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Abstract

The application of next-generation molecular, biochemical and immunological methods for developing new
vaccines, antimicrobial compounds, probiotics and prebiotics for zoonotic infection control has been fundamental
to the understanding and preservation of the symbiotic relationship between animals and humans. With increasing
rates of antibiotic use, resistant bacterial infections have become more difficult to diagnose, treat, and eradicate,
thereby elevating the importance of surveillance and prevention programs. Effective surveillance relies on the
availability of rapid, cost-effective methods to monitor pathogenic bacterial isolates. In this opinion article, we
summarize the results of some research program initiatives for the improvement of live vaccines against avian
enterotoxigenic Escherichia coli using virulence factor gene deletion and engineered vaccine vectors based on
probiotics. We also describe methods for the detection of pathogenic bacterial strains in eco-environmental
headspace and aerosols, as well as samples of animal and human breath, based on the composition of volatile
organic compounds and fatty acid methyl esters. We explain how the introduction of these low-cost
biotechnologies and protocols will provide the opportunity to enhance co-operation between networks of
resistance surveillance programs and integrated routine workflows of veterinary and clinical public health
microbiology laboratories.
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Background
In many South American countries, more than two-
thirds of all antimicrobials produced are administrated
to animals, not human patients, mainly for growth pro-
motion, treating animal disease and prophylaxis [1, 2].
Indiscriminate use of antimicrobials may select for drug-
resistant pathogens as well as for mobile genetic ele-
ments (plasmids, bacteriophages) carrying antibiotic re-
sistance genes (ARGs) to both human and nonhuman

animal pathogens. In addition, antibiotic overuse con-
tributes to the spread of antimicrobial-resistant organ-
isms and increases the risk factor of infections and
diseases in both animals and humans [3]. Bacteria com-
monly found in the poultry industry include Campylo-
bacter spp., Staphylococcus spp., Salmonella spp.,
Clostridium perfringens type A, Enterococcus faecalis,
and Escherichia coli [4, 5]. Dietary supplementation with
broad-spectrum antimicrobials such as bacitracin pre-
vents the risk of necrotic enteritis caused by C. perfrin-
gens in broiler chickens. However, this provides the
opportunity for increased antibiotic resistance. Trans-
mission of antimicrobial-resistant bacteria can occur
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through direct contact, contaminated water, air, environ-
ment, and food [6–8]. The increase in the extended-
spectrum cephalosporin resistance in Salmonella iso-
lated from retail chicken is the most important public
health problem in developing countries [6–8]. Further-
more, workers exposed to antibiotics and potential path-
ogens may disseminate antimicrobial-resistant bacteria
in their community, contributing to evolutionary trajec-
tories of evolving microbes and failures in antibiotic
treatment outcomes [6–8]. Figure 1 illustrates a frame-
work of biotechnological, antimicrobial stewardship and
public health programs with the aim of reaching deci-
sions regarding the adoption of these basic and applied
technologies in study design and economic evaluations
of the global challenges in the rational use of antibiotics
in human beings and animals.
Animal fecal microflora harbor a vast reservoir of

antibiotic-resistance genes, which are predominantly ac-
quired by human commensal and pathogenic bacteria
[10, 11]. The abuse and unreasonable utilization of anti-
microbials for clinical, agricultural and pharmaceutical
purposes can lead to a selective pressure in metabolic
and oxidative biochemical processes for DNA mutation
[1, 12]. Sublethal bactericide pressure can increase muta-
genesis in hypermutator bacterial strains and the acqui-
sition of resistance genes [12]. Several antibiotics have
been used in feed or water at sub-therapeutic levels for
growth promotion for over 50 years [13, 14]. Sub-
therapeutic in-feed antibiotics such as erythromycin,

