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Abstract

Background: Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on
global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about
drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control
methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study
was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a
genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups
on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG
antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom
54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG
seropositivity, shedding, and tissue colonization.

Results: Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086)
were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2
(p = 0.0000760) may be associated with susceptibility.

Conclusions: Further study of the variants and genes identified may improve our understanding of neutrophil
recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce
Salmonella on-farm through genetic approaches.
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Background
Salmonella is one of the leading causes of foodborne ill-
ness and has a significant impact on human health both
globally and in Canada [1–3]. While eggs and poultry
are the most frequently identified sources of human sal-
monellosis, pork is also a notable source of Salmonella
[4–7]. Studies assessing Salmonella prevalence through
serology and/or culture have frequently identified Sal-
monella in pigs in North America and Europe [8–12]. In
pigs, S. Choleraesuis infection typically manifests as
swine typhoid that may result in diarrhea, fever, and
septicemia, similar to human-infecting typhoidal Sal-
monella serovars like S. Typhi [13]. Pigs showing visible
signs of illness may be treated or removed from the herd
to reduce the spread of Salmonella. However, the most
frequently identified serovars on Canadian swine
farms included S. Typhimurium, S. Typhimurium var.
Copenhagen, and S. Infantis [9, 14, 15] which typically
result in an asymptomatic carrier state in pigs but are
known to cause illness in humans [16]. Pigs carrying
Salmonella asymptomatically play a significant role in
on-farm transmission of Salmonella within the herd
and may limit the effectiveness of control measures
implemented on-farm [12]. On-farm control of Sal-
monella has consisted of stringent biosecurity and
sanitation practices, as well as the use of antibiotics,
vaccination, and quarantine or culling of infected pigs
[17–20]. However, the limited effectiveness of these
measures in practice has prompted research into swine
genetics as a potential alternative measure to control
Salmonella on swine farms.
Traditionally, selective breeding in swine was estab-

lished to promote desired production traits including
growth performance, feed efficiency, fertility, and
meat quality [21–23]. However, with the completion
and continued updates to the porcine genome, many
studies are now investigating the genetic basis of dis-
ease susceptibility in swine. One approach in using
genetics to improve resistance is to observe immune
traits or phenotypes individually (for example; cyto-
kine production, leukocyte proliferation, and serum
levels of IgG or acute phase proteins) [24–27]. Differ-
ences in these immune traits and disease severity be-
tween pigs and between breeding lines has been well
documented which suggests the potential of selective
breeding for improved resistance in the near future
[19, 24, 28–30]. One such study found that piglets
with improved recruitment and function of poly-
morphonuclear neutrophils, but a lower antibody re-
sponse, were more resistant to Salmonella [28]. As
such, it may be possible to select from these breeding
lines with more robust immune response phenotypes
or desired response traits to promote broad immunity
to Salmonella in offspring.

Beyond the assessment of immune traits, several stud-
ies in recent years have identified significant associations
between single-nucleotide variants (SNVs) and/or candi-
date genes and susceptibility to Salmonella in pigs. Can-
didate gene studies have observed variants in porcine
toll-like receptor (TLR) genes that were associated with
Salmonella fecal shedding [31], and attenuated responses
to Salmonella Choleraesuis [32]. Upregulation of TLR5
and TLR9 has been shown in response to S. Choleraesuis
and S. Typhimurium though its direct impact on Sal-
monella susceptibility is unknown [33]. Additionally,
SNVs in mannan-binding lectin (MBL) 1 and 2, have
been found at higher frequencies in pig populations in-
fected with S. Typhimurium and other pathogens [34].
Further, a candidate gene study of the pigs included in
this study identified an MBL1 variant associated with in-
creased Salmonella shedding and a variant in NOD1 as-
sociated with isolation of Salmonella at slaughter [35].
The candidate gene studies may offer insight into pig

susceptibility to Salmonella on-farm and at slaughter
and benefit efforts in breeding for resistance to common
pathogens on-farm. However, a major drawback of can-
didate gene studies is that they require a priori know-
ledge of these genes and their functions, and there is still
much that is unknown about the pig immune response
and the complex interplay between pathogen and host
[36]. With recent technological advancements improving
the feasibility of genome-wide association studies
(GWAS), we can potentially identify novel variants asso-
ciated with resistance to Salmonella shedding and
colonization across the entire genome [37]. This study
aimed to identify SNVs associated with Salmonella IgG
antibody response from the end of nursery to market,
Salmonella shedding from weaning to market, and pres-
ence of Salmonella in tonsil and lymph node tissues at
slaughter in commercial pigs using a GWAS approach.

