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Abstract

Background: Anaplasma and Ehrlichia species are tick-borne pathogens of both veterinary and public health
importance. The current status of these pathogens, including emerging species such as Ehrlichia minasensis and
Anaplasma platys, infecting cattle in Kenya, remain unclear, mainly because of limitation in the diagnostic
techniques. Therefore, we investigated the Anaplasma and Ehrlichia species infecting dairy cattle in Nairobi, Kenya
using molecular methods.

Results: A total of 306 whole blood samples were collected from apparently healthy dairy cattle. Whole blood DNA
was extracted and tested for presence of Anaplasma and Ehrlichia DNA through amplification and sequencing of
the 16S rDNA gene. Sequence identity was confirmed using BLASTn analysis while phylogenetic reconstruction was
performed to determine the genetic relationship between the Kenyan isolates and other annotated genotypes
available in GenBank. Anaplasma and Ehrlichia species were detected in 19.9 and 3.3% of all the samples analyzed,
respectively. BLASTn analysis of the sequences against non-redundant GenBank nucleotide database revealed
infections with A. platys (44.8%), A. marginale (31%) and A. bovis (13.8%). All four sequenced Ehrlichia spp. were
similar to Ehrlichia minasensis. Nucleotide polymorphism was observed for A. platys, A. bovis and E. minasensis. The
Anaplasma species clustered in four distinct phylogenetic clades including A. marginale, A. platys, A. bovis and some
unidentified Anaplasma spp. The Kenyan Ehrlichia minasensis clustered in the same clade with isolates from America
and Australia but distant from E. ruminantium.

Conclusion: This study provides the first report of infection of dairy cattle in Kenya with A. platys and E. minasensis,
which are emerging pathogens. We conclude that cattle in peri-urban Nairobi are infected with various species of
Anaplasma and E. minasensis. To understand the extent of these infections in other parts of the country, large-scale
screening studies as well as vector identification is necessary to inform strategic control.
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Background

Anaplasma and Ehrlichia species of the family Anaplas-
mataceae are tick-borne pathogens of livestock with
some species known to infect humans and therefore are
of both veterinary and public health importance [1].
Anaplasma species documented to infect domestic ru-
minants including cattle are Anaplasma marginale (A.
maginale), A. centrale, A. ovis, A. bovis, A. phagocytophi-
lum and more recently A. platys [2, 3]. Anaplasma mar-
ginale transmitted by several tick vectors including some
Rhipicephalus (boophilus) species is the most common
in Kenya causing a severe hemolytic disease in the rumi-
nants. Anaplasma centrale whose only known vector is
Rhipicephalus simus [4] causes mild anaplasmosis in cat-
tle [5] but has not been reported in Kenya possibly be-
cause the tick vector is absent. Anaplasma bovis
transmitted by various species of Amblyomma and Rhi-
picephalus ticks [6] causes sub-clinical disease in cattle
and has been recently been reported in indigenous calves
in Kenya [7].

Anaplasma platys transmitted by Rhipicephalus sangui-
neus typically infects dogs resulting in canine infectious
cyclic thrombocytopenia [8]. However, A. platys has also
been isolated from cattle neutrophils [9]. To date, there is
no information on cattle infection with this pathogen in
Kenya. Anaplasma phagocytophilum is a zoonotic species
that has been documented to infect cattle resulting in
fever, respiratory signs, reduced milk production and in-
fertility [10]. Anaplasma phagocytophilum was detected
recently in questing ticks in a National park in Kenya [11].
For Ehrlichia species, E. ruminantium transmitted by ticks
in the genus Amblyomma and the emerging Ehrlichia
minasensis (E. minasensis) are the only species in that gen-
era known to infect cattle [12, 13]. Infections of cattle with
E. ruminantium and E. minasensis are mainly character-
ized by severe fever, anemia, thrombocytopenia and en-
larged lymph nodes [14].

Infections of cattle with the pathogenic species of Ana-
plasma and Ehrlichia cause mortalities and morbidities
with subsequent losses in production of dairy and beef
products. The losses usually result in marked economic
impact to dairy and beef farmers in the tropical and sub-
tropical regions [15] contributing to poverty in the af-
fected households.

