D uterus

continuous hormonal changes, are considered. Moreover,
pathological conditions can influence gene expression. De-
fining potential candidates for reference genes should not
be based only on information available from other species.
Gene expression profiling by, e.g., microarray or RNA-seq,

besides providing biologically important information
about differential gene expression, is also a way to provide
additional knowledge about highly stable genes. Here, we
performed a multistudy analysis of transcriptome data
from various experimental setups, including pregnancy
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A) RefFinder

Ranking of proposed and previously used reference genes in placental, luteal and “healthy” uterine samples

Ranking Order (Better-Good-Average)

Method 1 2 3 4 5 6 7
Delta CT KDM4A EIF4H PTK2 KDELR2 GAPDH B-actin Cyclophilin A/PPIA
BestKeeper KDELR2 KDM4A GAPDH EIF4H Cyclophilin A/PPIA PTK2 B-actin
Normfinder KDM4A EIF4H PTK2 KDELR2 GAPDH B-actin Cyclophilin A/PPIA
Genorm KDM4A|PTK2 EIF4H KDELR2 GAPDH B-actin Cyclophilin A/PPIA
Recommended KDM4A EIF4H PTK2 KDELR2 GAPDH B-actin Cyclophilin A/PPIA
comprehensive ranking
B) NormFinder
Intragroup variation Best gene KDM4A
Group identifier CL placenta uterus Stability value 0.007
KDELR2 0.000 0.001 0.000
KDM4A 0.000  0.000 0.000 Best combination of two genes KDM4A and PTK2
PTK2 0.000 0.000 0.000 Stability value for best combination of two genes 0.005
EIF4H 0.000 0.000 0.000
GAPDH 0.001 0.000 0.001
Cyclophilin A/PPIA 0.001 0.001 0.003
B-actin 0.000 0.002 0.002
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C) Determination of the optimal number of control genes for normalization in different
canine reproductive tissues
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Fig. 2 Ranking of proposed and commonly (previously) used reference genes in placental, luteal and healthy uterine samples, generated by
RefFinder (a) and NormFinder (b) applications. The NormFinder tool was used to calculate intragroup (group refers to a particular tissue: 1-CL, 2-
placenta, 3-uterus) stability values. Both softwares ranked KDM4A, EIF4H and PTK2 as the most stably expressed genes. The comparison was made
including previously used reference genes (GAPDH, (-actin, cyclophilin A/PPIA) (c) Determination of the optimal number of control genes for
normalization in canine CL, placenta and uterus. Pairwise variation (V. + 1) analysis was done to determine the number of control genes required
for accurate normalization. A cut-off value 0.15 was applied (Vandesompele et al. 2002). Pairwise variation analysis shows that V2/3 values in
canine CL and placenta, and V3/4 in the uterus, were lower than 0.15, indicating that two reference genes are suitable for gene normalization in
CL and placenta, but 3 genes should be included for uterus

and pathological endometrial conditions. Additionally, revealed 1649, 18 and 430 potentially stably-expressed
datasets from antigestagen- and firocoxib-treated dogs  genes for placenta, uterus and CL, respectively. These ana-
were involved. To our knowledge, such an approach has lyses included all samples, i.e., treated and untreated (pla-
never previously been applied for the dog. Our analysis centa and CL), or healthy and diseased (uteri). However,
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placental COX2
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— * P<0.05
30 o 15
20 I 10
10 I 5
0 L_mm s .
Previous ref. gen. Proposed ref. gen.
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Fig. 3 Validation of reference genes in the expression of exemplary target genes known to vary greatly in target tissues: (@) Placental expression
of cyclooxygenase-2 (COX2/PTGS2) and vascular endothelial growth factor A (VEGFA) during mid-gestation, antigestagen-induced and normal
luteolysis; (b) Luteal expression of interleukin 1b (/L-716) and major histocompatibility complex class Il molecules (MHCIl) during mid-gestation and
normal prepartum luteolysis; (c) uterine expression of insulin-like growth factor 2 (/GF2) and luteinizing hormone receptor (LHR) in non-pregnant
uterus (Embryo-) and during early pregnancy (Embryo+). All experiments were normalized with commonly (previously) used reference genes
(Previous ref. gen.. GAPDH, B-actin, cyclophilin A/PPIA) or proposed reference genes (Proposed ref. gen.. KDM4A, EIF4H and PTK2), ranked as the
best normalizers by ReffFinder and NormFinder applications, as determined by real-time (TagMan) gPCR. Data are presented as Xg + geometric
standard deviation (SD). Normalization with routinely used genes resulted in higher intragroup variation when compared to results normalized