Results
Of the pigs included in the GWAS seropositivity model,
32.3% (254/786) of pigs were seropositive at least once
from the end of the nursery stage to the end of the fin-
isher stage, for the shedding model 34.2% (269/786) of
pigs shed at least once from weaning to end of finisher,
and for colonization model 21.6% (111/515) of pigs
tested positive for Salmonella at slaughter. Salmonella
positivity for each trait is shown in Table 1.

Genome-wide association study
After quality control filtering of the data, 51,969 SNVs
remained for GWAS analysis from 786 pigs in the sero-
positivity and shedding models and 515 pigs in the
slaughter model. Manhattan plots and quantile-quantile
plots for the seropositivity, shedding, and colonization
phenotypes are shown in Figs. 1, and 2, respectively. The

Schut et al. BMC Veterinary Research          (2020) 16:138 Page 2 of 12



allele frequencies between case and control pigs for
the five significant SNVs and SNVs approaching sig-
nificance in the GWAS analysis can be seen in the
Supplementary Table 1.
Analysis of the shedding trait identified an intron variant

in the gene PTPRJ on chromosome 2 (p = 6.6 × 10− 6) as
well as an intergenic variant on chromosome 6,

downstream of the ST6GALNAC3 gene (p = 9.9 × 10− 6),
that had a suggestive association (Table 2) and were ob-
served at a higher frequency in the pigs that did not shed
Salmonella. GWAS analysis of Salmonella isolation at
slaughter indicated three intergenic SNVs downstream of
the gene DCDC2C on chromosome 3 (p = 1.6 × 10− 6,
3.7 × 10− 6, 8.6 × 10− 6, respectively) under the suggested
association threshold of 5.0 × 10− 5 (Table 3), two of which
were seen at higher frequency in pigs that tested negative
at slaughter, while one was more common in pigs positive
at slaughter. Three intergenic SNVs on chromosome 1,
upstream of the gene AKAP12 (p = 2.0 × 10− 5, 3.1 × 10− 5,
3.6 × 10− 5, respectively), also approached the suggested as-
sociation threshold and were more common in the pigs
that were negative at slaughter. An intron SNV located in
AKAP12 was also observed in the top 15 SNVs for the
slaughter model (Table 3). No SNVs were under the sug-
gestive association threshold of 5.0 × 10− 5 for the analysis

Table 1 Demographics in pigs positive and negative for the
trait of interest after quality control of genotypic data

Phenotype Number of negative
pigs (controls*)

Number of positive
pigs (cases*)

Salmonella seropositivity 254 (32.3%) 532 (67.7%)

Salmonella shedding 269 (34.2%) 517 (65.8%)

Salmonella isolation
at slaughter

111 (21.6%) 404 (78.4%)

*Control: never tested seropositive, never shed Salmonella, or tested negative
at slaughter; Case: tested seropositive for Salmonella at least once, shed
Salmonella at least once on-farm, or was positive for Salmonella at slaughter

Fig. 1 Manhattan plots of the GWAS analysis for Salmonella seropositivity from end of nursery to end of finisher (a), Salmonella shedding from
weaning to end of finisher (b), and Salmonella isolation from tissues at slaughter (c). The horizontal solid and dashed red lines indicate the
genome-wide threshold for significant (p = 5.0 × 10− 7) and suggestive (p = 1.0 × 10− 5) associations, respectively [38]
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of the seropositivity trait. An intron variant located within
the RALGAPA2 gene on chromosome 17 was the most
significant SNV associated with a pig being seropositive at
least once from nursery to finisher stage (p = 7.6 × 10− 5).
Additionally, three intron SNVs in the RALGAPA2 gene
were observed within the top 15 significant SNVs for the
seropositivity model (Table 4).