In Kenya including the peri-urban Nairobi, anaplasmo-
sis and theileriosis are some of the tick-borne diseases
(TBDs) known to cause economic losses to dairy farmers
[16, 17]. Although ehrlichiosis caused by Ehrlichia rumi-
nantium has been reported in Kenya [7] and approxi-
mately 150 million animals are at risk of infection in
Africa [18], quantification of its economic impact in
Kenya has not been evaluated possibly because of the
difficulty in confirming the diagnosis and the fact that
this infection commonly co-infects with other TBDs
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such as East Coast Fever and anaplasmosis [7]. For a
long time, the identification of cattle infected with
pathogenic Anaplasma and Ehrlichia in Kenya has been
based mainly on questionnaire data, clinical signs,
microscopic examination [16, 19] and serological tests
[20, 21]. Nevertheless, few studies in Kenya have used
molecular techniques such as reverse line blot, polymer-
ase chain reaction and sequencing for the confirmation
and characterization of the tick-borne pathogens infect-
ing cattle [7, 22]. Previously, there had been clinical
cases reported to the University of Nairobi Veterinary
Hospital, Kenya presenting with unspecific clinical signs
such as unthriftness and loss of body conditions. On
screening of cattle from the areas where the clinical
cases had originated, E. ruminantium was identified by
antigen detection using Enzyme-linked Immunosorbent
Assay (ELISA) [23]. Additionally, microscopic examin-
ation of blood from these cattle revealed that some of
them had Ehrlichia-like inclusion bodies in the white
blood cells suggesting infections with other unknown
potentially pathogenic haemoparasites [23]. Hence, there
was need to identify and characterize those Ehrlichia-
like inclusion bodies observed in these animals.

Therefore, to further characterize the Anaplasma
and Ehrlichia species infecting dairy cattle in Kenya,
this study used molecular tools to determine the
prevalence and genetic profiles of various species cir-
culating in apparently healthy dairy cattle in peri-
urban Nairobi. Sequence identities and phylogenetic
analysis were used to determine the presence of
emerging pathogens such as A. platys and E. mina-
sensis. Subsequently, we provide information that will
aid in the understanding of molecular epidemiology
of these emerging pathogens of livestock in Kenya
and possible epidemiological factors contributing to
their spread.

Results

Prevalence of Anaplasma and Ehrlichia species

Of the 306 blood DNA samples analyzed, 61 (19.9%)
[95% CI 15.6—24.9] were PCR positive for Anaplasma
species while 10 (3.3%) [95% CI 1.6-5.9]) were positive
for Ehrlichia. The Anaplasma species yielded a specific
band corresponding to 424 bp (Fig. 1la) while primers
targeting the 16S rDNA gene of Ehrlichia species pro-
duced a specific band corresponding to the expected size
of 838 bp (Fig. 1b). The distribution of the positive sam-
ples in different sub-counties is shown in Table 1. The
highest numbers of both Anaplasma 34 (55.7) and Ehrli-
chia 7(70) infections were found in Kasarani-Ruai Sub-
County while Lang’ata had the least number of cattle
positive for Anaplasma 6(9.8) infection. Ehrlichia infec-
tions were however not detected in cattle in Dagorreti
Sub-County.



Peter et al. BMC Veterinary Research (2020) 16:364

Page 3 of 12

3 4 5 6 7

600 bp|
500 bp
400 bp

424 bp

300 bp
200 bp

100 bp

Fig. 1 Some of the PCR amplicons of Anaplasma and Ehrlichia 16S rDNA gene a) PCR product of Anaplasma species. Lane L: molecular ladder,
lane lanes 1 and 5: positive samples showing amplicon at approximate 424 bp, lanes 2, 3, 4 and 6: no amplicons were observed, 7: negative
control. b. PCR product of Ehrlichia species. Lane L: molecular ladder lane, lanes 1, 2 and 3: positive samples showing amplicon band at
approximate 838 bp, lanes 4, 5 and 6: no amplicons were observed, 7: negative control
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Sequence identities of the Anaplasma and Ehrlichia
species detected

Twenty-nine PCR amplicons for Anaplasma and four
for Ehrlichia were sequenced for confirmation of the
identities of the detected pathogens. BLASTn analysis
revealed that majority, 13(44.8%) of the Anaplasma 16S
rDNA sequences were similar to A. platys with sequence
identity of between 98.72 and 100% to annotated se-
quences in Genbank. Nine (31%) of the sequences were
similar to A. marginale with a sequence identity of be-
tween 99.07 and 100%. Other sequences matched A.
bovis 4(13.8%) with sequence identity of between 99.28
and 100% and unidentified Anaplasma species 3(10.3%)
sequence identity of 97.85 to 100% (Table 2). All the
four Ehrlichia sequences were similar to those of E.