penicillin, gentamicin, neomycin, tetracyclines, bacitracin
methylene disalicylate and virginiamycin (streptogramin
A and B) are commonly used for growth promotion or
prophylaxis in poultry production [15]. Moreover, sub-
lethal doses of bactericide antibiotics promote the
specialization of various different bacteria genotypes
within the whole heterogeneous bacterial population.
For example, sublethal doses of norfloxacin over 10 days
greatly increase resistant isolates from the E. coli popula-
tion, which release indole, a signaling molecule that pro-
tects less resistant isolates. The rise of extended-
spectrum beta-lactamase (ESBL)-producing E. coli in
food-producing animals poses significant challenges to
clinicians and negatively impacts patient healthcare in
hospitals [8, 16]. Studies of fecal resistome indicated
that diverse genera of Enterobacteriaceae, including E.
coli, Klebsiella, Shigella, and Salmonella have acquired
different antibiotic resistance genes [17, 18]. Remark-
ably, E. coli strains are the predominant (83%) bacterial
host of genes for resistance to tetracycline, aminoglyco-
side, macrolide, lincosamide, streptogramin, β-lactam
and sulfonamides [8, 16].
Airborne cross-transmission of pathogenic bacteria be-

tween animals and workers in swine and dairy facilities
has been well characterized through surveillance pro-
grams [19]. These studies have reinforced the necessity
for implementation of surveillance programs to detect
the spread of zoonotic diseases between animals and the
population [19]. Poultry workers in general acquire

Fig. 1 Innovative biotechnological approaches and programs to reduce the veterinary use of antibiotics, the ability of bacteria to resist antibiotics,
and bacterial spread into animals and humans, within the responsibilities of research laboratories, farms, factories, pharmaceutical companies,
hospital and clinics. Adapted from [9]. Images on figure are of public domain and non-copyrighted
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Campylobacter through orally transmitted water drop-
lets [19, 20]. However, the presence of antibiotic-
resistant bacteria in biological aerosols is largely not
understood. Therefore, innovative approaches are neces-
sary to monitor and collect specific solid and organic
volatile compounds that are produced and released by
large animal feeding and factory facilities.
Poultry facilities are associated with a high production

of dust, gases, and odors [4, 20]. In poultry bioaerosols,
bacteria exist suspended freely in the air as well as at-
tached to dust particles [4, 20]. The presence of anti-
microbial genes in poultry bioaerosols suggests that
poultry farmers may be potential nasal carriers of
antimicrobial-resistant bacteria, which could potentially
be transmitted to susceptible persons [14]. Swine
workers are also nasal carriers of resistant bacterial spe-
cies [14] Pathogenic bacteria carrying tetracycline-
resistance genes were detected in bioaerosols from swine
confinement buildings and nasal swabs of swine workers
[21]. Finally, respiratory pathogens such as Haemophilus
influenzae, Streptococcus pneumoniae, and Moraxella
catarrhalis are commonly detected in blood, cerebro-
spinal fluid, higher and lower respiratory tract, urine,
and wound or pus of farm animals and humans. Sub-
stantial investments are needed to develop the innova-
tive vaccines for these new targets at the commercial
scale. In this opinion article, we will update specifically
on potential vaccines in development against avian
pathogenic E. coli strains and novel engineered vaccine
probiotics based on Lactobacillus spp. and yeasts. In the
second part, we will describe the technical and biotech-
nological discoveries that are being implemented for
early identification of presence/absence of pathogenic
bacterial strains, including those with acquired anti-
microbial resistance based on the composition of volatile
organic compounds (VOCs) and volatile fatty acids
(FAMEs).

Antibiotic growth-promoting effects
In-feed antibiotic supplementation exerts growth-
promoting effects in farm animals, through a yet unclear
mechanism [22]. Early studies demonstrated that the use of
antibiotics promotes the suppression of the number and di-
versity of the normal gut bacterial flora and the production
of certain microbial metabolites while increasing the con-
centration of critical nutrients [23] The large-scale system-
atic analysis of farm animal microbiomes has recently
emerged. There are few studies addressing the long-term
dynamics of the intestinal microbiota in relation to changes
in energy absorption and/or food intake under antibiotic-
induced growth treatment. Chickens fed with virginiamy-
cin- and bacitracin-supplemented diets had reduced micro-
bial diversity, with an increase in Enterococcus and
Lactobacillus spp. and a decrease of L. salivarius [24]. The