Discussion
This study aimed to assess susceptibility to Salmonella
in commercial pigs by using a GWAS approach to
identify potential variants associated with Salmonella
IgG antibody response from end of nursery to end of
finisher, Salmonella shedding from weaning to end of
finisher, and isolation of Salmonella from tissues at
slaughter. GWAS is a useful tool in preliminary identifi-
cation of novel SNVs or genes and associations between
genetic variants and disease resistance or susceptibility.
This has promise for future efforts in breeding for resist-
ance to Salmonella on-farm and at slaughter, which may

lead to a reduction of Salmonella benefiting both public
health and animal welfare.

GWAS analysis of shedding from nursery to finisher stage
GWAS analysis identified two associated SNVs. The first
was an intron variant located in the PTPRJ gene, which
encodes protein tyrosine phosphatase (PTP) receptor
type J (PTPRJ) and was observed at a higher frequency
in pigs that never shed Salmonella. These PTPRJ recep-
tors are found on many cell types and are highly
expressed in the macrophage rich tissues of the intes-
tines [40]. PTPRJ receptors are responsible for negative
regulation of protein tyrosine kinases, which are involved
in pathogen recognition and clearance, as well as reso-
lution of inflammation [41–44]. PTPs may also be in-
volved in B cell activation, recruitment of neutrophils,
and the negative regulation of T-cell signaling [39, 45–
47]. The timely recruitment of neutrophils is a crucial
part of the immune response and often plays a key role
in the clearance of pathogens in the gut [48]. A chal-
lenge study on PTPRJ-deficient mice showed impairment

Fig. 2 Quantile-quantile plots for Salmonella seropositivity from end of nursery to end of finisher (a), Salmonella shedding from weaning to end
of finisher (b), and Salmonella isolation from tissues at slaughter (c). λ = the average genomic inflation factor
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of B cell development but an unexpected significant in-
crease in early neutrophil recruitment and rapid clear-
ance of Staphylococcus aureus in a subcutaneous air
pouch and suggested that PTPRJ plays both a positive
and negative role in attraction of neutrophils [49].

Interestingly, the PTPRJ variant was observed at a sig-
nificantly higher frequency in pigs with no Salmonella
shedding observed from weaning to end of finisher. It is
possible that, this variant may be causing a reduction in
the expression of PTPRJ resulting in a subsequent rapid

Table 2 The top 15 SNVs ranked by significance (p value) for the GWAS analysis of Salmonella shedding from weaning to end of
finisher

SNV ID SSCa Location (bp)b Variant type Genec Gene locationb p-valued

rs324041697 2 14,596,159 intron PTPRJ 2: 14549537–14,726,715 6.6 × 10−6

rs81476180 6 136,607,113 intergenic ST6GALNAC3 6: 136633437–137,201,213 9.9 × 10−6

rs81259485 16 3,248,143 intron DNAH5 16: 3116189–3,364,956 6.6 × 10− 5

rs81458700 16 36,370,940 intergenic ACTBL2 16: 36470503–36,471,633 9.9 × 10− 5

rs80889714 4 104,920,198 intron CASQ2 4: 104918501–104,982,852 1.0 × 10− 4

rs81346930 17 44,032,145 intergenic LPIN3 17: 43993710–44,006,188 1.2 × 10−4

rs330624049 15 90,476,754 intergenic ENSSSCG00000034554 15: 90309385–90,309,702 1.2 × 10−4

rs81403742 8 117,467,555 intergenic TACR3 8: 117661792–117,721,591 1.2 × 10−4

rs80947769 7 19,456,263 upstream KIAA0319 7: 19386111–19,451,666 1.2 × 10−4

rs339478050 1 188,917,080 intron RTN1 1: 188704139–188,926,054 1.9 × 10−4

rs81237965 3 3,693,136 intron RADIL 3: 3618093–313,033 1.9 × 10−4

rs81344023 6 153,022,279 intron FGGY 6: 152754730–153,213,125 2.1 × 10−4

rs81349902 1 188,903,236 intron RTN1 1: 188704139–188,926,054 2.3 × 10−4

rs318950111 3 43,561,730 downstream ZNF169 3: 43513397–43,558,613 2.5 × 10−4

rs81452423 15 32,935,177 intergenic DLGAP2 15: 33173120–33,264,155 3.0 × 10−4

aSSC = Sus scrofa chromosome
bLocation in Ensembl Sscrofa11.1
cIf the variant was intergenic, the closest gene within a 1 Mbp window was indicated
dSNVs under the suggestive significance threshold of 1.0 × 10−5 in bold [39]

