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Abstract

Background: Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal
pathogen to rabbits. Increasing numbers of studies have demonstrated the existence of antigenic variation in
RHDV, leading to the emergence of a new RHDV isolate (RHDVb). However, the underlying factors determining the
emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we
selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their
phylogenetic relationships, divergence, and predicted protein modification sites.

Results: Phylogenetic analysis showed that classic RHDV isolates, RHDVa, and RHDVb formed different clades. It’s
interesting to note that RHDVa being more closely related to classic RHDV than RHDVb, while RHDVb had a closer
genetic relationship to Rabbit Calicivirus (RCV) than to classic RHDV isolates. Moreover, divergence analysis
suggested that the accumulation of amino acid (aa) changes might be a consequence of adaptive diversification of
capsid protein (VP60) during the division between classical RHDV, RHDVa, RHDVb, and RCV. Notably, the prediction
of N-glycosylation sites suggested that RHDVb subtypes had two unique N-glycosylation sites (aa 301, 362) but
lacked three other N-glycosylation sites (aa 45, 308, 474) displayed in classic RHDV and RHDVa VP60 implying this
divergence of N-glycosylation sites in RHDV might affect viral virulence. Analysis of phosphorylation sites also
indicated that some phosphorylation sites in RHDVa and RHDVb differed from those in classic RHDV, potentially
related to antigenic variation in RHDV.

Conclusion: The genetic relationship between RHDVb and RCV was closer than classic RHDV isolates. Moreover,
compared to RHDV and RHDVa, RHDVb had two unique N-glycosylation sites but lacked three sites, which might
affect the virulence of RHDV. These results may provide new clues for further investigations of the origin of new
types of RHDV and the mechanisms of genetic variation in RHDV.
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Background
Rabbit hemorrhagic disease (RHD) is a highly fatal infec-
tious disease caused by RHDV, which is first discovered
in China in 1984. And it has been subsequently spread
worldwidely within a few years, resulting in great
economic losses in the rabbit industries [1, 2]. RHDV,
European Brown Hare Syndrome Virus (EBHSV) as well
as the non-pathogenic rabbit calicivirus (RCV) both

belong to the genus Lagovirus, family Caliciviridae [3–5].
RHDV isolates have been classified into three subtypes
including classic RHDV (G1-G5), RHDVa (G6), and
RHDVb (G1.2) [6–8]. The new RHDV variant, called
RHDV2/b, was identified for the first time in 2011. The
RHDVb infection spectrum is expanded, including not
only the European rabbit (Oryctolagus cuniculus) [9] but
also the Sardinian cape hare (L. capensis) [10], the
Corsican hare (L. corsicanus) [9], and the European hare
(L. europaeus) [11]. RHDVb also cause the death of young
rabbits aged 2–3 weeks or rabbit vaccinated, which sug-
gests that classic RHDV and RHDVb may use different re-
ceptors [7]. Now RHDVb has been reported in many
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countries in Europe, Australia, Africa, and North America
[7–9, 12–19] and has replaced classic RHDV as the major
cause of RHD in many areas [20–22].
RHDV contains a 7437-nucleotide positive-sense single-

stranded genomic RNA, which is composed of two slightly
overlapping open reading frames (ORFs) and a 2.2-kb
designated subgenomic RNA. ORF1 encodes a large poly-
protein cleaved by a virus-encoded protease into the main
capsid protein of RHDV VP60 and seven mature non-
structural proteins (p16, p23, helicase, p29, Vpg, protease,
RdRp) [23–26]. And ORF2 encodes another structural
protein (VP10) [24] playing part in the replication and
release from infected host cells of RHDV [27].
VP60, the major structural protein of RHDV, deter-

mining the differences of three subtypes of RHDV in
genetic, antigenic, and epidemiological diversity and im-
munological response, consists of three domains: the N-
terminal arm (NTA, aa 1–65), the shell (S, aa 66–229),
the protrusion (P, aa 238–579), and a short hinge (aa
230–237) that connects the S and P domains [28, 29].
The P domain is further divided into P1 (aa 238–286,
450–466, and 484–579) and P2 (aa 287–449 and 467–
483) sub-domains located at the most exposed region of
VP60. P2 subdomain shows the greatest genetic vari-
ation [30] and plays important role in binding to histo-
blood group antigens (HBGAs) or host tissues [31, 32].
In this study, we attempt to explain the relations

among classic RHDV, RHDVa, RHDVb and RCV, which
will establish a foundation to reveal the emergence and
epidemiology differences between RHDV and RHDVb.

Results
Phylogenetic analysis of RHDV
Phylogenetic analysis of RHDV isolates based on VP60
showed that RHDVb was more closely related to RCV
than RHDV (Fig. 1a), but another phylogenetic tree
based on the complete sequence showed some RHDVa
and RHDVb isolates were more closely related to RCV than
to RHDV (Fig. 1b). The amino acid alignment showed that
amino acids which deficient in 136,137 and 716 among
these RHDVa and RHDVb isolates were the same as in the
RCV isolates. Those isolates may have a recombinant his-
tory and thus be transitions from RCV to RHDV [33, 34].
We used the phylogenetic tree based on VP60 to classify
the subtypes of RHDV (Fig. 1a). The classic RHDV,
RHDVa, and RHDVb subtypes and RCV sequences con-
sisted of 95, 43, 46 and 46 isolates, respectively.

