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Repeated disinfectant use in broiler houses
and pig nursery units does not affect
disinfectant and antibiotic susceptibility in
Escherichia coli field isolates
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Abstract

Background: Disinfectants are frequently used in animal production to reduce or eliminate the load of infectious
agents and parasites in buildings and equipment associated with the housing or transportation of animals. There
are growing concerns that the use of disinfectants would select for resistance to antibiotics and disinfectants. The
aim of this study was to determine the effect of repeated use of different disinfectants on the disinfectant and
antibiotic susceptibility under practical conditions in a broiler and pig pilot farm. Therefore, the susceptibility of
Escherichia coli (E. coli) to 14 antibiotics and 4 disinfectants was monitored over a one-year period.

Results: High (20–50%) to very high (> 50%) resistance levels for ampicillin, sulfamethoxazole, trimethoprim and
tetracycline were observed in both animal production types. Disinfectant susceptibility did not change over time
and did not depend on the used disinfection product. Compared to in-use concentrations of formaldehyde,
benzalkoniumchloride and a peracetic acid - hydrogen peroxide formulation, all E. coli strains remained susceptible
indicating that the use of disinfectants did not select for disinfectant resistance. Moreover, no association could be
found between the use of disinfectants and antibiotic resistance.

Conclusions: These findings suggest that repeated use of disinfectants in agricultural environments does not select
for antibiotic resistance nor does it reduce disinfectant susceptibility.
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Background
Biocides are used in animal production to disinfect
buildings and equipment associated with the housing or
transportation of animals. Their appropriate use pre-
ceded by an adequate cleaning is one of the key ele-
ments of a good on-farm hygiene management. Cleaning
and disinfection (C&D) are of importance to reduce the

introduction and spread of infectious agents. Cleaning
refers to the removal of organic debris as its presence
can decrease the antimicrobial activity of the disinfect-
ant. Disinfection reduces or eliminates the load of bac-
teria and viruses [1], yet bacteria may still be present
after C&D of animal houses [2]. This has led to the hy-
pothesis that bacteria can become resistant to the used
disinfectants. In recent years, studies have therefore fo-
cused on the disinfectant susceptibility of field bacterial
isolates, but the methodologies used to evaluate the sus-
ceptibility data lead to heterogeneous results. Evaluation
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of the frequency distribution of the minimal inhibitory
concentration (MIC) and/or minimal bactericidal con-
centration (MBC) is a first method to investigate resist-
ance. When a homogenous distribution is shown, there
is no indication for a reduced susceptibility [3, 4]. Sec-
ondly, the lethality of in-use disinfectant concentrations
is evaluated via MBC determinations. Both susceptible
and less susceptible field isolates to in-use concentra-
tions have been reported [5]. Thirdly, MIC90 values cal-
culated as the disinfectant concentration that inhibits
90% of the field isolates are compared with MIC values
of a control strain. Reports have shown both similar and
reduced susceptibilities [6]. Lastly, concentration criteria
are used to categorize isolates as either susceptible, low-
level resistant, or resistant according to their MIC. For
example, a low-level resistance prevalence to benzalko-
niumchloride has been found [7].
Furthermore, contradictory results have been found

regarding the possible association between the reduced
susceptibility to disinfectants and antibiotic resistance in
field bacteria [8–11]. Moreover, few studies were per-
formed on the use of disinfectants and the relation to
antimicrobial resistance under practical conditions [12].
In exposure experiments under laboratory conditions,

it has been shown that stepwise repeated exposure of
susceptible bacteria to subinhibitory concentrations of
disinfectants may lead to decreased susceptibility to vari-
ous antimicrobial agents [13–17]. However, many of
these investigations do not relate such findings to prac-
tical conditions and the laboratory results are not neces-
sarily relevant to agricultural environments. Moreover,
few studies investigated changes in antimicrobial suscep-
tibility over time in a practical setting [18]. Therefore,
this longitudinal study was carried out to investigate the
effect of repeated disinfectant use on antimicrobial sus-
ceptibility of Escherichia coli (E. coli), isolated after C&D
in broiler houses and pig nursery units. A broiler is any
chicken that is bred and raised specifically for meat
production.

Results
Detection of Escherichia coli
In the broiler house, positive swabs were detected after
disinfection with Virocid®, CID20® and D50® in 9.7, 8.6
and 20.1% of the locations, respectively. In the pig nur-
sery unit, positive swabs were detected in 47.7, 22.9 and
36.8% of the locations, respectively.