development of new generation genomic and metabolomic
approaches has allowed analyses of the differences in intes-
tinal microbiota composition and the amino acids, vitamins
and metabolites they produce under diverse diets and anti-
biotic intervention [25]. Based on a metabolomics ap-
proach, Gadde and colleagues in a recent study proposed a
mechanism by which dietary antibiotics may exert en-
hanced growth promotion in broiler chickens [24]. They
showed that antibiotic treatment alters the host intestinal
anti-inflammatory response in parallel with changes in the
structure and diversity of the gut microbial community
[24]. Antibiotic supplementation with bacitracin increased
the production of polyunsaturated fatty acid (PUFA) levels
in the chicken intestine. Fatty acids are incorporated into
the membranes of leukocytes and serve as substrates for
production of bioactive lipid mediators. Three biosynthetic
routes working independently or in concert produce pros-
taglandins, leukotrienes, lipoxins and resolvins, which are
well known mediators of pro- and anti-inflammatory effects
during the early and late phases of an inflammation. Dietary
supplementation with omega-3 PUFAs such as eicosapenta-
enoic acid (EPA) and docosahexaenoic acid (DHA) are
known to reduce inflammatory reactions [26]. Considering
that the antibiotics are given in absence of inflammation,
studies have been carried out to identify which are the cells
and mediators responsible for antibiotic effects. Previous
studies have identified that neutrophils are targeted and
killed by apoptosis after macrolide tilmicosin treatment
[27]. Along inflammatory response and diverse disease set-
ting, lipoxins act as potent anti-inflammatory mediators
and promote neutrophil killing in the resolution phase of
an inflammation [26]. Do these local lipid mediators serve
as effectors of antibiotics? In this way, it is quite possible
that resolvins and protectins derived from DHA could also
promote the clearance of neutrophils from mucosal sur-
faces [26]. This remains to be further investigated.

Synthetic microbiomes and engineered vaccine probiotics
Dysbiosis of healthy gut microbiota plays a critical role
in the dysregulation of microbial ecology that favors
colonization of pathogenic bacterial strains and diseases
[28]. The literature is replete with studies that
characterize the structure and diversity of the gut micro-
biome, through sequencing the 16S RNA gene, and the
correlation with different nutritional states, including
obesity and malnutrition, as well as many metabolic and
inflammatory disorders [29]. The current hypothesis is
that the size of or shift in the Prevotella enterotype/Bac-
teroides enterotype ratio determines the variations in the
production of short chain fatty acids (SCFAs) acetate,
propionate, butyrate and lactate [29–32]. These mole-
cules are critical metabolic substrates for gluconeogene-
sis and lipogenesis that drive obesity [32]. SCFAs,
particularly, propionic and butyric acids, may directly
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prevent the low-grade inflammatory response observed
in some obese populations [32, 33]. Bacteriotherapy or
fecal microbiota transplantation have been in clinical
practice over centuries, in particular in the treatment of
refractory cases of Clostridium difficile colorectal infec-
tion after antibiotic therapy [28]. In this context, com-
petitive exclusion (CE) products derived from healthy
specific-pathogen-free chickens and administered by
crop gavage have been used as feed supplements in
broiler chickens [34–36]. This type of bacteriotherapy ef-
fectively increases the resistance and protects chickens
from bacterial infections, notably salmonellosis [34].
Freeze-dried CE preparations are manufactured and
commercialized in many countries [37]. Simple fecal
transplantation or microbiota transfer can reproduce
obesity or leanness in animal models [29, 30]. None-
theless, since host-associated microbes perform sev-
eral important functions, in particular metabolic and
immunological functions, the question is: How many
strains or species belonging to Firmicutes, Bacteroi-
detes and Actinobacteria phyla are needed for a min-
imal microbiome that could exert all microbial
functions? Synthetic microbial communities with spe-
cific desired metagenomes and function can be de-
signed and manufactured reproducibly [38]. For
instance, bacterial species or consortia that are associ-
ated with resistance to infection could be designed.
Therefore, there is great expectation of the develop-
ment and application of future engineered synthetic
microbiomes in which a personalized (or animalized)
diet will improve healthy animal growth.
The World Health Organization (WHO) has defined

