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Abstract

Background: Avian pathogenic Escherichia coli (APEC) can cause various extraintestinal infections in poultry,
resulting in massive economic losses in poultry industry. In addition, some avian E. coli strains may have zoonotic
potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this
pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated E. coli
isolates from Central European countries with a focus on the Czech Republic.

Results: Of 95 clinical isolates subjected to preliminary characterization, 32 were selected for whole-genome
sequencing. A multi resistant phenotype was detected in a majority of the sequenced strains with the predominant
resistance to β-lactams and quinolones being associated with TEM-type beta-lactamase genes and chromosomal
gyrA mutations respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived
from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related
isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a possible local spread of these clones.
Besides, the ST429 cluster carried blaCMY-2, − 59 genes for AmpC beta-lactamase and isolates of both clusters were
generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain
virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic
APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC.

Conclusions: The results support the concept of local spread of virulent APEC clones, as well as of zoonotic
potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these
pathogenic strains.
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Background
Avian colibacillosis is a complex of several localized or
systemic syndromes, affecting poultry of all age and pro-
duction categories. It comprises yolk sac infection and
omphalitis, leading to increased mortality rates in newly
hatched chicks, cellulitis in broilers or reproductive tract
infections in laying hens. Other forms of manifestation
include swollen head syndrome (SHS), respiratory infec-
tions and septicemia which frequently result in death or
chronic forms of infection. Avian colibacillosis thus rep-
resents a great economic burden for the poultry industry
[1]. Despite its importance as a significant cause of dis-
ease, the pathogenesis of these infections is not utterly
understood. For a long time APEC strains were consid-
ered merely opportunistic pathogens, predominantly, but
not exclusively associated with O1, O2, O8, O78 and
several other serogroups [2]. It has been demonstrated
that disease-associated E. coli strains encode multiple
putative virulence genes and significantly differ from
commensals, particularly in the carriage of the ColV
plasmid-associated genes, which are considered markers
of poultry-adapted pathogenic strains [3–5].
The ability to cause colibacillosis in chicken defines

the APEC (avian-pathogenic E. coli) pathotype. However,
not every strain isolated from diseased chicken carries
typical virulence-associated genes, underlining an oppor-
tunistic character of some types of E. coli infections [6].
On the other hand, APEC-like strains (carrying APEC-
associated virulence traits) can be found also in the gut
of healthy chicken [7, 8]. It has been suggested by
Maturana et al. [9] that the APEC population composes
of distinct subpathotypes associated with different syn-
dromes, similar to the human extraintestinal pathogenic
E. coli (ExPEC). Interestingly, the authors showed that
SHS and omphalitis isolates formed two distinct groups
differing in virulence, suggesting primary and opportun-
istic character of those infections, respectively. Similarly,
chronic salpingitis-peritonitis syndrome resulting from
an ascending infection and an acute peritonitis without
salpingitis, probably originating from respiratory infec-
tion or gut translocation after a stress insult, can be dis-
tinguished in layers [10–12].
There is a close genetic relationship between APEC

and human ExPEC. Zoonotic potential of poultry strains
has been implicated. ExPEC are the main cause of
urinary-tract infections (as so called uropathogenic E.
coli, UPEC) in humans and meningitis in neonates (neo-
natal-meningitis E. coli, NMEC), and are also associated
with bacteremia, sepsis, cellulitis and other potentially
fatal infections [13]. Similar to APEC, these strains are
characterized by the presence of various virulence-
associated genes, participating in adhesion and
colonization of different tissues, invasion of internal or-
gans, iron acquisition and avoiding host’s immune