Table 3 Top 15 SNVs ranked by significance for the GWAS analysis of isolation of Salmonella from tissues at slaughter

SNV ID SSCa Location (bp)b Variant type Genec Gene locationb p-valued

rs322440805 3 130,637,256 intergenic DCDC2C 3: 131097730–131,194,726 1.6 × 10−6

rs326411709 3 130,676,894 intergenic DCDC2C 3: 131097730–131,194,726 3.7 × 10− 6

rs319944764 3 130,689,632 intergenic DCDC2C 3: 131097730–131,194,726 8.6 × 10−6

rs81348815 1 15,081,855 intergenic AKAP12 1: 14906823–15,016,841 2.0 × 10−5

rs80951933 1 15,109,785 intergenic AKAP12 1: 14906823–15,016,841 3.1 × 10−5

rs80903645 1 15,064,589 intergenic AKAP12 1: 14906823–15,016,841 3.6 × 10−5

rs326617356 18 26,691,633 intergenic KCND2 18: 26554190–26,623,034 1.3 × 10− 4

rs323563819 19 109,560,455 intron GPC3 X: 109536447–110,060,245 2.0 × 10−4

rs80820138 14 122,383,711 intergenic GPAM 14: 122542205–122,577,239 2.0 × 10−4

rs80961723 7 120,400,325 intergenic SETD3 7: 120412549–120,486,627 2.2 × 10−4

rs320610499 6 141,349,179 intron NEGR1 6: 141115729–141,647,820 2.5 × 10−4

rs81296290 2 91,504,717 intron VCAN 2: 91287931–91,811,674 2.8 × 10−4

rs324243793 18 38,747,572 intron DPY19L2 18: 38693003–38,764,024 3.3 × 10−4

rs80840697 1 14,988,130 intron AKAP12 1: 14906823–15,016,841 4.1 × 10−4

rs81361262 2 90,665,766 downstream ATG10 2: 90437020–90,665,380 4.5 × 10−4

aSSC = Sus scrofa chromosome
bLocation in Ensembl Sscrofa11.1
cIf the variant was intergenic, the closest gene within a 1 Mbp window was indicated
dSNVs under the suggestive significance threshold of 1.0 × 10−5 in bold [39]
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increase in neutrophil recruitment and clearance of Sal-
monella infection in the control population [49], while
RPTP, another member of the PTP family, is rescuing
some B cell functionality and signalling [48]. Currently,
more research is needed into the putative function of
PTPRJ in pigs and how this variant and its interactions
with other PTPs, like RPTP, may affect B cell signalling
and neutrophil recruitment in response to pathogens
like Salmonella before a definitive conclusion can be
made.
Analysis of the shedding trait also identified an inter-

genic variant nearest to the ST6GALNAC3 gene, which
encodes ST6 (α-N-acetylneuraminyl-2,-3-β-galactosyl-1,
3)-N-acetylgalactosamine-α-2,6-sialyltransferase 3
(ST6GALNAC3) and was also more frequent in pigs that
did not shed Salmonella. ST6GALNAC3 is a member of
a family of sialylatransferases involved in the transfer of
sialic acids CMP-sialic acid to O-glycans with α-2,6 link-
age [50–52]. Sialylated glycans, like those produced by
ST6GALNAC3, are involved in many key cellular pro-
cesses including cellular adhesion, self-recognition, and
signaling [51, 53–55]. Currently, little is known about
the in vivo function and differential expression of
ST6GALNAC3 in pigs [52, 56]. However, in vitro studies
have demonstrated that sialic acid moieties on the mu-
cosal surface may be used by pathogens, including Sal-
monella, as a nutrient source or as receptors for
adhesion and invasion [51, 55, 57, 58]. One such study
found that removal of N-acetylneuraminic acid, the most