probiotics as live organisms that, when administered in
adequate amounts, confer a health benefit to the host.
Probiotics are, in general, members of the microbiota.
Extensive basic and clinical studies with lactic acid bac-
teria strains such as Bifidobacteria spp., Bacteroides and
Akkermansia spp. have provided strong evidence of their
health benefits. This is achieved through multiple
mechanisms and effector molecules [32, 39, 40]. In-feed
supplementation with Bacillus, Bifidobacterium, Entero-
coccus, Lactobacillus, Streptococcus, Lactococcus spp. and
Yeast Saccharomyces have been given as probiotics to in-
hibit infection of enteric pathogens and mitigate
antibiotic-associated diarrhea [41–43]. Recently, probio-
tics based on L. lactis and Lactobacillus spp. have been
explored as delivery vectors of therapeutics and antigens
expressed by virus and bacteria [44]. Novel engineered
probiotics based on yeast strains, mainly Saccharomyces
boulardii, have been constructed to secrete multi-
specific and single-domain antibodies directly targeting
bacterial virulence factors, in particular, enterotoxins
[45]. Specifically, S. boulardii was engineered to express
one or more antigens aiming to improve the immune

response to C. difficile and Campylobacter jejuni infec-
tion [46]. Furthermore, these probiotic strains can be
engineered, or reprogrammed, for heterologous gene ex-
pression of amino acids, peptides and antimicrobial
compounds to combat multiple pathogens [38, 43, 44]
Yet, fundamental questions remain: Does the make-up
of the gut microbiome impact the development of body
carcass from the perspective of quantitative bioenerget-
ics? How might we monitor and manipulate the gut
microbiome to optimize the complex diet–microbiome
relationship and positively impact the host? These are
some questions to be answered.

Chicken E. coli vaccines
Enterotoxigenic E. coli (ETEC) infection is globally the
most common cause of serious diarrheal illness [47]. Ac-
tive vaccination (long lasting) and passive immunization
with antibodies (short-lived) are the most appropriate
immunological methods to prevent diseases caused by
bacterial pathogens. Live vaccines consisting of attenu-
ated strains of key serotypes is an alternative way to
avoid the continued use of antibiotics in veterinary
medicine [48]. In Brazil, the world’s largest exporter of
chicken meat, Enterobacteriaceae species are responsible
for more than 45% of condemned poultry carcasses [49].
E. coli is considered a major source of the spread of anti-
microbial resistance to other bacteria, which are mainly
mediated by exchange of genes, integrons, transposons,
and plasmids [47, 48]. Avian E. coli strains are clearly
differentiated with respect to phylogenetic relationships,
common virulence factors and pathogenicity to animals
and humans [50–52]. Single isolates within species from
different geographical areas vary profoundly in terms of
virulence factor traits and antibiotic-resistance genes.
More knowledge of the molecular basis of this variability
will help in the design of new rational approaches to
monitoring pathogenicity and immunogenicity of new
bacterial mutants.
Many ETEC strains colonize the gastrointestinal tract

of birds and mammals where they live in a commensal
relationship [47, 48]. The avian pathogenic E. coli
(APEC) strains cause systemic septic colibacillosis, which
is characterized by bloodstream invasion resulting in
massive lesions in multiple internal organs and sudden
death of birds. Extra-intestinal pathogenic E. coli
(ExPEC) strains are commonly associated with nosoco-
mial and community infections in humans and animals
[49–53]. A larger number of ExPEC isolates from
humans and animals of have been characterized based
on their origins as follows: uropathogenic E. coli (UPEC),
neonatal meningitis E. coli (NMEC) sepsis-associated E.
coli (SEPEC), and avian pathogenic E. coli (APEC) [47,
48, 54]. It is interesting that ExPEC isolates from
humans and chickens have similar virulence traits and
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common genes [47, 48, 54, 55]. A conserved set of 13
virulence-associated genes identified APEC isolates. The
most studied are fimC, astA, papC, tsh, fyuA, irp2, iucD,
iss, hlyE, eaeA, vat, colV, and stx2f. This set of genes has
been used to confirm genotypically and phenotypically
the relationships among pathogenic APEC isolates [56,
57]. The virulence genes for adhesins fimH (Type 1 fim-
briae) and tsh (temperature-sensitive hemagglutinin),
protectin iss (increased serum survival) and the iron ac-
quisition system genes (iron-scavenging systems) are ex-
amples of genes that convert intestinal commensal into
pathogenic E. coli (APEC). Many studies have supported
the role of APECs as zoonotic and foodborne pathogens
[50, 54]. Currently serotypes O1:K1, O2:K1 and O78:K80
are recognized as the most prevalent serotypes among
more than 20 APEC subtypes identified in animal stud-
ies. However, despite the huge importance of APECs for
bird health there are few studies searching for genes
evolved in recombination and positive selection as well
as specific virulence factors associated with traits and
phenotypes [49–51]. More importantly, most the time
these pathogenic strains are carrying plasmids that dis-
seminate resistance to ampicillin, tetracycline, gentami-
cin, neomycin, sulfa trimethoprim, enrofloxacin and
norfloxacin [5, 58]. ExPEC-commensal E. coli strains
harboring multidrug resistance (MDR) have also been
isolated in different poultry farms [52]. Therefore, con-
tinuous monitoring of bacterial resistance genes among
E. coli ExPEC and APEC isolates from chicken meat
products will aid the development of surveillance pro-
grams and new scientific strategies for food safety.
A series of studies was conducted by Dr. Wanderley