responses. ExPEC are typically associated with the
phylogenetic groups B2 and D, in contrast to commensal
and intestinal pathogenic strains derived from groups A
and B1 [14] and to APEC, which are highly variable in
distribution to various phylogenetic groups [7]. Although
there is no specific set of genes to define the subpatho-
types [15, 16], APEC, UPEC and NMEC generally form
genetically distinct groups. There is, however, a substan-
tial overlap especially within the B2 phylogenetic group,
which comprises strains isolated from both humans and
chickens, showing high virulence in the chicken infec-
tion model and in the neonatal rat meningitis model
with low or no host specifity [16–18]. Moreover, an iso-
late showing high virulence in the rat meningitis model
has been found in faeces of a healthy chicken [5], an-
other finding that suggests an association between
poultry and poultry products as a potential source of hu-
man pathogens.
Recently, several highly virulent and resistant ExPEC

lineages with worldwide distribution have emerged (e.g.
ST131, ST95 etc.) [19]. Whereas some of them are asso-
ciated exclusively with human infections, others are fre-
quently isolated from diseased poultry or poultry
products [20–25]. It is however difficult to assess the
real importance of poultry as a source of human infec-
tions. Mechanisms of transmission of pathogenic clones
through the production chain to humans are very com-
plex and not quite elucidated, as well as the relationships
between genetic „arsenal “of virulence and resistance-
associated genes and pathogenesis of the disease.
Whole-genome sequencing (WGS) represents a revolu-
tionary tool to study these mechanisms in their com-
plexity [26]. Moreover, an immense variability of APEC
pathotype and differences in geographic distribution of
specific clones underlines the importance of mapping
the local situation. While several papers have reported
occurrence of highly pathogenic APEC clones in differ-
ent counries, the information for the Central Europe
have been sporadic or is lacking [27].

Results
Samples collection and preliminary characterization
A total of 95 isolates were subjected to preliminary
characterization including serogrouping, antimicrobial
resistance (AMR) testing and PCR detection of virulence
and antibiotic resistance genes. The disc diffusion test
showed that 69.5% were resistant to three or more
groups of antimicrobials, which we considered as a cri-
terion of multiresistance. Resistance to ampicillin was re-
corded in 78 isolates (82.0%), followed by resistance to
nalidixic acid (62 isolates; 65.3%), sulphonamides (45;
47.4%) and sulphonamides-trimethoprim (28; 29.5%).
Nineteen isolates (20.0%) showed reduced susceptibility
to ciprofloxacin (additional file 1 – Figure 1). Using four
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antisera (O1, O8, O18 and O78), 49 isolates (52%) were
typeable, with predominant serogroups O1 (30; 32%)
and O8 (13; 14%). Four isolates reacted to O78 and two
against O18 antisera.
The blaTEM gene was detected in 45 isolates (47.4%).

Other prevalent genes detected by PCR included tet(A)
(26 isolates; 27.4%) and sul2 (28.4%). As for virulence
genes, most isolates carried typical APEC plasmid-
associated genes iss (75; 78.9%), iroN (73; 76.8%), iut(A)
(68; 71.6%), whereas others, plasmid- or chromosome-
associated genes, e.g. cvaC (49; 51.6%), frzorf4 (44; 46.3%),
tsh (32; 33.7%) and felA (7; 7.4%) were less prevalent.

In silico serotyping, MLST and phylogenetic analysis of 32
selected isolates
We found a diversity of serogroups in the collection of
32 isolates subjected to whole genome sequencing.
Overall 14 different O types and 16 H types were identi-
fied and 10 isolates failed to be typed by WGS (the re-
sults are summarized in Table 1, additional file 1).
Except for serogroup O8 (7 isolates), the remaining ser-
ogroups were only represented by one or two isolates.
The predominance of O8 serogroup appeared as a selec-
tion bias since only Czech isolates were selected for se-
quencing. Of the O8 serogroup, six isolates belonged to
the O8:H9 serotype, most of them to ST23 type.
The isolates were derived from all phylogroups accord-

ing to the Clermont scheme [28] except for the group E:
group F (3 isolates), B2 (9 isolates), D (2 isolates), clade I
(1 isolate), A (4 isolates), C (6 isolates), B1 (7 isolates).
The MLST analysis identified 22 distinct sequence

types (please see Table 1 in the supplementary material
and Fig. 1), most of them represented only by a single
isolate (ST352, ST95, ST140, ST354, ST93, ST4110,
ST1249, ST1914, ST770, ST2223, ST746, ST1249,
ST162, ST1157, ST602, ST1841, ST533, ST7104). Two
isolates were typed as ST117 belonging to the phylogen-
etic group F; ST429 of the B2 group and ST23 of the C
group were detected in 4 and 6 isolates, respectively.
The core genome consisted of 2763 genes (55.28 kbp).