abundant cell surface sialic acid, greatly impaired Sal-
monella attachment to Caco-2 cells [57]. Additionally
GD1a, synthesized by ST6GALNAC3, has also been im-
plicated as a co-receptor for Salmonella flagellin (FliC)
and is thought to induce β-defensin-2 in Caco-2 cells
[59].
To date, the function and expression of ST6GALNAC3

largely remains an unknown in pigs. In the current
study, the variant was seen at a higher frequency in pigs
that were not observed to be shedding from weaning to
finisher stage. Due to the role of sialic acids in Salmon-
ella adhesion and nutrient acquisition, it is possible that
this variant near ST6GALNAC3 is resulting in a change
of the sialylation of the mucosal surface. This may be
impacting either the availability and localization of host-
derived sialylated glycans and impairing the rate of
Salmonella adherence or nutrient acquisition and thus
may affect Salmonella susceptibility in pigs.

GWAS analysis of colonization at slaughter
The model for isolation of Salmonella from tissues at
slaughter identified three intergenic variants with a sug-
gestive association nearest to the gene encoding double-
cortin domain containing 2C (DCDC2C). Two of these
variants were more frequent in pigs that tested negative
at slaughter, while the third was seen at a higher fre-
quency in pigs positive at slaughter. The DCDC2C gene
is currently uncharacterized in pigs and little is known
about its function in vivo. Studies of DCDC2C in

Table 4 Top 15 SNVs ranked by significance for the GWAS analysis of Salmonella seropositivity from end of nursery to end of
finisher

SNV ID SSCa Location (bp)b Variant type Genec Gene locationb p-valued

rs81241392 17 28,616,449 intron RALGAPA2 17: 28394827–28,679,538 7.6 × 10− 5

rs323410857 1 201,886,813 intron HACD4 1: 201886332–201,910,664 8.2 × 10− 5

rs81459294 16 1,133,302 intron CTNND2 16: 508245–1,521,550 1.0 × 10− 4

rs80868434 7 30,048,501 intergenic MLN 7: 30003291–30,013,128 1.2 × 10− 4

rs80849858 1 77,472,299 intergenic TRAF3IP2 1: 77484191–77,523,887 1.2 × 10− 4

rs336677749 17 28,600,733 intron RALGAPA2 17: 28394827–28,679,538 1.3 × 10− 4

rs330020208 6 89,629,789 intron PHC2 6: 89574035–89,685,278 1.3 × 10− 4

rs81370878 3 56,211,114 intergenic VWA3B 3: 55950591–56,171,826 1.4 × 10− 4

rs323186575 6 91,486,462 intron ZMYM4 6: 91455778–91,623,818 1.4 × 10−4

rs80970182 17 28,210,436 intron CFAP61 17: 28111660–28,372,543 1.4 × 10−4

rs80930168 1 77,338,889 intron REV3L 1: 77195253–77,401,051 1.9 × 10−4

rs80801203 17 28,465,351 intron RALGAPA2 17: 28394827–28,679,538 2.1 × 10−4

rs338087144 14 77,361,157 intergenic KAT6B 14: 77404443–77,597,673 2.4 × 10−4

rs81241392 17 28,616,449 intron RALGAPA2 17: 28394827–28,679,538 2.6 × 10−4

rs81290595 15 6,253,250 intron ENSSSCG00000036561 15: 6222423–6,266,771 2.8 × 10−4

aSSC = Sus scrofa chromosome
bLocation in Ensembl Sscrofa11.1
cIf the variant was intergenic, the closest gene within a 1 Mbp window was indicated
dSNVs under the suggestive significance threshold of 1.0 × 10−5 in bold [39]
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humans have suggested that variants in this gene may be
associated with structural defects in cilia in sperm and
in cilia length in sensory cells in the ear [60, 61]. Thus,
it is possible that the variants observed in the current
study also result in structural defects, either in the cilia
in the lungs, or perhaps the villi of the intestines of pigs
and may be changing the pigs’ susceptibility to Salmon-
ella. How tissue colonization at slaughter may be being
altered is yet unclear, as SNVs associated with both
negative and positive isolation of Salmonella at slaughter
were identified. Additionally, these variants are approxi-
mately 400 kbp from the DCDC2C gene, and thus the
observed effect on the slaughter trait may be related, in
part, to linkage with a functional SNV in a different
gene. Regardless, DCDC2C may be a potential target for
further investigation Salmonella susceptibility in pigs.
Analysis of the slaughter model identified an additional