Disinfectant susceptibility
Disinfectant use and susceptibility
The E. coli isolates (n = 67 from the broiler houses, n = 72
from the pig nursery units), obtained after disinfection
were tested for their susceptibility to benzalkoniumchlor-
ide, glutaraldehyde, formaldehyde and D50®. Disinfectant

susceptibility results were homogeneously (normally) dis-
tributed within a very small concentration range for all
disinfectants tested (Fig. 1a and b). No remarkable differ-
ences in MICs were found between the E. coli isolates, ei-
ther with the various disinfectants or between both animal
production types.

Disinfectant susceptibility evolution
No change in susceptibility to benzalkoniumchloride,
glutaraldehyde, formaldehyde and D50® could be ob-
served over time (Fig. 2a and b). Furthermore, as all E.
coli isolates showed a similar susceptibility to the active
components benzalkoniumchloride, glutaraldehyde, for-
maldehyde and D50®, no indications for disinfectant re-
sistance were found.

Antibiotic resistance
The 67 E. coli isolates from broiler houses and the 183
isolates from pig nursery units were exposed to a panel
of 14 antibiotics to evaluate antibiotic susceptibility
(Fig. 3). Occurrence of antibiotic resistance in the broiler
houses was very high for ampicillin (69%), sulfamethoxa-
zole (64%) and trimethoprim (61%). A high and moder-
ate antibiotic resistance was found for tetracycline (28%),
ciprofloxacin (19%) and nalidixic acid (16%). Resistance
toward chloramphenicol was low (4%). No resistance
was found to the other tested antibiotics.
For E. coli isolates from pig nursery units, high levels

of antibiotic resistance to tetracycline (45%), ampicillin
(42%), trimethoprim (36%) and sulfamethoxazole (35%)
were found. Antibiotic resistance to gentamicin and
chloramphenicol was low. Very low to no resistance was
found for the other tested antibiotics.

Disinfectant use and antibiotic resistance
The antibiotic resistance prevalence of E. coli, isolated
after each disinfection protocol in the corresponding
broiler houses and pig nursery units A, B and C is pre-
sented in Fig. 4a and b. Logistic regression analysis
showed no significant association between the used dis-
infectants and the antibiotic resistance of the isolates
(Supplementary Table 1).

Antibiotic susceptibility evolution
An increasing trend in antibiotic resistance to ampicillin,
sulfamethoxazole and trimethoprim was found between
sampling t1 and t3 at the broiler pilot farm (Supplemen-
tary Fig. 1a). This increase corresponds to the antibiotic
treatment of all broiler chickens with penicillins and
sulfamides-trimethoprim within this time period (Sup-
plementary Table 2). Furthermore, a clear increase in
resistance was also noticed between t3 and t5 for tetra-
cycline, ciprofloxacin and nalidixic acid at the broiler
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farm. In this particular period of time the hatchery ori-
gin of the one-day old broiler chickens changed.
For the E. coli field isolates obtained at the pig pilot

farm, no trend in antibiotic resistance was observed dur-
ing the study (Supplementary Fig. 1b).

Discussion
To our knowledge, this is the first longitudinal field
study on the effect of repeated use of disinfectants on
the antimicrobial susceptibility of E. coli field isolates in
agricultural environments.

Disinfectant use and susceptibility
In the current study no evidence was found of reduced
susceptibility to the tested active components following
disinfection with three different disinfectants at either
the broiler houses or the pig nursery units. The MIC
values for the disinfectant components were homoge-
nously distributed within a very small concentration
range without a bimodal distribution. Furthermore, MIC
values of the E. coli field isolates for the disinfectant
components were similar to those recently reported by
our research group [19]. The obtained MIC values of
two active components i.e. benzalkoniumchloride and
formaldehyde were compared to the in-use concentra-
tions in two evaluated veterinary disinfection products
i.e. Virocid® and CID20®. These MIC values were lower
than the recommended concentrations of benzalko-
niumchloride and formaldehyde in veterinary disinfec-
tion products applied by foaming. This difference
indicates that the prescribed commercial product con-
centrations are sufficiently high to reduce the bacterial
load with at least 5 log CFU. In contrast, when compar-
ing the obtained MIC value of the third active compo-
nent i.e. glutaraldehyde to the in-use concentration of
this active component in two of the evaluated veterinary
disinfection products i.e. Virocid® and CID20®, the
former MIC value was much higher than the recom-
mended in-use concentration in veterinary disinfection
products applied by foaming. However, in practice,
aldehyde-based disinfectants are formulated in combin-
ation with quaternary ammonium compounds (QACs)
such as in Virocid® and CID20® to achieve a synergistic
effect [20, 21]. Susceptibility results for the ready-to-use
disinfectant D50®, being a peracetic acid and hydrogen

peroxide formulation, showed MIC values equal to or
below the recommended concentration.