Table 1 Distribution of Anaplasma and Ehrlichia spp. positive
cattle in the four sub-counties of Nairobi County

Sub- No. of Anaplasma spp. (%) No. of Ehrlichia spp.
County [95% ClI] (%) [95% ClI]
Kasarani- 34 (55.7) [42.4-68.5] 7 (70.0) [34.8-83.3]
Ruai

Westlands 11 (18.0) [9.4-29.9] 1(10.0) [0.2-44.2]
Langata 6 (9.8) [3.6-20.2] 2 (20.0) [2.0-55.6]
Dagorreti 10 (164) [8.2-28.0] 0 (0.0) [0]

Total 61 (100) 10 (100)

minasensis revealing a sequence identity of between
99.42 and 100% (Table 3).

Phylogenetic analysis
Multiple sequence alignment was done to assess the
genetic similarity of the Kenyan isolates. The nucleotide
sequences of three A.bovis isolates were conserved while
one (MT160357) had three nucleotide polymorphisms at
position 267, 268 and 332 (Table 4). Anaplasma platys
sequences showed divergence of upto 4% (Table 5) with
regions of nucleotide polmorphism (Fig. 2). The A.
platys sequences MT163377 and MT163388 indicated
multiple single nucleotide polymorphism while the other
five isolates showed a single nucleotide polymorphism
(SNP) (Table 4). All the Anaplasma marginale se-
quences from this study were however highly conserved
sharing 97.6 to 100% nucleotide similarity (< 2.5% diver-
gence) (Table 6). For E.minasensis, two isolates had con-
served sequences while isolatess MT163430 and
MT163431 appeared to be genetically different showing
multiple SNPs (Table 4). The multiple sequence nucleo-
tide polymorphisms observed in the Kenyan isolates of
A.bovis, A.platys and E.minasensis indicate that various
strains of the pathogens may exist in the cattle in peri-
urban Nairobi.

Phylogenetic analysis was done to understand genetic
relatedness of the Kenyan isolates of the two genera with
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Table 2 Anaplasma species detected by BLASTn analysis of 165 rDNA gene sequences of the Kenyan isolates

Isolate Our accession number Matching sequence Accession no. of highest match E-value % ldentity
20 MT163376 A. platys MN630836.1 0.0 100.00
46 MT163377 A. platys MK408655.1 0.0 99.28
79 MT163378 A. platys MN630836.1 00 100.00
85 MT163379 A. platys MN630835.1 0.0 99.73
97 MT163380 A. platys MN401150.1 0.0 99.76
100 MT16338T1 A. platys MK408655.1 00 99.77
117 MT163382 A. platys MN630836.1 0.0 100.00
173 MT163387 A. platys MN630836.1 61>t 98.72
175 MT163388 A. platys MN401150.1 00 99.51
268 MT163383 A. platys MN401150.1 0.0 100.00
318 MT163384 A. platys MN159065.1 0.0 100.00
381 MT163385 A. platys MN630836.1 00 100.00
425 MT163386 A. platys MN861060.1 0.0 99.76
127 MT163438 A. marginale MK310488.1 0.0 99.76
139 MT163439 A. marginale MK310488.1 0.0 100.00
159 MT163440 A. marginale MK016525.1 0.0 100.00
168 MT163441 A. marginale MK310488.1 0.0 100.00
171 MT163442 A. marginale MK310488.1 0.0 100.00
172 MT163443 A. marginale MK016525.1 0.0 99.07
239 MT163444 A. marginale MK310488.1 0.0 99.04
243 MT163445 A. marginale MKO016525.1 0.0 100.00
342 MT163446 A. marginale MK310488.1 0.0 99.77
39 MT160355 A. bovis MT036513.1 0.0 100.00
75 MT160356 A. bovis MK028574.1 00 100.00
86 MT160357 A. bovis MT036513.1 0.0 99.28
326 MT160358 A. bovis MK028573.1 0.0 100.00
103 MT163684 Unidentified Anaplasma spp. KY924885.1 0.0 100.00
112 MT163683 Unidentified Anaplasma spp. KY924884.1 0.0 99.18
166 MT163685 Unidentified Anaplasma spp. KY924884.1 0.0 97.85