Silveira’s group (UNICAMP, Campinas, Brazil) to iden-
tify molecularly the APEC strain SEPT362, serotype OR:
H10, which was isolated from liver of a laying hen pre-
senting clinical signs of septicemia [59–61]. Overall, the
results suggested that the pathogenicity of APEC strain
SEPT362 and its biological characteristics are deter-
mined by a set of genes controlling the type VI secretion
system (T6SS). The authors generated three E. coli
APEC mutant strains deficient in hcp, clpV and icmF
genes of the T6SS and investigated their function in the
SEPT361 E. coli-induced lethality in chicks [59–61].
Chicken infected with E. coli deficient in hcp and clpV
genes had a survival rate of 93% on the first day, 68% on
the third day, and 50% on the sixth day after infection.
Vaccination with E. coli deficient in clpV gene only sig-
nificantly increased survival rates of chicken over 30 days
of experimentation. The pathogenicity was not signifi-
cantly decreased with E. coli mutants of icmF gene. On
the other hand, it was observed that icmF gene E. coli
mutant reduced intracellular viability of E. coli in in-
fected macrophages. Furthermore, all E. coli mutants
showed a reduced biofilm formation capacity as

compared to wild-type SEPT362 strain. Overall, the re-
sults suggest that E. coli SEPT362 deficient in hcp, clpV
and icmF genes have enhanced safety, stability and the
potential capacity as live or attenuated vaccine for future
experimental study aimed at chicken vaccination against E.
coli. Various attempts have been made to develop an effect-
ive vaccine against the respiratory form of APEC diseases
in poultry [62, 63]. The enzyme 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS), also designated as AroA, par-
ticipates in the biosynthesis of aromatic amino acids. A live
vaccine based on an E. coli mutant strain with aroA deleted
has been used as a spray vaccine. This live-attenuated
APEC O78 ΔaroA vaccine (Poulvac® E. coli) protected the
manifestation of colibacillosis in chickens infected with
homologous and heterologous APEC strains [64]. However,
another study demonstrated that this vaccine was incap-
able, by itself, of inducing humoral immunity in turkeys.
An efficient cellular immune response was only observed
when the vaccine was administrated with strong co-
adjuvants containing CpG nucleotides [65]. The quorum-
sensing system (QS) plays important roles in the produc-
tion of bacterial toxins, biofilm formation, and pathogen-
icity of APECs [66]. The luxS is a gene that codes for a S-
ribosylhomocysteine lyase that catalyzes the substrates for
production of the autoinducer 2 (AI-2), a furanosyl borate
that coordinate AI-2 QS system involved in the density-
dependent processes in Gram negative and positive bac-
teria. A live-attenuated APEC strain deficient in both luxS
gene and aroA gene, which participates in the biosynthesis
of aromatic amino acids, has been evaluated as potential
vaccine candidate [67]. This double-mutant strain attenu-
ated APEC virulence by more than six-fold as compared to
the single-mutant strain DE17 [67]. Together, the results of
these studies suggest that the virulence deletion approach is
a worthy strategy to produce safe live and attenuated vac-
cines to prevent avian colibacillosis. More importantly,
these studies predict that vaccination is an appropriate
method for reducing the rise and spread of resistant E. coli
APEC strains within animals and the community.