Disinfectant susceptibility evolution
Reported in vitro disinfectant susceptibility data for bac-
teria are diverging. Several in vitro studies have shown a
reduced susceptibility to disinfectants after repeated ex-
posure of bacteria to subinhibitory concentrations of
QACs [15, 22] or even a commercial disinfectant [23].
However, other in vitro studies state the opposite: in the
studies of Karatzas et al. (2007) and Webber et al.
(2015), with commercially available disinfectants instead
of active components, none of the adapted strains dem-
onstrated an increased tolerance after exposure to the
commercial disinfectants [13, 16]. In the current in vivo
study, repeated use of the same disinfectant during 5
production cycles did not show changes in disinfectant
susceptibility over the (short) monitored time period to
either the single active components benzalkoniumchlor-
ide, formaldehyde, glutaraldehyde or to the combined
formulation D50®. Nevertheless, it should be borne in
mind that resistance development requires time. The
study was carried out on a short term and therefore
some caution is warranted in interpreting the results.
It can be hypothesized that the reason for surviving

strains after C&D is not resistance to the disinfectant,
but could be (i) an inadequate C&D at critical locations
in the animal production unit which are difficult to
C&D, and/or (ii) residual organic matter, and/or (iii)
other factors influencing the efficacy of disinfectants
(e.g. disinfectant dilution by remaining rinsing water, en-
vironmental temperature). Corroborating this hypoth-
esis, we previously reported that the disinfection of farm
buildings and equipment does not lead to sterile surfaces
and environments [24].

Disinfectant use and antibiotic resistance
In the current in vivo study no evidence of reduced sus-
ceptibility to the tested antibiotics could be found fol-
lowing repeated disinfection with different disinfectants
at the broiler houses and pig nursery units. This is again
in contrast to several in vitro studies where a reduced
susceptibility to antibiotics after repeated exposure of
bacteria to subinhibitory concentrations of an active
component [15, 22] or even of commercial disinfectants
[13, 16, 23] was shown. The question is how to interpret

(See figure on previous page.)
Fig. 1 a Percentage of Escherichia coli field isolates with their respective minimum inhibitory concentrations (MICs) displayed on the horizontal
axis for benzalkoniumchloride, glutaraldehyde, formaldehyde and D50®, isolated after the disinfection protocols with Virocid® (n = 16), CID20® (n =
14) or D50® (n = 34) at the corresponding broiler houses A, B and C, respectively. b Percentage of Escherichia coli field isolates with their
respective minimum inhibitory concentrations (MICs) displayed on the horizontal axis for benzalkoniumchloride, glutaraldehyde, formaldehyde
and D50®, isolated after the disinfection (t1, t3 and t5) with Virocid® (n = 18), CID20® (n = 18) or D50® (n = 18) at the corresponding pig nursery
units A, B and C, respectively
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this subset of data. They at least strongly suggest that,
although disinfectant use may lead to an increased anti-
biotic resistance in vitro, it does not induce the develop-
ment of such resistance in an agricultural environment.

Antibiotic resistance evolution
Still, changes in antibiotic resistance were noticed even if lo-
gistic regression analysis showed that these high resistance
levels were not associated with the use of disinfectants. The
increasing antibiotic resistance level to ampicillin, sulfameth-
oxazole and trimethoprim between sampling t1 and t3 at the
broiler pilot farm corresponds to the antibiotic treatment of
all broiler chickens with penicillins and sulfamides-
trimethoprim within this time period. Such association has
already been described by our group and others [25, 26]. Fur-
thermore, the most likely explanation for the high levels of
antibiotic resistance to tetracycline, ciprofloxacin and nalidixic
acid at the broiler farm at t5 is a change in hatchery origin of
the one-day old broiler chickens, and the age of the parent
breeding hens between t3 and t5. Unfortunately, no informa-
tion was available on antibiotic treatments applied in the
hatcheries. Last but not least, very high resistance levels of >
50% were found for ampicillin, sulfamethoxazole,

trimethoprim, tetracycline, ciprofloxacin and nalidixic acid in
the broiler isolates and high resistance levels of >20% to ampi-
cillin, sulfamethoxazole, trimethoprim and tetracycline in the
pig isolates. Compared to the Belgian report by CODA-
CERVA (2017) on E. coli in 2016 [27], a lower resistance
prevalence was found for both animal production types in
our longitudinal study, except for trimethoprim in the broiler
pilot farm. However, it should be noted that a limitation of
the current study is that it only comprises results of one ex-
perimental broiler and one pig farm, which is likely not repre-
sentative for the average Belgian broiler and pig farm.