placental VEGFA
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no single gene could be identified for universal use in all
tissue types tested. Thus, to decrease intragroup variability
in the uterine samples, in the next analysis uterine patho-
logical samples were excluded. Following this, 1994 poten-
tially stable genes were found in all remaining (ie.,
healthy) uterine samples and were used in comparison
with the remaining tissues. Finally, 36 genes were found to
be commonly present in datasets from each tissue type,
including CL, placenta and non-pathological uterus. They
comprised a group of potential universal references for
normalization of gene expression in healthy canine repro-
ductive tissues. From these 36 genes, we chose 4 candi-
dates representing different functional groups, ie.,
transcription- and translation-associated factors (KDM4A,
EIF4H), intracellular protein transport (KDELR2) or

cytoskeleton organization and focal adhesion (PTK2).
Their stability was tested in 55 available canine samples of
placenta, CL and uterus. All selected genes appeared to be
more stable than the reference genes used so far. Finally,
the three best candidates, i.e., KDM4A, EIF4H, PTK2, were
selected. Interestingly, while KDM4A and PTK2 have ap-
parently never been considered for gene expression
normalization, the consistent expression of EIF4H has
been demonstrated in human cancer cells [29], where it
was proposed as a reliable control gene. It appears, thus,
that EIF4H might be a good candidate universal
normalizer, however, its application in other species and
tissues should be verified.

The usefulness and reliability of the three newly iden-
tified candidate genes were further evaluated by applying



Nowak et al. BMC Veterinary Research (2020) 16:440

them to normalize the expression of target genes that
were investigated in previous studies [22, 26-28]. The
expression of these target genes, which included placen-
tal COX2/PTGS2 and VEGFA, luteal IL-1b and MHCII,
and uterine IGF2 and LHR, was normalized and com-
pared with two sets of reference genes: those that were
formerly used and our newly proposed genes. Consider-
ing that generally less variation was observed within and
among the groups, together with lower P-values indicat-
ing a higher level of significance, we concluded that
more accurate findings from expression experiments are
possible by applying more stably expressed, newly identi-
fied reference genes as internal controls.

Regrettably, as mentioned before, no gene was found to
be universal for all tested tissues, including pathological
uterine samples. Still, however, our study provides a list of
18 potential candidate genes, which, after verification, could
be applied as references for studies performed exclusively
on the uterus, including healthy and diseased tissue. Out of
these 18 genes we propose several candidates belonging to
different functional groups and associated with diverse cel-
lular components that could be subjected to further valid-
ation. They include: carboxypeptidase Al (CPAI), an
enzyme involved in proteolysis; damage specific DNA bind-
ing protein 1 (DDBI), a ubiquitous protein participating in
a response to DNA damage and repair; and microtubule
crosslinking factor 1 (MTCLI), a molecule regulating
microtubule activity and intracellular transport. Finally, a
gene encoding for ribosomal protein L32 (RPL32), also
called EF-hand calcium binding domain 12 was found
among 18 stably expressed genes in the canine uterus. It
needs to be mentioned that this molecule, a component of
the large ribosomal 60S unit, has been considered before as
a reference gene for data normalization. Its high stability
has been discussed for application to various tissues in, e.g.,
pig [30, 31], rat [32], human [33] and chicken [34, 35], and
even in several invertebrates [36]. Notably, it was found to
be stably expressed in several canine healthy and diseased,
i.e., neoplastic, tissues [9, 37, 38], and was therefore pro-
posed as a good reference gene. As for our analysis, its ex-
pression was not considered in the present study as it did
not meet the inclusion criteria (CV >0.2) for CL and pla-
centa. Nevertheless, in line with the above cited studies,
RPL32 definitely deserves more attention and should be
considered also for uterine tissue.