VOCs
DNA/RNA/protein high-throughput sequencing and/or
structural determination methods are powerful tools to
give a deeper qualitative and quantitative insight into bac-
terial species and their resistomes [10–12]. Simple and
cost-efficient methods for collecting exhaled breath and
extracting DNA, proteins, peptides, metabolites and VOCs
are in development for bacterial species and genera identi-
fication. Bacteria have distinct metabolic pathways com-
pared to human cells; thus, their presence can be
characterized by odor and/or release of inert VOCs [68].
Over 1000 VOCs emitted by bacterial and fungal strains
categorized by classes and chemical structures have been
cataloged [69]. The gastrointestinal microbiota produces a
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wide range of sulfur-containing gaseous substances,
including hydrogen sulfide (H2S), which serves as a
substrate for methane synthesis, methyl mercaptan,
dimethyl sulfide, dimethyl disulfide and trisulfide. All
these compounds are toxic and induce inflammation
when in high concentration. The end products of an-
aerobic bacteria fermentation of oligosaccharides in-
clude succinate and a mixture of volatile fatty acids,
mainly acetate, propionate, cis-2-methylcrotonate, 2-
methylbutyrate and 2-methylvalerate, SCFAs, as well
as alcohols, hydrocarbons, aldehydes, ketones and sul-
fated organic compounds [68, 70–72]. Many of these
organic compounds can be detected in expelled air,
feces and urine and explored for confirmation of
pathogenic infection [68, 70–72]. Indole has been
used clinically as a predictive biomarker of E. coli biofilm.
Butyric acid is a biomarker for some Clostridium species,
acetaldehyde for some Staphylococcus species, and long
chain alcohols are important biomarkers for the detection
of Salmonella. VOCs can discriminate pathogen interac-
tions commonly observed in human clinical infections.
For example, high levels of 2-methylbutylacetate and me-
thyl 2-methylbutyrate, two known antimicrobial VOCs,
were found only in a co-culture of E. cloacae and P. aeru-
ginosa [73]. A systematic review of the literature identified
161 VOCs emitted during sepsis in children [68]. The au-
thor identified VOC signatures that allowed prediction of
the presence of the Gram-positive bacteria Staphylococcus
aureus, Streptococcus pneumonaie and Enterococcus fecal-
lis, and the Gram-negative bacteria E. coli, Pseudomonas
aeruginosa and Klebsiella pneumoniae [68]. Palma and
colleagues, using a machine-learning algorithm, identified
a group of 18 VOCs that could predict with accuracy and
precision 11 species of bacteria, protozoa and fungi [74].
The growing international community of breath VOC re-
searchers is conducting standardized large-scale studies to
catalog endogenously derived volatile compounds origin-
ating from pathogens in culture and released in exhaled
human breath, skin, urine, feces, and flatulence in healthy
and diseased people as well as from plants, foods, and soil
microorganisms [68, 71]. The mVOC database (http://bio-
informatics.charite.de/mvoc) is one user-friendly platform
for VOC-based retrieval. Such databases will help establish
a powerful resource for investigation of the modulatory ef-
fects of VOCs in bacterial growth control and resistance
to antibiotics.
Animal feeding operations produce a larger number of

gaseous chemical compounds [75]. More than 100 VOCs
were identified in the indoor and outdoor air, stable and
road dust and soil samples from pig and cattle farms
[75]. Acetic acid, butanoic acid, p-cresol, propanoic acid,
pentanoic acids, phenol and hexanal were found in the
indoor air of pig farms, and acetic acid, butanoic acid,
propanoic acids, p-cresol, phenol and methyl esters of

carboxylic acids in the indoor air of cattle farms [75].
Various chemical substances were identified using gas
chromatographic analysis of VOCs captured by evacu-
ated canisters and sorbent tubes distributed at critical
points of the installations. Besides gas chromatography
methods, various automated devices for the detection of
VOCs have been developed using a wider array of sensor
heads (eNose) and detection systems [76–78]. These spe-
cific sensor types can offer simple solutions for specific
criteria in terms of selective detection of target VOCs in
field applications. The speciation and levels of VOCs re-
leased in animal facilities and production stations include
compounds formed by biotic and abiotic stress. Thus,
there is opportunity for development and application of a
range of biotechnological and chemical techniques to ac-
cess the volatility and reactivity of VOCs with respect to
opportunistic pathogens such as Micrococcus, Bacteroides,
Chryseobacterium, Pseudomonas, and Acinetobacter and
parasites specifically found in domestic animals. The cre-
ation of databases of microorganism-specific VOC signa-
tures using such methodologies has great potential for
tracking the presence and spread of antibiotic-resistant
species dispersed through bioaerosols.