those of annotated sequences in GenBank (Figs. 3 and 4).
The Kenyan isolates of A. platys clustered in the same
clade as those of A. platys isolated from South Africa,
Nigeria and Iran. They were however distinct from an iso-
late from India accession number MG711856.1 (Fig. 3-
Clade 1). The Kenyan isolates of A. marginale were closely
related to those from Uganda, USA, Australia and Iran
(Clade 3). Anaplasma bovis isolates from Kenya were

closely related to those from China but distantly related to
those from South Korea and Japan (Clade 2). The uniden-
tified Anaplasma species from this study clustered in their
own clade separate from A. platys, A. marginale and A.
bovis (Clade 4). For the Ehrlichia species, phylogeny was
done to compare the detected E. minasensis genetic re-
latedness to other characterized species such as E. canis,
the dog pathogen and the more common ruminant

Table 3 Ehrlichia species detected by BLASTn analysis of 165 rDNA gene sequences

Isolate Our accession number Matching sequence Accession no. of highest match E-value % ldentity
32E MT163429 E. minasensis MH500005.1 0.0 100.00

86E MT163430 E. minasensis MH500005.1 0.0 99.42

175E MT163431 E. minasensis MH500005.1 00 99.71

181E MT163432 E. minasensis MH500005.1 0.0 100.00
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Table 4 Nucleotide polymorphisms among 16SrDNA sequences
of A. platys, A. bovis and E. minasensis Kenyan isolates

#Nucleotide position — Anaplasma platys

Isolate  PAccession no. 1 30 55 118 257 258 407 408
20 MT163376 A A A T C G T T
46 MT163377 - MSNP * G * x 7T T = *
79 MT163379 -SNP * * * * * * G *

* * * * * *

97 MT163380 -SNP *

o O o
*
*
*
*
*
*

100 MT163381 -SNP *
175 MT163388 - MSNP G G * * * * C
381 MT163385 -SNP * * * c * * *
*Nucleotide position — Ehrlichia minasensis
lsolate  PAccession no. 1 130 257 652
32E MT163429 G C A G
181E  MT163432 * * * *
86E MT163430 - MSNP * T C T
1758 MT163431-SNP A * * *
#Nucleotide position — Anaplasma bovis
Isolate  PAccession no. 267 268 332
39 MT160355 c G G
75 MT160356 * * *
326 MT160358 * * *

86 MT160357 - MSNP T T A

Key: °Numbers denotes the nucleotide position on the sequence. Conserved
nucleotide positions relative to the first sequence are indicated using asterisks
while the specific nucleotide is indicated where a substitution occurred.
MSNP- Multiple single sequence polymorphism, SNP-Single nucleotide
polymorphism. Nucleotides: T-thymine, C-cytosine, G-guanine, A-adenine.
PGenbank Accession numbers
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pathogen, E. ruminantium. The E. minasensis isolated in
this study grouped in one clade with other isolates from
USA, Australia and Brazil. These isolates were however
closely related to E. canis than E. ruminantium (Fig. 4).

Discussion

This study aimed at detecting and characterizing Ana-
plasma and Ehrlichia species infecting dairy cattle in
peri-urban Nairobi. This information is important in
guiding development of control and preventive measures
against the infections caused by these tick-borne
pathogens.

Overall, we observed more Anaplasma infections than
Ehrlichia in the study cattle population. Previous studies
in Kenya [7], Sudan [24] and Ethiopia [25] also reported
more Anaplasma pathogens than Ehlichia. This could
be explained by the wide diversity of Anaplasma com-
pared to Ehrlichia species that can potentially infect cat-
tle [3]. Moreover, spatial occurrence of tick-borne
pathogens has been associated with the presence of their
tick vectors [26], so it could be that tick vectors which
transmit Anaplasma species are more widespread in the
study area than those of Ehrlichia pathogens.

The distribution of the infections varied across sample
sub-counties. A higher proportion of cattle were infected
with Anaplasma and Ehrlichia spp. in Kasarani-Ruai
Sub-County compared to the other three study areas of
Dagoretti, Westlands and Lang’ata. A possible explan-
ation of this is that dairy farmers in Kasarani-Ruai prac-
tice mixed production system involving free and zero
grazing unlike the other areas where farmers practiced
exclusive zero-grazing. Various studies have shown that
free grazing cattle have higher risk of tick-borne infec-
tions than zero grazed cattle because of high exposure to
tick vectors [22].