Conclusions

In conclusion, with our tissue-targeted analysis, we were
able to provide comprehensive lists of potentially stably-
expressed genes for target gene expression analyses in
reproductive tissues of the female dog. We tested new
reference genes, which with exception of EIF4H, have
never previously been considered for application in ca-
nine reproduction studies. With this, new tools have
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been provided for gene expression quantification studies.
Interestingly, when including pathological uterine sam-
ples, no unique gene was found for all tissues and condi-
tions evaluated herein. However, several reference genes
that are highly reliable for normalization of data from ca-
nine CL, placenta and healthy uterus were found. Further,
when analyzing only uterine samples, we have identified
18 potentially stable genes, which could become useful for
studies involving pathological conditions such as pyome-
tra. Of these, RPL32 in particular deserves more attention
in future, as its stability was previously confirmed in mul-
tiple tissues and species, including the dog. Apart from
RPL32, we propose several other candidate genes that
should be validated in the future and considered for dis-
eased uterine tissues (e.g., CPAI, DDBI MTCLI).

Based on our results, we propose to use KDM4A,
PTK2 for normalization of data obtained from canine
CL and placenta. As for the healthy uterus, the inclusion
of a third reference gene, EIF4H, is suggested. By apply-
ing the proposed approach, more reliable interpretation
of qPCR data can be achieved, leading to better under-
standing of canine reproductive physiology as well as of
mechanisms leading to uterine pathological conditions.

Methods

Data collection

The following raw data from microarray and RNA-seq ex-
periments performed on canine reproductive tissues
(ovary, CL, uterus, placenta) were included in our multi-
study analysis (for datasets already described in the avail-
able literature and deposited in NCBI's Gene Expression
Omnibus, GEO Series accession numbers are given; the
total number of samples used in each study is given in
parentheses). Our in-house datasets (1) GSE126031 — the
dataset derived from analysis of the canine placental tran-
scriptome by Nowak et al. [39], which includes samples of
canine placenta from the mid-gestation stage, prepartum
luteolysis and antigestagen (aglepristone) - induced luteo-
lysis (n=9); (2) GSE98657 - the RNA-seq study by Zatta
et al. [27] that included corpora lutea (CL) from clinically
healthy bitches, which were assigned to the following ex-
perimental groups: mid-pregnancy (days 35-40), active
prepartum luteolysis, antigestagen-treated mid-gestation
group (days 40—45) and non-pregnant bitches at late luteal
regression (day 65 after ovulation), (n = 15); (3) the micro-
array study by Graubner et al. [40] which included uterine
samples of non-pregnant and early pregnant dogs at the
pre-implantation stage (days 10-12) of pregnancy; this
dataset [40] has not been deposited in GEO, however, it is
available as publication supplemental files and included
n =14 of samples; (4) GSE130369 - the dataset from our
most recent study, Tavares Pereira et al. [41], which con-
tains RNA-seq transcriptome data from luteal samples of
dogs treated with a non-steroidal anti-inflammatory drug
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(NSAID), cyclooxygenase-2 (COX2/PTGS2) inhibitor, fir-
ocoxib, at days 5, 10, 20, 30 after ovulation, and their non-
treated controls (n =24). Additionally, we have included
the following data available from the literature: (5)
GSE69481 - the microarray study by Voorwald et al. [42]
which included fresh endometrium samples collected
from 21 healthy female dogs during diestrus, 16 with cys-
tic endometrial hyperplasia (CEH), 15 with mucometra
and 17 with pyometra (eight open and nine closed-cervix)
(n=69); (6) GSE17878 - the microarray study by Hagman
et al. [43] which included uteri from dogs with pyometra
compared to healthy dogs (n=8); (7) GSE99877 - the
microarray study by Bukowska et al. [44] included uteri
from clinically healthy bitches and bitches with pyometra
(20 clinically healthy, 23 with pyometra). RNA used for
that study was pooled into four separate vials for control
and pyometra (n = 8).