Conclusion
In conclusion, even if some in vitro studies previously
reported a decreased antibiotic and/or disinfectant sus-
ceptibility after repeated exposure to disinfectants, we
could not confirm this observation in our longitudinal
field study. Indeed, the repeated use of disinfectants in
recommended concentrations in vivo did not influence
disinfectant susceptibility of E. coli isolated from broiler
and pig units. Furthermore, the observed disinfectant
susceptibility was also product-independent. Finally, no
association was found between the use of disinfectants

(See figure on previous page.)
Fig. 2 a Evolution in minimum inhibitory concentrations (MICs) of Escherichia coli field isolates for benzalkoniumchloride, glutaraldehyde,
formaldehyde and D50®, expressed as percentages. Samples were taken after cleaning and disinfection (C&D) over a period of 6 production
cycles: t0 (zero measurement, n = 3), t1 (after production cycle 1, n = 18), t3 (after production cycle 3, n = 40) and t5 (after production cycle 5, n =
6) at the pilot broiler farm. Monitoring of C&D took place from production cycle 1. b Evolution in minimum inhibitory concentrations (MICs) of
Escherichia coli field isolates for benzalkoniumchloride, glutaraldehyde, formaldehyde and D50®, expressed as percentages. Samples were taken
after cleaning and disinfection (C&D) over a period of 6 production cycles: t0 (zero measurement, n = 18), t1 (after production cycle 1, n = 18), t3
(after production cycle 3, n = 18) and t5 (after production cycle 5, n = 18) at the pilot pig farm. Monitoring of C&D took place from production
cycle 1 onwards

Fig. 3 Prevalence of antibiotic resistance in 67 and 183 Escherichia coli isolated at the 4 sampling moments (t0: zero measurement, t1: after
production cycle 1, t3: after production cycle 3 and t5: after production cycle 5) after cleaning and disinfection over 6 production cycles in 3
broiler houses and 3 pig nursery units, respectively (expressed as percentage). Error bars represent the standard errors
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in both agricultural environments and the antibiotic re-
sistance of the broiler and pig farm E. coli strains.

Methods
Management of C&D in the broiler houses and pig
nursery units
The longitudinal study was carried out in three identical
broiler houses at a pilot farm for broiler chickens (±
6000 broilers/house) of the Experimental Poultry Centre
(EPC, Geel, Belgium) and in three identical pig nursery
units (8 pens with 6 piglets per pen) at the experimental

pig farm of the Flanders Research Institute for Agricul-
ture, Fisheries and Food (ILVO) for 6 successive produc-
tion cycles between May 2017 and May 2018. After the
first production cycle, conventional C&D was carried
out as follows: cleaning of the three broiler houses was
applied by high pressure cleaning with a detergent
(Kenosan®, CID LINES, Ieper, Belgium) and disinfection
was applied by fogging with a quaternary ammonium
compound, glutaraldehyde and formaldehyde based
disinfectant (CID20®, CID LINES). In the pig nursery
units high pressure cleaning was performed only with hot

Fig. 4 a Prevalence of antibiotic resistance in Escherichia coli isolated after the disinfection protocols with Virocid® (n = 16), CID20® (n = 14) or D50®