three intergenic variants near the gene encoding A-kinase
anchor protein 12 (AKAP12) that were approaching the
suggestive association threshold. An intron variant in
AKAP12 was also identified in the top 15 significant SNVs
for the slaughter trait. AKAP12 is a member of the AKAP
family of scaffolding proteins involved in the recruitment
and anchoring of protein kinases (PK) A and B. AKAP12
has be shown to regulate the subcellular localization of
PKA and play a role in PKB regulation [62, 63]. PKA and
PKB signaling play a crucial role in intramacrophage killing.
Salmonella is known to subvert the host cell machinery
and manipulate these pathways to persist intracellularly
through the reduction of reactive oxygen intermediates or
the manipulation of motor proteins [64, 65]. Studies have
shown that inhibiting PKA and PKB activation greatly re-
duces virulence and impairs intracellular growth and sur-
vival of Salmonella [66, 67].
In light of the role that AKAP12 plays in the

localization and regulation of PKA and PKB, which are
key players in the intracellular survival of Salmonella, it
is possible that variants near AKAP12 are altering the
expression of AKAP12 and reducing or inhibiting the
normal localization of PKA and PKB. This, in turn, may
be impairing intracellular survival of Salmonella in host
macrophages and preventing or limiting the systemic
spread of Salmonella to lymphatic tissues and may
account for the significantly higher frequency of these
variants in the control pigs that were negative for
Salmonella in tissues collected at slaughter.

GWAS analysis of seropositivity from nursery to finisher
stage
GWAS analysis did not identify any significant associa-
tions with the tested variants. The closest SNV ap-
proaching the suggestive association threshold was an
intergenic variant nearest to the gene RALGAPA2, which
encodes the gene Ral GTPase-activating protein

(RalGAP) catalytic alpha subunit 2 (α2) of RalGAP and
was observed at a higher frequency in pigs that tested
seropositive for Salmonella at least once. An additional
two intergenic variants near and one intron variant in
RALGAPA2 were identified in the top 15 significant SNVs
for the seropositivity model. RalGAPs are involved in the
negative regulation of RalGTPases, RalA and RalB, in the
Ras/Ral signaling pathways and regulate crucial cellular
processes including response to infection and mediation
of inflammation [68–72]. Notably, constitutive expression
of RalGTPases has been shown to promote tumorigenesis,
increased expression of inflammatory cytokines, and in-
creased epithelial permeability [69, 73–76].
It is possible that these variants are altering the expres-

sion of RALGAPA2 and, in turn, causing constitutive ex-
pression of RalGTPases. Considering the role of Ral
GTPases in cell survival, inflammation, and permeability,
this constitutive expression may be promoting susceptibil-
ity to Salmonella. Firstly, by creating an inflammatory en-
vironment in which Salmonella is known to thrive [77–
79], or secondly, by impairing infected cell death and pro-
moting the intracellular survival of Salmonella leading to
chronic or persistent infection and higher antibody pro-
duction [80–83]. However, it is important to note that the
ELISA chosen for the current study tested for Salmonella
IgG antibodies, but it is possible that some pigs had only
produced a preliminary IgM response. Further studies are
needed to assess the presence of IgM antibodies and
whether they may result in stronger associations between
the identified variants and Salmonella seropositivity. Add-
itionally, a targeted study into RALGAPA2 and its path-
ways may identify an association with Salmonella
susceptibility that was missed at the genome-wide level.

Conclusion
To the best of the authors knowledge, this is the first
GWAS analysis assessing susceptibility to Salmonella in
pigs at different stage of production on commercial farms
and at slaughter. The variants identified herein were gener-
ally in or near genes involved in broad innate immunity
and may be of great interest in improving genetic resistance
to control enteric pathogens on swine farms. Overall, much
of the porcine innate and humoral immune responses to
these pathogens remains unknown. Further investigation of
these genes on-farm, and the function, expression, and
pathways of these genes both in vitro may greatly improve
our understanding of the genetic basis of susceptibility to
Salmonella and other swine enteric pathogens.