Thus, in summary, 153 samples were analyzed, includ-
ing 45, 99 and 9 samples from the CL, uterus and pla-
centa, respectively. Of the 99 uterine samples, 56
represented pathological conditions, i.e., pyometra, hydro-
metra or CEH.

Determination of potential candidate reference genes
The collected data were subjected to analysis and the
following inclusion criteria were considered for each de-
tected gene in a given dataset: (1) the mean expression
level of each gene, i.e., the base mean value of number
of transcripts, was set to >500. This step removed un-
derrepresented genes and assured minimal detection
levels for qPCR reactions; (2) the coefficient of variation
(CV), i.e., the ratio of standard deviation (SD) and mean,
which gives information about the extent of variability in
gene expression datasets. For this study, a threshold CV
of < 0.2 was applied. Following filtering of the genes that
fulfilled the above-listed criteria, comparative analysis
was performed. First, lists of potential stably-expressed
genes were generated for each tissue type. Subsequently,
these lists were compared with each other in order to
determine universal reference genes in all examined tis-
sues and conditions.

Evaluation of stability of candidate reference genes

It needs to be emphasized that all computing analyses,
as presented above, were done in order to narrow down
the extensive gene lists and to define potential candi-
dates for reliable reference genes. They could not, how-
ever, be treated as being definitive without verifying
their stability by qPCR in specific tissues. For this rea-
son, TagMan RT-qPCR assays were applied to validate
the expression of genes in available canine reproductive
tissues from our previous studies [27, 28, 40, 45]. There-
fore, 55 samples of different organ origin, i.e., with high
diversity, were used. Of these, 23 were derived from CL,
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19 from uterus and 13 from placenta. The full list of
samples used for evaluation experiments, including de-
tails regarding their origin and ethical approvals, is pro-
vided in Supplementary Material 1. These sample-sets
contained tissues from non-pregnant and pregnant ani-
mals, including different stages of gestation, and from
animals subjected to different treatments (aglepristone-
induced luteolysis, firocoxib treatment). Next, the
expression and stability of genes were evaluated. These
experiments included selected potential candidates and
three reference genes used routinely until now in previ-
ous studies, ie, GAPDH, f-actin and cyclophillin A
(PPIA). The stability expression values of all genes were
calculated, and subsequently genes were ranked using
online tools: RefFinder [46] and NormFinder softwares
[47]. The RefFinder algorithm integrates 4 commonly-
used stability evaluation programs: the comparative
delta-Ct method [48], BestKeeper [49], NormFinder [47]
and GeNorm [25], to generate a comprehensive ranking
by calculating the geometric mean. Additionally, Norm-
Finder [47] was used to perform estimations of the intra-
and inter-group expression variations for each subgroup
of samples to provide the most reliable combination of
candidate reference gene pairs. Finally, a Microsoft Excel
add-in, GeNorm [25] was applied to compute pairwise
variation V,, 1, which is a parameter that informs how
many reference genes should be used for normalization.
Briefly, Vi/n ;1 gives information about whether addition
of another gene would have a significant effect on data
normalization, and a high variation implies that an add-
itional gene will have a significant effect and preferably
should be included. As advised by Vandesompele and
coworkers [25], using 0.15 as a cut-off is considered to
be reliable. Thus, the values below this cut-off indicate a
lack of need to include an additional gene.