(n = 34) at the corresponding broiler houses, sampled 3 times (t1: after production cycle 1, t3: after production cycle 3 and t5: after production
cycle 5) (expressed as percentage). Error bars represent the standard errors. b Prevalence of antibiotic resistance in Escherichia coli isolated after
the disinfection protocols with Virocid® (n = 60), CID20® (n = 33) or D50® (n = 50) at the corresponding pig nursery units, sampled 3 times
(expressed as percentage). Error bars represent the standard errors
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water (± 65 °C) followed by a disinfection with quaternary
ammonium compounds and glutaraldehyde (MS Mega-
des®, MS Schippers, Bladel, The Netherlands) via foaming.
Subsequently, different C&D protocols were applied dur-
ing 5 successive production cycles. Cleaning of all broiler
houses and pig nursery units was carried out by high pres-
sure cleaning with Kenosan® and disinfection was applied
by fogging at the broiler houses and by foaming at the pig
nursery units. Selection of three commercially available
disinfectants was based on frequently used combinations
of active components in poultry houses and pig nursery
units, described by Maertens et al. (2018, 2019) [19, 28].
Each disinfection product was applied during 5 successive
production cycles in the same broiler house or pig nursery
unit. The applied disinfection products consisted of (A)
quaternary ammonium compounds and glutaraldehyde
(QAC-GA; Virocid®, CID LINES), (B) quaternary ammo-
nium compounds, glutaraldehyde and formaldehyde
(QAC-GA-F; CID20®, CID LINES) and (C) peracetic acid
and hydrogen peroxide (PA-H2O2; D50

®, CID LINES). An
overview of the used products, methods and product con-
centrations is given in Table 1.

Quantification of antibiotic use
The antibiotic use at the sampled pilot farms was recorded
via prescriptions and order forms. For each treatment, the

product name, the amount of administration and the age
(days) and weight (kg) of treated animals were recorded.
Quantification of drug use was done as described in Maer-
tens et al. (2019) [19] by determining the treatment inci-
dence (TI) defined as the number of treatment days per
100 days or the percentage of treatment days [29].

Sampling and sampling processing
Sampling was performed ±24 h after disinfection at each
broiler house or pig nursery unit at the following mo-
ments: t0 (zero measurement, after production cycle 0 =
conventional C&D), t1 (after production cycle 1), t3
(after production cycle 3) and t5 (after production cycle
5) (Table 1). Sponge swabs were pre-moistened with 10
mL Dey Engley Neutralizing Broth (Sigma Aldrich,
D3435, St-Louis, USA). Permission to collect samples
was obtained from the EPC and the ILVO.
At each broiler house eight locations (floor, floor

crack, drain hole, air inlet, drinking cups, pipes, wall and
feed pan) were swabbed 8 times, except for the drain
holes since only 2 drain holes were present in each
broiler house, resulting in 58 samples. As three houses
were included in the study, 174 samples were taken per
sampling thus obtaining a total of 696 samples after 4
sampling moments.

Table 1 Cleaning and disinfection (C&D) protocols carried out at the start of the longitudinal study (conventional C&D) followed by
C&D with 3 C&D protocols (A, B and C) carried out during 5 successive production cycles in each of the broiler houses or pig
nursery units at the pilot farms

Conventional C&D (sampling after production
cycle 0)

Broiler house (1050m3) Pig nursery unit

A B C A B C

Cleaning Product Kenosan® No cleaning product

Concentration 1%

Method foaming

Disinfection Product CID20® MS Megades®

Concentration 3 l / 6 l water 1%

Method fogging foaming

Active
components*

QAC-GA-F QAC-GA

C&D protocol (sampling after production
cycle 1, 3 and 5)

Broiler house Pig nursery unit

A B C A B C

Cleaning Product Kenosan® Kenosan®

Concentration 1% 1.5%

Method foaming foaming

Disinfection Product Virocid® CID20® D50® Virocid® CID20® D50®

Concentration 2 l / 4 l
water

4 l / 4 l
water

4 l / 8 l
water

0.25% 0.5% 0.5%

Method fogging fogging fogging foaming foaming foaming

Active
components*

QAC-GA QAC-GA-F PA-H2O2 QAC-GA QAC-
GA-F

PA-
H2O2

*QAC quaternary ammonium compound, GA glutaraldehyde, F formaldehyde, PA peracetic acid, H2O2 hydrogen peroxide
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For each pig nursery unit, each pen was sampled at six
different locations (floor, concrete wall, synthetic wall,
feeding trough, drinking nipples and pipes) resulting in
48 samples per pig nursery unit, hence 144 samples per
sampling moment and a total of 576 swab samples dur-
ing the entire longitudinal study. Whenever possible, a
surface of 625 cm2 was swabbed. Since the surface of the
drinking cups and nipples was smaller than 625 cm2, a
total amount of five and two were swabbed at each
broiler house and pig nursery unit, respectively. After
sampling, swab samples were transported to the lab in a
cool box with ice packs.