FAMEs
The fatty acid composition of bacterial species is genetically
conserved [79]. When esterified by an alkali-catalyzed reac-
tion with methanol, the fatty acids become volatile enough
for analysis by gas chromatography [80]. The analysis of the
volatile fatty acids (VFAs), in their free acid form, or as fatty
acid methyl esters (FAMEs) can be used to predict the pres-
ence of aerobic and anaerobic bacteria [80–82]. Gas chro-
matography/mass spectrometry (GC/MS) analysis of fatty
acids between 9 and 20 carbons in length (microbial finger-
printing) is a conventional method to characterize genera
and species of bacteria, especially non-fermentative Gram-
negative organisms [82, 83]. The system for naming and
counting carbons is from the carboxyl end (omega end).
For example, terminally branched saturated FAMEs indi-
cate the presence of Gram-positive bacteria and monoun-
saturated or hydroxylated FAMEs Gram-negative bacteria.
Normally, polyunsaturated FAMEs are rarely encountered
in bacteria. Over 1500 bacterial species have been identified
based on their unique fatty acid profiles on commercial
identification systems such as the Sherlock Microbial Iden-
tification System [80, 84]. In a recent publication, Roth and
colleagues developed a GC method to characterize dental
bacterial plaque via FAME profiling [85]. They successfully
identified saturated and monoenoic FAMEs in the biofilm
cultivated in vitro from 10 donors [85]. A machine-learning
bioinformatics approach called phylogenetic learning has
been used for FAME-based bacterial species classification
[86]. FAME database [http://www.fame-bank.net] is an
open platform that displays a taxonomic framework
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classifier based on FAME composition and bacterial 16S
rRNA gene sequences [86]. Thus, we expect that the expan-
sion of VOCs and FAMEs chemical signatures will improve
our understanding of the role of participating bacteria from
different genera and species as well as strains of the same
species. These methods can potentially impact the speed
and accuracy by which bacterial antibiotic-resistant species
are identified and correctly treated.

Conclusions and outlook
Global environmental changes and ecosystem impair-
ments have contributed to the dissemination of bacterial
pathogens from animals to humans and vice-versa. Des-
pite progress in some countries, effective and coordi-
nated strategies, such as antimicrobial stewardship and
One Health strategy, for the containment of misuse of
antimicrobials and the spread of antibiotic-resistant mi-
croorganisms have not been globally implemented [87].
The European Union has banned the non-therapeutic
feeding of a number of antibiotics of human importance
to farm animals. However, Europeans consume
antibiotic-treated vegetables and meat products from
countries that allow the use of antibiotics. Therefore, a
global solution to these problems depends on the devel-
opment of novel innovative biotechnologies to enhance
co-operation with and between networks of public bac-
terial resistance surveillance programs. We need to be
prudent and maintain rational prescribing programs in
pro-growth, prophylactic and therapeutic use of veterin-
ary antibiotics to eliminate existing resistant bacterial
strains from a population and new ones that may arise
in the future [88, 89]. More attention should be done in
providing best practices for the prescription of antibi-
otics to farmers and veterinary personnel with confirmed
presence of both animal and nosocomial antimicrobial
resistant pathogens. In this way, we need to improve sci-
ence through robust investments in the research, devel-
opment, and implementation of stewardship programs
in all outpatients and inpatients healthcare settings.
The next generation of live bacterial strains and engi-

neered probiotics based on lactic acid bacteria and yeast
as vaccine delivery vectors offer many attractive advan-
tages over traditional recombinant vaccines. Rapid diag-
nostic methods for bacterial infections and airborne
disease outbreaks in farm animals and communities are
constant challenges faced by hospitals and health institu-
tions in developing countries. Antibiotic stewardship
programs are a key component in preventing the spread
of antibiotic resistance in all healthcare facilities and
across the world. Non-invasive and fast diagnostic tools
based on breath biopsy hold great promise in identifying
animal and human pathogens. The implementation and
use of chromatography and mass spectrometry methods
and chemical sensors in the clinical laboratory for

determination of VOCs and FAMEs have immense po-
tential in the development of biomarkers for the early
diagnosis of infectious diseases. Finally, the application
of these innovative methods will provide quantitative in-
sights into the contribution of microbiota to farm animal
growth and enable future studies on the interacting roles
of diet and gut microbiome on animal physiology and
health.
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