Validation of proposed reference genes by TagMan RT-
qPCR

To verify the suitability of newly-identified reference
genes, we investigated the expression of target genes
whose expression is known to vary in selected reproduct-
ive tract tissues of female dogs. The expression of target
genes was normalized using either the conventional set of
reference genes (GAPDH, f-actin and cyclophillin A/
PPIA) or newly-found candidates. Thus, following infor-
mation available in the literature, placental expression of
cyclooxygenase-2 (COX2/PTGS2) [22] and vascular endo-
thelial growth factor A (VEGFA) [26] was re-evaluated in
groups comprising mid-gestation (# = 5), prepartum luteo-
lysis (7 = 3) and antigestagen-induced luteolysis (n = 5; see
Supplementary Material 1 for details). For the CL, we ex-
amined the expression of interleukin 1b (IL-1b) [27] and
major histocompatibility complex class II molecules
(MHCII) [27] between mid-gestation (n=5) and
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Table 1 List of predesigned assays and in-house designed primers and probes used for real time TagMan gPCR

Gene Gene name Accession Sequence Amplicon
number length

COX2/PTGS2  cyclooxygenase-2 HQ_110882 Forward: 5-GGA GCA TAA CAG AGT GTG TGA TGT G-3' 87 bp

Reverse: 5-AAG TAT TAG CCT GCT CGT CTG GAA T-3'

Probe: 5-CGC TCA TCA TCC CAT TCT GGG TGC T-3'
GAPDH glyceraldehyde-3-phosphate AB_028142 Forward: 5-GCT GCC AAA TAT GAC GAC ATC A-3' 75 bp

dehydrogenase

Reverse: 5-GTA GCC CAG GAT GCC TTT GAG-3'

Probe: 5-TCC CTC CGA TGC CTG CTT CAC TAC CTT-3'
IL-1b interleukin 1b NM_001037971 Forward: 5-TGC CAA GAC CTG AAC CAC AGT-3' 97 bp

Reverse: 5-CTG ACA CGA AAT GCC TCA GAC T-3'

Probe: 5-CAT CCA GTT GCA AGT CTC CCA CCA GC-3'
LHR luteinizing hormone receptor XM_538486 Forward: 5-TCA TCA TTT GTG CTT GCT ACA TTA AA-3" 98 bp

Reverse: 5-CGC CAT TTT CTT AGC AAT CTT TG-3'

Probe: 5-TGC AGT TCA AAA TCC AGA GCT GAT GGC-3'
MHCII major histocompatibility complex class Il NM_001011723 Forward: 5-GGA GAG CCC AAC ATC CTC ATC-3' 90 bp

Reverse: 5-GGT GAC AGG GTT TCC ATT TCG-3'

Probe: 5-TCG ACA AGT TCT CCC CAC C-3'
VEGFA vascular endothelial growth factor A NM_001003175 Forward: 5-GTG CCC ACT GAG GAG TTC AAC-3' 72 bp

Reverse: 5'-CCC TAT GTG CTG GCC TTG AT-3'

Probe: 5-CAC CAT GCA GAT TAT GCG GAT CAA ACC-3
Gene Gene name Product no.
B-actin actin beta Cf03023880_g1
cyclophilin A/PPIA cyclophilin A (f03986523_gH
EIF4H eukaryotic translation initiation factor 4H Cf02713640_m1
IGF2 insulin-like growth factor 2 Cf02647136_m1
KDELR2 endoplasmic reticulum lumen protein-retaining receptor 2 Cf02668050_m1
KDM4A lysine-specific demethylase 4A Cf02708629_m1
PTK2 focal adhesion kinase 1, protein tyrosine kinase 2 Cf02684608_m1

prepartum luteolysis (n = 3) groups. Finally, the expression
of insulin-like growth factor 2 (IGF2) [28] and luteinizing
hormone receptor (LHR) [28] was evaluated in the non-
pregnant uterus (Embryo minus, n=5) and at the pre-
implantation stage (Embryo plus, n =5).