The phylogenetic tree based on the core SNPs corre-
sponded to the structure of E. coli phylogeny. Groups F, D
and clade I were represented by only a few isolates and
did not form any distinct clusters except the minor sub-
cluster of the two group D isolates; two ST117 isolates
from the F phylogroup were unrelated to other isolate of F
phylogroup (ST354) and formed their own distinct clade.
In the B2 cluster two subclusters (B2a, B2b) were found;
B2b subcluster was formed by four closely related ST429
isolates and one ST4110. Another cluster included isolates
from phylogroups A, C and B1. Interestingly, all isolates of
the C group belonged to ST23, O8:H9 serotype (with one
exception of O78:H9 serotype).

Identification of resistance genes
blaTEM-1 (9/32; 28.1%) and a combination of blaTEM-106,

135 (6/32; 18.8%) belonged amongst the most prevalent
resistance genes. A combination of plasmid-mediated β-
lactamase genes blaCMY-2, − 59 was detected in four iso-
lates (12.5%), three of them belonging to the ST429, the
remainig one to ST354. PMQR (plasmid-mediated quin-
olone resistance) gene qnrS1 was carried by seven iso-
lates (21.8%) within sequence types 23 and 429. Other
identified AMR genes were sul1 (7/32; 21.8%), sul2 (8/
32; 25.0%), dfrA14 (1/32; 3.0%), dfrA15 (4/32; 12.5%),
dfrA5 (1/32; 3.0%), tet(A) (12/32; 37.5%), tet(B) (2/32;
6.3%), aadA (6/32; 18.8%), aac (3)-VIa (3/32; 9.4%), ant
(2)-1a (1/32; 3.0%), aph (3)-1b (6/32; 18.8%), aph (3)-1a
(2/32; 6.3%), aph (6)-1d (5/32; 15.6%), catA1 (2/32;
6.3%), floR (1/32; 3.0%) and blaTEM-30 (1/32; 3,0%). In
addition, all isolates showed the presence of genes en-
coding components of various multidrug efflux pumps,
participating in resistance to aminoglycosides, macro-
lides and fluoroquinolones. Except for qnrS1, which is
associated with partial resistance to fluoroquinolones, no
other PMQR gene was detected. Reduced susceptibility
to quinolones in most isolates appeared to be due to
chromosomal mutations, especially in the gyrA gene (21;
65.6%), to lesser extent also in parC (5; 15.6%) and parE
(1; 3%). In five ST23 isolates (15.6%), a mutation in the
ampC promoter was detected. (For overview of resist-
ance genes, please see the Table 1, additional file 1.)

Identification of virulence genes
The genomic analysis confirmed a great diversity of se-
lected isolates (see Fig. 2 and supplementary material,
file 3). Overall, factors associated with adhesion and in-
vasion, as well as siderophores were found in most iso-
lates; more than 90% of isolates encoded F1 fimbriae,
curli, E. coli common pilus and enterobactin. All but one
isolate carried ibeB gene, while ibeA was present mostly
in B2 and F phylogenetic groups, but not in isolates from
other groups. A siderophore system salmochelin (81%),
haemolysin F (90.6%) and serum-resistance associated
proteins, Iss (87.5%) and TraT (78%) were present in
most isolates with generally equal distribution in all
phylogenetic groups. Full SitABCD iron transport system
was detected in 78% isolates, outer membrane protease
(OmpT) and colicin V synthesis protein (CvaC) in 68.8
and 59% isolates, respectively.
Several virulence- genes were associated with particular