Detection and isolation of Escherichia coli
On the same day, each swab sample was enriched with
10mL of Buffered Peptone Water (BPW, Oxoid,
CM0509, Basingstoke, Hampshire, England), homoge-
nized by a Masticator (IUL instruments, S.A., Barcelona,
Spain) and incubated for 24 h at 37 °C for the detection
of E. coli. After incubation, 10 μL of the BPW fraction
was plated on Rapid’E. coli 2 agar plates (Bio-Rad, 356–
4024, Marnes-la-Coquette, France) and incubated at
44 °C for 24 h. From each positive Rapid’E. coli 2 plate
one isolate was purified and stored at − 80 °C on brain
heart infusion (BHI, Oxoid, CM1032) supplemented
with 15% (v/v) glycerol. In total, 67 and 183 E. coli iso-
lates were obtained during the longitudinal study at the
broiler pilot farm and the experimental pig farm,
respectively.

Disinfectant susceptibility testing
Isolate and disinfectant selection
All 67 isolates from the broiler pilot farm were selected
for disinfectant susceptibility testing. For the isolates
from the experimental pig farm, a random selection was
made of 6 isolates for each sampling and each sampled
pig nursery unit, resulting in 72 pig isolates, representing
±40% of the total amount.
In our previous study [19] no difference was observed

for the selected disinfectants between the MIC (minimal
inhibitory concentration =minimal concentration that
inhibits growth) and MBC (minimal bactericidal concen-
tration =minimal concentration that results in ~ 5 log
CFU reduction). Therefore, in the current study only the
MICs were determined. Based on the used disinfectants
at the pilot farms, active components present in the dis-
infectants were selected. These are: alkyldimethylbenzy-
lammoniumchloride (BKC, > 95%, Sigma Aldrich, 12,
060), formaldehyde (F, 35% v/v in H2O, Sigma Aldrich,
252,549), glutaraldehyde (GA, 50% w/v in H2O, Sigma
Aldrich, 3802) and a chemically stable formulation of
peroxyacetic acid (PA, 55 g/L) and hydrogen peroxide
(H2O2, 220 g/L) (D50®, CID LINES, Ieper, Belgium) as
hydrogen peroxide is not stable and rapidly degrades

into water and oxygen and PA can also decompose to
acetic acid and oxygen [30].

Inoculum preparation
Preparation of the inoculum was based on Maertens
et al. (2019) [19].

Minimal inhibitory concentration (MIC)
Through a broth micro-dilution method based on the
method described by Knapp et al. (2015) [31], the MICs
of each active component (BKC, F and GA) or given for-
mulation (D50®) were determined for the selected iso-
lates. The MIC was defined as the lowest concentration
of active components or formulation where no growth
was visually observed. A 96-well microtiter plate with U-
shaped wells (Novolab, A19652) was filled with 50 μL
TSB containing twofold dilutions of the active compo-
nent or formulation. Fifty microliters of the field isolates
(1–5 × 108 CFU bacterial /mL) was added to the TSB in
the microtiter plate, resulting in a total volume of
100 μL. Final concentration ranges were as follows:
0.007–0.213 g/L BKC, 0.023–0.740 mL/L F, 0.625–20
mL/L GA and 0.625–20 mL/L D50®. As a positive con-
trol, 50 μL of each bacterial suspension was added to
50 μL TSB without disinfectant. To check for possible
contamination, wells without bacterial suspension and
disinfectant served as blank. After inoculation, plates
were incubated for 24 h in a shaking incubator (100
rpm) at 37 °C. After incubation, the MICs were read. In
every experiment the E. coli ATCC strains 10536 and
25922 were used as controls.

Antibiotic susceptibility testing
Antibiotic susceptibility testing was performed on all E.
coli broiler pilot farm isolates (n = 67) and experimental
pig farm isolates (n = 183), using a microdilution
method (Sensititre®) based on Maertens et al. (2019)
[19].

Data analysis
For both animal categories, antibiotic resistance data of
the E. coli isolated after disinfection were each grouped
for every sampling moment and disinfectant. A binary
logistic regression model was fitted to the data with the
antibiotic resistance profile at herd level (resistant/sus-
ceptible) as the dichotomous dependent variable and
with the applied disinfectants, moment of sampling (t1,
t3 and t5) and antibiotic use (TI100) as independent var-
iables. P-values ≤0.05 were considered to be significant.
All statistical analyses were performed using the Statis-
tical Package for the Social Sciences (SPSS Statistics
25.0, IBM Corporation, Armonk, NY). Data of the con-
ventional C&D (sampling at t0) were not included in the
analysis.
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