Total RNA extraction, reverse transcription, semi-
quantitative real time TagMan RT-qPCR and data
evaluation

Total RNA from frozen (-80°C) tissues was isolated,
using TRIzol reagent based on the manufacturer’s proto-
col (Invitrogen, Carlsbad, CA, USA) and as previously
described [50, 51]. The quality and quantity of extracted
RNA was verified with a NanoDrop 2000C spectropho-
tometer (Thermo Fisher Scientific AG, Reinach,
Switzerland). Isolated RNA was subjected to DNase

treatment in order to remove any genomic DNA con-
tamination. The RQ1 Rnase-free Dnase from Promega
(Duebendorf, Switzerland) was used following the
manufacturer’s protocol. Reverse transcription (RT)
was performed as described before [50, 51], using
random hexamers as primers. All RT reagents were
purchased from Applied Biosystems by Thermo
Fisher (Carlsbad, CA, USA). The RT reactions were
done in an Eppendorf Mastercycler (Vaudaux-Eppen-
dorf AG, Basel, Switzerland). Canine-specific primers
and probe mixtures for proposed candidate genes,
i.e., KDM4A, KDELR2, EIF4H and PTK2, as well as
for two previously used reference genes, S-actin and
cyclophillin A/PPIA, and IGF2, were commercially
available and purchased from Applied Biosystems.
For other evaluated genes, i.e., GAPDH, COX2/
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PTGES, IL-1b, LHR, MHCII, VEGFA, primers and
TagMan probes labeled with 6-carboxyfluorescein
(6-FAM) and 6-carboxytetramethylrhodamine (TAMRA),
were designed with Primer Express Software ver. 2.0 (Ap-
plied Biosystems) and purchased from Microsynth (Bal-
gach, Switzerland). A complete list of predesigned assays
and sequences of primers and TagMan probes is provided
in Table 1. The efficiencies of the PCR assays were deter-
mined by the CT slope method assuring approximately
100% reaction efficiency.

For all TagMan RT-qPCR experiments, an automated
fluorometer ABI Prism 7500 Sequence Detection System
(Applied Biosystems) was used and the following ampli-
fication conditions were applied: initial denaturation for
10 min at 95°C, followed by 40 cycles each for 15s at
95°C and 1 min at 60 °C. The 25 pl reaction mixture in-
cluded: 200 nM TaqMan Probe, 300 nM of each primer,
12.5 pl Fast Start Universal Probe Master (ROX) (Roche
Diagnostics) and 5 pl of cDNA corresponding to 100 ng
total RNA. Each sample was run in duplicates. Auto-
claved water and the so-called minus-RT controls (i.e.,
samples treated with DNase but not subjected to RT) in-
stead of cDNA were used as negative controls. The ex-
pression of target genes, ie, COX2/PTGS2, VEGFA,
MHCII, IL-1b, IGF2 and LHR was normalized according
to either the three new proposed genes, i.e., KDM4A,
EIF4H, PTK2 or three previously used reference genes:
GAPDH, B-actin and cyclophillin A/PPIA and calculated
using the comparative CT method (AACT method) as
reported previously [50, 51].

Statistics

Statistical analysis was performed using the software pro-
gram GraphPad 3.06 (GraphPad Software). An unpaired,
two-tailed Student’s t-test was performed to compare the
levels of luteal IL-1b and MHCII between mid-gestation and
prepartum luteolysis groups, and uterine I/GF2 and LHR in
non-pregnant and pre-implantation uteri. Parametric one-
way analysis of variance (ANOVA) was performed followed
by a Tukey—Kramer multiple comparisons post-test to com-
pare the levels of placental COX2/PTGS2 and VEGFA
mRNA expression between mid-gestation, antigestagen-
induced abortion/luteolysis and prepartum luteolysis
groups. P < 0.05 was considered statistically significant.
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