branches of the phylogenetic tree. For example, Stg fim-
briae, Ycb fimbriae, CFA/1 fimbriae and genes associated
with ETT2 (E. coli type III secretion system 2) were com-
mon in B1 and C groups, but almost or entirely absent in
B2 phylogenetic group. In contrast, yersiniabactin, aero-
bactin and hemin receptor (chuA), as well as OmpA, cap-
sular antigens (kpsD, kpsT, kpsM), pathogenicity-island
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marker malX, uropathopathogenic-specific protein (usp)
and afore-mentioned brain-endothelium invasin (ibeA)
appeared to be B2 group-associated.
Lastly, some well known virulence-associated genes

were detected uniquely amongst our isolates. For ex-
ample, complete pap operon was present only in the one
ST95 isolate, as well as the intimin-like adhesin (fdeC).
Similarly, neuC gene was found in ST95, ST140 and two
ST429 isolates (all B2 phylogroup) and K99 (F5) fimbriae
only in ST354 isolate of the F phylogroup. For overview
of all virulence-associated genes detected please see the
Table 2, additional file 2.

Identification of plasmid replicons
All but one isolate harboured a replicon of the F incompati-
bility group, FIB replicon being the most commonly detected
(31/32 isolates; 96.9%). At the same time, Col replicons were
detected in most (22/32; 68.8%) isolates. Groups IncB/O/K/Z
(10; 31.3%) and IncX1 (6; 18.8%) also appeared relatively fre-
quently, while others were identified only in individual iso-
lates. The IncHI1B replicon was identified in two isolates of
the ST429 and ST23 cluster, respectively. Overall, types and
number of replicons varied greatly even within the two
closely related clusters. (For overview of replicons, please see
the Table 1, additional file 1.)

Fig. 1 Phylogenetic analysis of sequenced isolates. – phylogroup F; – phylogroup B2; – phylogroup D;

– clade I; – phylogroup A; – phylogroup C; – phylogroup B1

Papouskova et al. BMC Veterinary Research          (2020) 16:189 Page 4 of 10



Discussion
The aim of current study was to evaluate diversity of
colibacillosis-associated isolates from the Czech Repub-
lic. Indeed, analysis showed an immense phenotypic and
genotypic variability, the isolates differing greatly in their
antimicrobial-resistance phenotype, virulence genes pro-
file and plasmid content, together having little in com-
mon. As generally acknowledged, there is no specific
combination of virulence genes that would accurately
define the APEC pathotype [15]. The most prevalent
APEC genes are also frequently present in commensal
strains. There is an abundance of adhesins and iron-
transporting systems, which may be considered essential
prerequsites of extraintestinal pathogenicity in all types
of avian and mammalian disease, but also fitness factors
enabling asymptomatic colonization of healthy hosts and
effective transmission. Presence of Col-V-associated
genes such as iroN, iss, iutA, ompT etc. is characteristic
for most APEC, more than UPEC and NMEC [7], never-
theless, their exact role in pathogenesis remains unclear
or controversial [29, 30]. Col-V-like plasmids are, how-
ever, acknowledged as markers of poultry-adapted
pathogenic strains [5, 21].
As expected, the phylogenetic analysis also revealed a

substantial diversity of isolates, that originated from all
phylogenetic groups with the exception of group E, the
most prevalent was B2 phylogroup, which is, along with
D, considered typical group for human ExPEC [14].

However, the second most prevalent phylogroup was B1
(7 isolates), a group commonly associated with intestinal
pathogenic or commensal fecal strains [31]. Interestingly,
there were notable differences in virulence trait distribu-
tion among phylogenetic groups, although the isolates
had been collected from the same types of infection. The
idea of pathogenic strains with quite a different combin-
ation of virulence genes with alternative functions caus-
ing the same clinical disease has been proposed by
Mokady et al. [32] and points out the importance of
horizontal gene transfer enabling rapid adaptation to
new niches by expression of certain genes in a different
genetic background [33]. Notably, it was the presence of
typical Col-V plasmid-associated genes such as ompT,
iss, cvaC, iro and sit (but suprisingly not iut, iuc for aero-
bactin) that were equally distributed among isolates
from all phylogenetic groups.
Despite the overall diversity, the phylogenetic analysis