Table 5 Pairwise percent identity matches of 16SrDNA sequences of A. platys isolated from cattle in Kenya

Isolates ApN173 ApN46 ApN268 ApN20 ApN117 ApN381 ApN425 ApN100 ApN85 ApN97 ApN175 ApN79 ApN318
ApN173 1000 97.8 96.2 96.2 96.8 98.1 984 984 984 984 959 98.1 984
ApN46 9738 100.0 97.6 976 98.1 99.3 99.5 99.5 99.5 98.6 96.7 98.1 98.3
ApN268 962 97.6 100.0 99.8 99.8 984 98.1 98.1 979 97.2 98.1 97.2 99.0
ApN20 962 97.6 99.8 100.0 99.8 984 98.1 98.1 979 97.2 98.1 97.2 99.0
ApN117 9638 98.1 99.8 99.8 100.0 98.8 98.6 98.6 984 97.6 98.6 97.6 99.0
ApN381 981 99.3 984 984 98.8 100.0 99.8 99.8 99.7 98.8 974 98.8 99.0
ApN425 984 99.5 98.1 98.1 986 99.8 100.0 100.0 100.0 99.1 97.2 986 988
ApN100 984 99.5 98.1 98.1 98.6 99.8 100.0 100.0 100.0 99.1 97.2 98.6 98.8
ApN85 984 99.5 979 979 984 99.7 100.0 100.0 100.0 100.0 97.6 99.7 99.7
ApN97 984 98.6 97.2 97.2 976 98.8 99.1 99.1 100.0 100.0 976 99.5 99.8
ApN175 959 96.7 98.1 98.1 98.6 974 97.2 97.2 976 97.6 100.0 97.6 99.0
ApN79 981 98.1 97.2 97.2 97.6 98.8 98.6 98.6 99.7 99.5 97.6 100.0 99.8
ApN318 984 98.3 99.0 99.0 99.0 99.0 983 98.8 99.7 99.8 99.0 99.8 100.0

Key: Abbreviation: ApN Anaplasma platys Nairobi, followed by the isolate number
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Fig. 2 Multiple sequence alignment of A. platys 16S rDNA, indicating areas of sequence nucleotide polymorphism (black arrows). Numbers at the
ends of each sequence indicate nucleotide lengths while the isolate names are indicated on the far left end of the nucleotide sequences

Anaplasma platys pathogens were detected in the study
cattle. Anaplasma platys has been considered an emerging
Anaplasma species whose clinical disease is yet to be de-
scribed [9, 27]. Previous studies in Algeria [2], Senegal
[27] and Tunisia [28] similarly reported this pathogen in
cattle. Yang et al. [29] suggested a possibility of domestic
ruminants acting as alternative hosts or reservoirs for A.
platys which is typically a canine pathogen [30]. Therefore,
the detection of this pathogen in cattle raises questions of
host specificity as earlier speculated [31].

Zobba et al. [9] noted that several domestic ruminants
can harbor a number of strains of A. platys although
these strains have different cell tropism compared to
those infecting dogs. The ruminant strains infect neutro-
phils and are thought to be the ancestral pathogens that
evolved to adopt to the canine platelets instead [9, 30].

We think that infection with A. platys may be associated
with co-existence of dogs and cattle in the same house-
holds, a common practice observed in the dairy farms in
peri-urban Nairobi. It is possible that tick-bites from
Rhipicephalus sanguineus which are the main vectors of
A. platys [32] may have played a role in the transmis-
sion. Screening of dogs for this pathogen can reveal if
they are acting as maintenance hosts of the parasite.

Previous studies have documented the zoonotic poten-
tial of A. platys causing human disease characterized by
headaches, intermittent edema and muscle pains [33]. In
this regard, detection of A. platys pathogens in this study
would indicate a possible zoonotic health risk to cattle
owners who are in constant contact with their cattle.

In this study, cattle were also found to be infected with
A. marginale, a common pathogen of cattle that has

Table 6 Pairwise percent identity matches of 16SIDNA sequences of A. marginale isolated from cattle in Kenya

Isolates AMN239 AMN172 AMN168 AMN139 AMN159 AMN171 AMN243 AMN127 AMN342
AMN239 100.0 9.1 976 976 976 976 976 98.1 983
AMN172 99.1 100.0 984 97.6 976 976 97.6 98.8 99.1
AMN168 976 984 100.0 976 976 976 97.6 99.1 99.1
AMN139 976 976 976 100.0 100.0 100.0 100.0 98.1 98.3
AMN159 976 976 976 100.0 100.0 100.0 100.0 98.1 983
AMN171 976 976 976 100.0 100.0 100.0 100.0 98.1 98.3
AMN243 976 976 976 100.0 100.0 100.0 100.0 98.1 98.3
AMN127 98.1 98.8 99.1 98.1 98.1 98.1 98.1 100.0 100.0
AMN342 983 99.1 99.1 98.3 983 983 98.3 100.0 100.0