Methods
Animal use in this project was approved by the Univer-
sity of Guelph Animal Care Committee (AUP# 3124)
and follows Canadian Council of Animal Care guidelines
(CCAC, 2009).
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Animals and sample collection
Farm and pig selection for this study have been detailed
previously [84]. Briefly, 14 groups of 54–60 pigs (three-
way Yorkshire x Landrace x terminal boar line cross)
were selected from eight commercial farrowing sources
in Southern Ontario; all pigs were housed on commer-
cial farms and kept under the management of the farm
personnel. Two groups of pigs were selected from each
of six farrowing sources (designated Cohorts One and
Two), while the remaining two farrowing sources had
only one group each (Cohort One) for a total of 14
groups. During the nursery stage, pigs received either a
conventional diet (high complexity) or a lower cost re-
duced animal protein diet (low complexity) in which ani-
mal protein was replaced by plant protein as part of a
larger study [85]. After which, all pigs received conven-
tional diets during grower-finisher stage.
Blood and fecal samples were collected at weaning,

and at the end of the nursery, grower and finisher stages.
Rectal swabs (Starplex®, VWR International, Mississauga,
Ontario, Canada) were taken in the event that a fecal
sample could not be obtained. Blood was drawn from
the jugular or suborbital vein, transported to the lab in a
cooler, and then centrifuged at 1500 x g for 20 min. Sera
were stored at − 20 °C. At the end of production pigs
were shipped to the abattoir for slaughter where palatine
tonsils and submandibular lymph nodes were collected
from a subset of 580 pigs.

Salmonella antibody detection
Collected sera were tested for IgG antibodies to Salmon-
ella O-antigens 1, 3, 4, 6, 7, 9, 10, and 12 via a commer-
cial enzyme-linked immunosorbent assay (ELISA;
pigtype® Salmonella Ab kit, QIAGEN Leipzig GmbH,
Leipzig, Germany) as described previously [86]. Sample
optical density (OD) was measured at 450 nm using a
BioTek Synergy HT Multi-Mode Microplate Reader and
BioTek’s Gen5 software version 11.1. The sample-to-
positive (S/P) ratios were calculated as follows:

S=P ¼ ODsample−Mean ODnegative control

Mean ODpositive control−Mean ODnegative control

A sample was considered seropositive if the S/P ratio
was greater or equal to 0.3.

Salmonella isolation
Fecal samples and tissues were cultured as detailed pre-
viously [84]. Briefly, 10 g of fecal or tissue sample was
homogenized in 50mL of tetrathionate broth (Oxoid,
Nepean, Ontario, Canada) using a Seward Stomacher
400 Circulator (Seward Laboratory Systems Inc., Bohe-
mia, New York, USA) and incubated for 24 h at 37 °C.
After which, 0.1 mL of tetrathionate broth culture was

transferred into 9.9 mL Rappaport Vassiliadis (RV) broth
(Oxoid, Nepean, Ontario, Canada) followed by another
24 h incubation at 42 °C. Then, a loopful of RV culture
was plated onto xylose-lysine-tergitol 4 agar (Becton
Dickinson™, Baltimore, Maryland, USA) and incubated
for a final 24 h at 37 °C. Salmonella colonies were con-
firmed by a Salmonella O Antiserum Poly A-I and Vi
(Becton Dickinson™, Grayson, Georgia, USA) slide agglu-
tination test.

Salmonella phenotypes
The following binary traits were defined for each pig:
Salmonella seropositivity from end of nursery to end of
finisher (never seropositive vs. seropositive once or
more), Salmonella shedding from weaning to end of fin-
isher (never shed vs. shed once or more), and positive
isolation of Salmonella from tonsils and/or lymph nodes
at slaughter (yes/no). Seropositivity at weaning was ex-
cluded when categorizing pigs into binary traits due to
the concern of maternal antibodies confounding the re-
sults in the GWAS. Supplementary Figure 1 depicts a
simplified flow chart of the sample collection and case-
control groups by phenotype.