revealed two clusters (ST429, group B2, and ST23,
groups C), both containing four similar isolates that
were obtained from different farms in Northern Mor-
avia. Two ST23 isolates identical according to the core
genome analysis were collected at the same day on two
different farms, indicating a possible clonal spread in the
locality. Both were isolates of yolk sac infection of one-
day-old chicken, however, coming from different hatch-
eries. Colibacillosis outbreaks caused by a specific patho-
genic clone have been repeatedly reported (e.g. [12, 34]).

Fig. 2 Selected virulence-associated genes in sequenced isolates. – phylogroup F; – phylogroup B2; –

phylogroup D; – clade I; – phylogroup A; – phylogroup C; – phylogroup B1. Red field – 100%

ID; orange field - ≥95% ID
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On the other hand, a closely related isolate (25 SNPs dif-
ference) had been collected on an unrelated farm ap-
proximately half a year before. Similar situation was
observed in the ST429 cluster – the most similar isolates
were from the same date and were separated from the
other isolates of this cluster (with 26–61 SNPs differ-
ence) by a span of several months. One may speculate
these isolates could have a common origin, however, the
question, whether these clones may become established
somehow in the production chain and circulate between
flocks or farms for a long time period or whether a re-
peated introduction occurs from a specific source, re-
mains unanswered. The isolates of the ST429 cluster
were obtained from one-day-old chicken coming from
four different hatcheries. Although an evidence for
„pseudo-vertical “spread through the production pyra-
mid has been proposed recently [35], this fact suggests
that the hatchery is probably not the source. The prob-
lem of possible reservoir of pathogenic strains for North-
ern Moravian farms should be addressed more closely in
the future.
Both ST429 and ST23 are considered as predominant

APEC lineages that are frequently isolated from poultry
with clinically manifested disease [34, 36], but also
poultry products [25]. Although representing quite unre-
lated APEC clades, they both appear to be poultry-
specific, with little pathogenic potential for humans [7,
16]. In fact, an APEC strain χ7122 (ST23) has been
shown to be phylogenetically closer to human ETEC
(without any enterotoxin production) than to ExPEC
[37]. Therefore, in our collection, one may consider the
two clusters, ST429 and ST23, representatives of phylo-
genetically distant lineages presumably associated with
the same disease, again underlining the importance of
accessory genome in virulence potential of APEC. The
ST429 isolates had a slightly higher average number of
virulence-asociated genes than ST23 isolates (172 vs.
154) including genes encoding capsule production
(kpsM, T, D, neuC), invasins (ibeA, ompA) and iron-
binding systems (aerobactin, yersiniabactin, chu) that the
ST23 cluster (not all ST23 isolates) lacked. In contrast,
ST23 isolates were characterized by presence of Stg fim-
briae and ETT2-related genes. This transport system,
even in degenerate state, has been reported to enhance
virulence in APEC [38]. Both sequence types coded for
curli, F1 fimbriae, salmochelin, OmpT, TraT, Iss, how-
ever, only Iro, OmpT nad Iss have been reported to
occur in significantly higher prevalence in APEC than
avian-faecal E. coli (AFEC) [4]. Nevertheless, it probably
supports the idea of feasibility and usefulness of PCR
typing targeting such potential markers of APEC derived
from distant phylogenetic groups (e.g. [3]).
Two isolates were assigned to ST117 (phylogenetic