Key: The numbers denote the nucleotide identity rates found between the sequences. Abbreviation: AMN Anaplasma marginale Nairobi, followed by the

isolate number
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Fig. 3 Maximum Likelihood tree of Anaplasma spp. constructed using partial sequences of 165 rDNA gene. The tree is drawn to scale with branch lengths
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Neorickettsia risticii NR_029162.1

been reported in Eastern Africa [22], Southern Africa
[34], North Africa [27] and West Africa [32]. It is not
surprising to detect this pathogen in cattle in Kenya
since Rhipicephalus (boophilus) tick species which are
the documented vectors of A. marginale are widespread
in Kenya. Anaplasma marginale causes a mild to severe
anemia depending on the susceptibility of the cattle [35].
However, cattle in this study were apparently healthy
suggesting a possible endemic situation or the animals
had a persistent infection (PI) state which is known to
occur in A. marginale infections [36]. Thus, infected ani-
mals can appear apparently healthy despite harboring
the pathogen.

Anaplasma bovis which is a monocytic pathogen of
ruminants was also detected in this study. Different tick

species in the genera Amblyomma and Rhipicephalus
have been documented to transmit this pathogen [6].
Similar studies have detected this pathogen in Kenya [7],
China [37], South Korea [3] Tunisia [38] and Algeria
[39]. Despite it causing a mild disease in cattle, some in-
fected animals have been shown to manifest with de-
creased weight gain, fever and lymphadenopathy [40].
Other studies have documented sub-clinical infection
with this parasite where animals don’t show clinical
signs of the disease despite the infection [41] and this
may have been the case in our study.

To date, bovine anaplasmosis in Kenya is mainly
known to be caused by A. marginale and to some extent
A. bovis [7, 16, 22]. However, we have detected A. platys
pathogens for the first time in cattle in Kenya possibly
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Fig. 4 Maximum Likelihood tree of Ehrlichia spp. constructed using partial sequences of 165 rDNA gene. The tree is drawn to scale, with branch
lengths measured in the number of substitutions per site. The analysis involved 4 nucleotide sequences from this study and 10 others obtained
from Genbank. The phylogeny shows the relatedness of E. minasensis isolated from this study marked with blue dot with other isolates from USA,
Brazil and Australia and its relation to E. canis and E. ruminantium. Anaplasma phagocytophilum was used as the outgroup

Anaplasma phagocytophilum MG976767.1

contributing equally to the disease burden in dairy cattle.
Further studies to investigate this pathogen using more
specific genes such as membrane surface proteins
(Msps) [42] are justified.

An emerging pathogen E. minasensis in the Ehrlichia
genera was also detected in this study. This novel patho-
gen was initially reported in Canada [43] and Brazil [44]
but has since been isolated in Ethiopia [45], South Africa
[46], Pakistan [47] and China [48]. The clinical disease
due to E. minasensis is variable with some reports of se-
vere disease [14] and at times sub-clinical disease as ob-
served in this study [45]. Screening of ticks collected from
animals may confirm if the pathogen is common in cattle.

Although the specific ticks that transmit E. minasensis
have not been well studied [49], its detection and trans-
stadial transmission by Rhipicephalus microplus ticks
has been documented [50]. Other tick species may still
transmit the pathogen in areas where R. microplus is ab-
sent [45]. Indeed, Iweriebor et al. [46] detected this
pathogen from R. appendiculatus, R. evertsi eversi, R.
sanguineus and Ambylomma hebraeum ticks. Some of
these tick species were observed to be infesting some an-
imals in this study. It is possible that these ticks could
be involved in transmission of this pathogen.