Genotyping and quality control
DNA was extracted from tail dockings, ear tissue, or
blood using the DNEasy Blood and Tissue kit (Qiagen,
Mississauga, Ontario Canada), with either 25 mg of tis-
sue or 100 ul of blood [35]. DNA was genotyped at
Eurofins BioDiagnostics, Inc. (River Falls, Wisconsin,
USA) using a custom 54 K Affymetrix Axiom® myDe-
sign™ chip designed in consultation with the Canadian
Centre for Swine Improvement (Ottawa, Ontario,
Canada). Quality control (QC) of SNVs was performed
in PLINK v1.9 [87, 88]. As this chip contained select
SNVs from multiple research groups, some of which had
proprietary labels that precluded their identification in
the genome, SNVs were removed if they had no corre-
sponding rsID in Ensembl Sscrofa11.1. Pigs with SNV
call rates of less than 90% were excluded and SNVs with
a minor allele frequency lower than 5% or a call rate less
than 95% were removed from further analysis. The SNV
call rates were compared between cases and controls,
and Fisher’s exact test was used to exclude any SNV in
which the missingness between a case and control was
significantly different (p < 1.0 × 10− 5).

Genome-wide association study
A GWAS model was used to assess each of the pheno-
types described above. Pigs that tested seropositive for
Salmonella or shed Salmonella at least once on-farm,
and pigs that were positive for isolation of Salmonella at
slaughter were considered to be the case population.
Pigs that never tested seropositive, shed Salmonella, or
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tested negative at slaughter were assigned as the control
population for the GWAS models. The outcome variable
for each model was seropositive at least once from end
of nursery to end of finisher (seropositivity model), shed-
ding detected at least once from weaning to end of
finisher (shedding model), and positive isolation at
slaughter (colonization model), respectively.
Univariable analysis of each phenotype was performed

using a mixed-effects logistic regression model in Stata
(Stata/IC 14.2 for Windows, StataCorp LP, Texas, USA)
to assess the significance of associations between covari-
ates and the phenotype (p < 0.05) and subsequent inclu-
sion in the GWAS model [84, 86]. For the seropositivity
model, only farm was included as a covariate. Covariates
included in the shedding model were diet and cohort,
while covariates for the colonization model were age at
slaughter, cohort, and season. To account for the cryptic
relatedness of the pigs in a study population with no sire
information, a genomic relatedness matrix (GRM) was
calculated using the genome-wide efficient mixed model
association algorithm (GEMMA) v0.96 [37, 38, 89].
Genome-wide analyses of case-control data were per-
formed using a generalized logistic mixed model associ-
ation test (GMMAT) [90] using the GMMAT v0.9.3
package for R [91, 92]. The covariates analyzed in Stata
and the GRM created in GEMMA were included in the
GMMAT analysis. The chosen p-value threshold for
suggestive and significant associations was 1.0 × 10− 5

and 5.0 × 10− 7, respectively based on a study by Burton
et al. [39]. The Wald test was used to assess the signifi-
cance of associations between SNVs and the Salmonella
phenotypes. Allele frequencies in case-control popula-
tions were calculated and an allelic chi-squared (χ2) test
in PLINK v1.9 was used to determine if there was a sig-
nificant difference between case and control pig popula-
tions. In the event that an intergenic variant was
identified as significant, the closest gene within a 1 Mbp
window, either upstream or downstream, was assumed
to be the causative gene. The data generated from this
GWAS has been deposited in the Animal Quantitative
Trait Loci Database (AnimalQTLdb) and can be
accessed as a group via https://www.animalgenome.org/
QTLdb/supp/?t=MwAn1O1XiA, or individually via asso-
ciation (QTL) numbers: 194531–194535.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12917-020-02344-0.

Additional file 1: Figure S1. Visual representation of the sampling and
processing of sera and fecal/tissue samples from pigs on-farm and at
slaughter and the case-control population breakdowns of the three bin-
ary Salmonella phenotypes used in GWAS.

Additional file 2: Table S1. Allele frequencies in case and control pig
populations for SNVs with significant associations in GWAS models.
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