group F). Recent studies indicate that this sequence type

comprises important APEC lineages that are repeatedly
reported from colibacillosis outbreaks in different coun-
tries [24, 36, 39–41], but are also highlighted as potential
zoonotic pathogens for containing ExPEC-related viru-
lence genes and being isolated from both retail poultry
meat and human clinical urinary tract infections [42]. The
remaining phylogroup F isolate was ST354, another po-
tentially zoonotic ST, reported particularly from human
and animal healthcare facilities and characterized by com-
mon resistance to antimicrobials including fluoroquino-
lones [43, 44]. This isolate carried blaCMY-2,-59 and
encoded multiple adhesins including K99/F5 fimbriae,
which were not found anywhere else. Both ST117 and
ST354 were highly prevalent among ESBL/AmpC positive
chicken isolates and it has been proposed that these line-
ages exhibit particularly effective host colonization and
persistence in the environment [40, 44].
ST95 is probably the most important pandemic ExPEC

lineage that is frequently isolated from chickens [22, 24,
45]. In fact, it may represent, along with closely related
ST140, that part of B2 phylogroup where human ExPEC
and APEC form a single „subpathotype “of genetically
indistingushable strains [16–18]. In humans, ST95 was
associated with bloodstream infections, UTIs and men-
ingitis, often characterized by serogroups O1, O2, O45,
flagellar antigen H7 and K1 capsule (typical feature of
NMEC) and, in contrast to other pandemic lineages,
relatively low tendency to acquire antimicrobial resis-
tence [19, 46]. Indeed, not every ST95 seems to be zoo-
notic, as was shown with APEC O1 in a murine
infectious model [47]. On the other hand, our ST95 iso-
late fulfilled the molecular criteria for UPEC as defined
by Johnson et al. [48].
Antimicrobial-resistance profile ranged from full sus-

ceptibility to all antimicrobials tested to multidrug resist-
ance, with dominating resistance to β-lactams (ampicillin)
and first generation quinolones (nalidixic acid). Resistance
to β-lactams was associated largely with TEM-type β-
lactamase production. No selection procedure to obtain
ESBL/AmpC producing isolates had been used and we did
not detect any blaCTX-M gene, while four isolates carried
blaCMY-2 gene. This gene, along with blaCTX-M-1, is the
most common ESBL/AmpC β-lactamase in poultry E. coli
isolates [49]. While in most quinolone-resistant isolates a
chromosomal mutation in gyrA gene was detected, seven
both susceptible or resistant isolates carried qnrS-1. Co-
occurence of bla-CMY-2, − 59 and qnrS-1 was observed in
two isolates from the ST429 cluster and all but one ST23
isolates carried the remaining qnrS-1 genes. One may as-
sume that the afore-mentioned fact that these STs are not
commonly associated with human disease does not make
them epidemiologically irrelevant, for they may still serve
as a source of resistance or virulence determinants in hori-
zontal gene transfer. Indeed, the importance of horizontal
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gene transfer may be assumed from the detection of a
multitude of replicons previously associated with both re-
sistance and virulence gene spread [50–54].

Conclusions
Despite its limitations due to relatively small number of
isolates of completely sequenced isolates, this study
could be considered a basic overview of the diversity of
colibacillosis-associated E. coli isolates and a delineation
of paths that are to be followed in more extensive moni-
toring of virulent clones occuring in central Europe, as
well as more elaborate analysis of their phylogenetic
background and accessory genome and the role they
play in adaptation of different APEC lineages to different
hosts, infection types and routes of transmission. Gen-
omic analysis of a collection of poultry colibacillosis-
associated isolates revealed two clusters of phylogenetic-
ally distant lineages (ST429 and ST23) alongside a great
diversity of other sequence types. In general, the collec-
tion showed a split into isolates from phylogroups F, B2
and D on one side and A, C and B1 on the other, dis-
tinctly differing in distribution of several virulence-
associated genes. Clearly more research is needed to as-
sess whether they differ also in their virulence potential
and other features.