Similar to other studies [38, 51], phylogenetic analysis
based on 16S rDNA was used to infer genetic diversity
of Anaplasma and Ehrlichia species. However, other au-
thors have used 16S rDNA gene in combination with
other genes such as heat shock protein (groEL), citrate

synthase (gltA), 23S rDNA and major surface protein 4
gene (msp4) [2, 52]. Combined gene assays have been
used to enhance sensitivity since genes with multiple
copies such as membrane surface proteins (MSP) are
more sensitive for detection of Anaplasmataceae while
more conserved genes (16S rDNA) are useful for data-
base cross matching and sequence comparisons [53]. In
this study, A. marginale isolates were found to be highly
conserved indicating sequence divergence of less than
2.5% and clustered together with those from USA,
Uganda, Iran and Australia similar to findings by Rjeibi
et al. [39]. Anaplasma bovis, A. platys pathogens and E.
minasensis strains detected in this study indicated cer-
tain levels of nucleotide polymorphism suggesting vari-
ous strains of the pathogens may exist in the study
cattle. This may be related to the increased cattle move-
ment from other regions of the country for slaughter at
the country’s major export abbatoirs located in Nairobi
County. Extensive animal movement has been associated
with development of new strains and introduction of the
tick-borne pathogens to new geographic areas [38, 54].
In agreement with previous studies, phylogenetic ana-
lysis also indicated that E. minasensis is closely related
to E. canis and distantly related to E. ruminantium des-
pite infecting similar hosts [12, 55]. The clinical presen-
tation of E. minasensis in cattle has been observed to be
similar to the acute form of disease by E. canis in dogs
[44, 56]. Cabezas-Cruz et al. [57] links the close related-
ness of the two pathogens to possible evolution of E.
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minasensis from highly variable strains of E. canis. The
detection of this novel Ehrlichia species suggests that it
could be circulating in cattle in Kenya and its pathogen-
icity in the affected animals needs to be determined.

Despite the animals in this study not presenting with
the clinical signs of the diseases caused by the pathogens
they harbor, poor animal husbandry practices which are
commonly practiced in smallholder dairy farms in peri-
urban areas of Nairobi [58], causes stress to the animals
consequently predisposing them to possible flaring up of
clinical disease and mortalities [59]. The detection of
these pathogen therefore highlights the importance of
continued investigation into tick-borne diseases and the
need for effective diagnosis and prevention.

Conclusion

The dairy cattle from peri-urban Nairobi, Kenya are in-
fected with a range of Anaplasma species and Ehrlichia
minasensis even though clinical disease was not evident.
There is need for accurate diagnosis and effective tick
control so as to reduce infection of cattle with these
pathogens. To the best of our knowledge, this study pro-
vided first reports of cattle infected with A. platys and E.
minasensis pathogens in Kenya. Extensive epidemio-
logical studies would be necessary to determine the ex-
tent and pathogenicity of the newly detected A. platys
and E. minasensis in cattle. Moreover, investigation into
tick vectors involved in their transmission will be needed
to inform strategic disease management and control.
Moreover, there is need for further investigation of the
unidentified Anaplasma species using more specific
genes such as membrane surface proteins (Msps) [42].

Methods

Study area and design

The study area and design have been described in detail
previously [23]. This was a cross-sectional study under-
taken between January and May 2017. For purposes of
data collection, Nairobi County was divided into four
quadrants and for each quadrant purposive sampling
was used to select the sub-county with high cattle popu-
lation. Dairy farms in the four sub-counties in peri-
urban Nairobi, namely; Dagoretti, Lang’ata, Kasarani-
Ruai and Westlands were included to this study. These
sub-counties are part of the peri-urban areas of the
Nairobi County where dairy production has been estab-
lished to meet the high milk demands of the urban
population. Animals of different age-groups ranging
from 3 months to 8 years were randomly selected and
sampled for whole blood.

Collection of cattle blood samples
Three milliliter of whole blood were collected in ethyl-
enediaminetetraacetic acid (EDTA)-coated vacutainers
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from the coccygeal vein of 306 apparently healthy dairy
cattle. The samples were collected as follows: Dagoretti
(n=116), Lang’ata (n =55), Kasarani-Ruai (7 =110) and
Westlands (n = 25). The samples were then transported
in an ice-box to the Molecular Laboratory at the Depart-
ment of Public Health, Pharmacology and Toxicology of
the University of Nairobi and stored at -20°C pending
subsequent analysis.

Extraction of Anaplasma and Ehrlichia DNAs

Whole blood genomic DNA (gDNA) was extracted from
aliquots of 200 pl using QIAamp DNA Blood Mini Kit
(Qiagen, Hilden, Germany) following manufacturer’s in-
structions. The DNA concentration and quality were
assessed using QIAxpert (Qiagen, Hilden, Germany).
DNA samples were then stored at — 20° C.