Methods
Strains isolation and preliminary characterisation
Samples have been collected since 2014 at various Czech,
Slovakian and Romanian farms with increased mortality due
to colibacillosis: mostly internal organ swabs from one-day
chicken with yolk sac infection and septicemia or from
broilers and layers suffering from colisepticemia and polyser-
ositis (peritonitis, perihepatitis, pericarditis, airsaculitis or
haemorrhagic septicemia). The origin of isolates is shown in
the Table 4 (additional file 2). The chicken, from which the
sequenced isolates were obtained, originated from 4 different
hatcheries in the Czech Republic, Slovakia and Hungary. For
3 isolates, the hatchery has not been traced back. For the
codes indicating the farm and hatchery of origin please see
Table 4 (additional file 2). The samples were cultivated on
McConkey agar (37 °C for 18 h aerobically) (Oxoid, UK),
subcultivated on Columbia blood agar (the same conditions)
(Oxoid, UK) and identified by MALDI-TOF MS (Bruker-
Daltonics, Germany). Antibiotic susceptibility to selected an-
timicrobials – ampicillin (10 μg), amoxicillin-clavulanic acid
(20/10 μg), cephalotin (30 μg), sulphonamide compounds
(250–300 μg), gentamicin (10 μg), nalidixic acid (30 μg),
sulphamethoxasol-trimethoprim (1,25/23,75 μg), tetracycline
(30 μg), chloramphenicol (30 μg), ciprofloxacin (5 μg) – was
tested by disc diffusion method (Oxoid, UK) and
interpreted according to the Clinical and Laboratory
Standard Institute [55].

Within preliminary characterization of 95 isolates, a
slide agglutination test with four commercial antisera
(O1, O8, O18 and O78) was performed according to the
manufacturer’s instructions (Denka Seiken, Japan). Pres-
ence of several selected resistance and virulence-
associated genes (additional file 3 – table 3) was detected
by PCR. After this preliminary characterization 32
strains were selected for whole-genome sequencing. To
encompass the greatest possible diversity, we exluded
isolates from the same individual, the same farm or the
same date of isolation, if they showed the identical re-
sistance phenotype and gene profile.

DNA extraction and whole-genome sequencing
NucleoSpin Tissue DNA extraction kit (Macherey-Nagel,
Germany) following manufacturer’s instructions was used
to obtain pure DNA. The DNA libraries were prepared
with Nextera XT Library preparation kit (Illumina, USA).
Finally, Illumina Next-Seq and Mi-Seq platforms were
used for the whole-genome sequencing to obtain 2 × 150-
bp or 2 × 300-bp paired-end reads, respectively.

Data processing
Adaptor residues and low quality (Q ≤ 20) ends were re-
moved from the reads using Trimmomatic v0.36 [56]. De
novo assembly was performed using SPAdes assembler
v3.12.0 [57]. Contigs were submitted to online typing tools
(Centre for Genomic Epidemiology, Technical University of
Denmark; http://www.genomicepidemiology.org/): ResFin-
der 3.1 [58], PlasmidFinder 2.0 [59], SeroTypeFinder 2.0
[60], MLST 2.0 [61]. One isolate was assigned as a novel
ST8874 by Enterobase. Presence of resistance and virulence
genes was predicted using CARD (Comprehensive Anti-
biotic Resistance Database) and VFDB (Virulence Factor
Database) [62], respectively, in the ABRicate v0.8.13
programme (https://card.mcmaster.ca/, https://github.com/
tseemann/abricate). The threshold for gene identity was set
to 95%. The Clermont typing tool was used to classify iso-
lates into phylogenetic groups [63] (http://clermontyping.
iame-research.center/). In order to investigate the genetic
relationships between isolates, genomes were annotated
using Prokka v1.13 [64] and the core genome alignment
was performed using Roary [65]. The core genome align-
ment was used to determine the single nucleotide poly-
morphism (SNP) distance using snp-dist (https://github.
com/tseemann/snp-dists). Phylogenetic tree was con-
structed using RAxML v8.2.10 using GTR+GAMMA+I
model [66]. Phylogenetic tree was then visualised via iTOL
[67] (https://itol.embl.de/). The raw sequencing data were
deposited to GenBank under BioProject PRJNA553636 and
corresponding accession numbers to SRA for each sample
can be found in Table 4 (additional file 4).
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