Primers design and PCR-amplification of Anaplasma and
Ehrlichia DNA

A forward primer, ANAF 5 -TAGTGGCAGACGGG
TGAGTA-3" and a reverse ANAR 5'-AATTCCGAAC
AACGCTTGCC-3" targeting an approximately 424 bp
of Anaplasma 16S rDNA were designed using the
Primer-BLAST tool of the National Center for Biotech-
nology Information [60] (NCBI) (www.ncbi.nlm.nih.gov/
tools/primer-blast).

A forward primer EHRF 5-AGCTGGTCTGAGAG
GACGAT-3" and a reverse primer EHRR 5'-GAGTGC
CCAGCATTACCTGT-3" targeting an approximately
838 bp of Ehrlichia 16S rDNA were also designed. PCR
amplifications were performed using a thermal cycler
(Applied biosystems Veriti 96 well, ThermoFisher). The
Anaplasma and Ehrlichia 16S rDNA were amplified in a
final volume of 20 pl reaction, each containing 3 ul of
genomic DNA, 10 pl Master-mix (Taq PCR 2x master-
mix, Qiagen, Germany) and 10 pM final concentration
of each primer. The thermocycling conditions for Ana-
plasma involved a pre-denaturation at 95° C for 5 min
followed by 40 cycles of denaturation at 95° C for 45s,
annealing at 57° C for 45s and extension at 72° C for
45s. A final cycle of extension at 72°C for 7 min was
performed. The amplification conditions for Ehrlichia
16S rDNA involved an initial denaturation cycle at 95°
C for 5min followed by 35cycles of denaturation at
95°C for 45 s, annealing at 62° C for 45 s and extension
at 72° C for 45 s. The amplification cycles were followed
by a final cycle of extension at 72° C for 7 min. Double
distilled water was used as negative control for both as-
says. The amplified products were electrophoresed using
1.5% agarose gel in Tris-Borate-EDTA (TBE) buffer, pH
8, stained with Ethidium Bromide and visualized using
UV-illuminator (GelMax® Imager, UK). The sizes of the
amplicons were determined using molecular ladder (Gel-
pilot 1 kb plus ladder (100), Qiagen, Germany).
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Purification and sequencing of Anaplasma and Ehrlichia
DNA

PCR amplicons in gels were excised and purified using
QIAquick Gel Extraction Kit (Qiagen, GmbH, Germany)
following the manufacturer’s protocol. The purified
DNA were sequenced at Macrogen Europe Laboratories
(Amsterdam, The Netherlands). Sequencing was done
using the same forward and reverse primers as for the
PCR reactions. The obtained sequences were viewed and
manually verified using chromatogram peaks, edited and
assembled using CLC Main Workbench 6.8.3 software
(CLC bio, Qiagen GmbH, Germany).

Data analysis

Bioinformatics analysis of the parasite 16S rDNA se-
quences was done by using Basic Local Alignment
Search Tooln (BLASTn), multiple sequence alignment
and phylogenetic analyses. Sequence identities of the
Anaplasma and Ehrlichia species were confirmed by
BLASTn analysis [61] at https://blast.ncbinlm.nih.gov/
Blast.cgi. Multiple sequence alignment was done using
Log-Expectation (MUSCLE) v3.8.31 [62]. Sequence simi-
larity was calculated using Clustal Omega to obtain
identity matrixs [63]. A phylogenetic reconstruction was
done using MEGA 6.0 [64]. The evolutionary history
was inferred by using the Maximum Likelihood method
based on the Tamura-Nei model [65]. Initial trees for
the heuristic search were obtained automatically by ap-
plying Neighbor-Join and BioN] algorithms to a matrix
of pairwise distances estimated using the Maximum
Composite Likelihood (MCL) approach and then select-
ing the topology with superior log likelihood value. All
positions containing gaps and missing data were elimi-
nated. The percentage of replicate trees in which the as-
sociated taxa clustered together in the bootstrap test
(1000 replicates) was shown next to the branches.

Nucleotide sequence accession numbers

The partial 16S rDNA sequences obtained in this study
were deposited in the GenBank under the following ac-
cession numbers; MT163376 to MT163388 for A. platys,
MT160355 to MT160358 for A. bovis, MT163438 to
MT163446 for A. marginale, MT163683 to MT163685
for unidentified Anaplasma species and MT163429 to
MT163432 for E. minasensis.
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