Adaptive diversification among classic RHDV, RHDVa, and
RHDVb
In theory, the variations of a sequence were supposed to
have a similar evolutionary process for they are linked
tightly [35]. Nevertheless, recombination among the parts
of different sequences would obscure the evolutionary

process, which has been found to exist universally in differ-
ent subtypes of RHDV [36, 37]. Aiming to determine the
potential adaptive variations which are associating with the
split of the three phylogenic subtypes (classic RHDV,
RHDVa, and RHDVb) from a common ancestor, we firstly
take the RDP v4.56 package to detect the recombination
covering the entire coding sequences of the 184 RHDV
genomes and identified eight putative recombinant
isolates (MF598302, MF421679, KP129396, KY628317,
KY765609, KY628317, EF558585, EF558586), whose the
donors belonged to different subtypes (Additional file 2:
Table S2). In addition, these sequences were validated
by BOOTSCAN, GENECONV, Maximum Chi Square
(MAXCHI), and Sister Scanning (SISCAN) methods.
The results of Simplot analysis showed that the inter-
subtype recombinations were both located in the ORF1s,
not the ORF2s (Additional file 5: Figure S1). And these
recombinants were removed to eliminate the impact of
this inter-subtype recombination.
MK test was applied with the coding sequences of all in-

dividual proteins among the classic RHDV, RHDVa,
RHDVb, and RCV to detect the occurrence of adaptive di-
versification. The results suggested that viral proteins
clearly encountered different evolutionary fates (Add-
itional file 3: Table S3). There were several amino acid
changes in the coding sequence of the capsid protein VP60
(nt 1–1740) among the different subtypes. According to
Fisher’s exact test of independence, the ratio of these re-
placement differences to the fixed synonymous was signifi-
cantly greater than the replacement which happened
among intra-subtype versus the synonymous polymor-
phisms (P < 0.01) (Additional file 3: Table S3). Conversely,
the results for the coding sequences of the other proteins
did not show a similar pattern of evolution. All these results
suggested that the accumulation of amino acid changes in
VP60 could be a consequence of adaptive diversification
during the division of classic RHDV, RHDVa, and RHDVb.

Functional divergence of amino acid sites among classic
RHDV, RHDVa, and RHDVb
It is well known that the adaptive diversification
generally happens at few positions because most
amino acids in a protein are subject to functional
constraints. Moreover, it has been pointed out that
adaptive diversification could result in changes in the
physicochemical properties of amino acids at critical sites.
To advance our understanding of the adaptive evolution
among the classic RHDV, RHDVa RHDVb and RCV, we
attempted to track the functional diversification of VP60 of
individual amino acid sites using the type-II divergence
method in DIVERGE 3 [38, 39]. As shown in Add-
itional file 4: Table S4, we identified 50 putative func-
tional divergence-related sites between classic RHDV and
RHDVb, 34 putative functional divergence-related sites in
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Fig. 1 Phylogenetic analysis of RHDV isolates. Maximum likelihood tree for RHDV using MEGA5 with the sequence of VP60 (a), and complete
sequence (b). Numbers on branches represent bootstrap values (based on 1000 replications)
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RHDVa versus (vs.) RHDVb, 21 putative functional
divergence-related sites in classic RHDV vs, RHDVa. 37 pu-
tative functional divergence-related sites in RCV vs.
RHDVb. Interestingly, there are 33 identical sites between
classic RHDV vs. RHDVb and RHDVa vs. RHDVb, but
no common site from classic RHDV vs. RHDVa. It
has been reported that putative functional divergence-
related sites of VP60 may influence the virulence of
RHDV, RHDVb, and RCV [34]. The distribution pat-
tern of the identified sites was generally consistent
with the results from the MK test above. Overall,
these results suggested that adaptive amino acid
changes, mainly in the capsid protein VP60, had
taken place during the division of the RHDV progeni-
tor into classic RHDV, RHDVa, and RHDVb.

Analysis of amino acids of RHDV
It is well known that there are seven variant regions
(V1-V7) in different genetic groups of RHDV isolates. In
this study, multiple sequence alignments of the P2 sub-
domain of VP60 was performed by ClustalW method.
We found that not only the range of six variation
regions is widening, but also V3 variation region is
narrowing in RHDVb. In addition, the amino acids 241,
253, 260, 285, and 331 of RHDVb VP60 were also
mutated (Fig. 2).
N-glycosylation and phosphorylation play an important

role in the various biological functions of proteins. It has
been reported that they play an important regulatory role
in viral infection, replication, and translation [40–42]. We
predicted the N-glycosylation and phosphorylation sites of

Fig. 2 Sequence alignment of VP60 of RHDV isolates. Multiple sequence alignments of VP60 among classic RHDV, RHDVa, and RHDVb isolates.
The alignment is shown for the P1 and P2 sub-domain region for residues from 237 to 481. The seven variation regions (V1-V7) that distinguish
these isolates are highlighted in gray. The specific variation regions of RHDVb are marked blue
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VP60 in the different RHDV subtypes (Fig. 3). VP60 in
classic RHDV, RHDVa, and RHDVb included seven, eight,
and five N-glycosylation sites, respectively. Interestingly,
RHDVa had two specific N-glycosylation sites (aa 307 and
414 in VP60) and lacked one other N-glycosylation site
(aa 369 in VP60) compared with classic RHDV. Moreover,

RHDVb had two specific N-glycosylation sites (aa 301
and 362 in VP60) and lacked three N-glycosylation sites
(aa 45, 308, and 474 in VP60) compared with classic
RHDV. The specific N-glycosylation sites in RHDVb
may contribute to the difference in host specificity.
Phosphorylation site analysis showed that VP60 in

Fig. 3 Predicted N-glycosylation sites in VP60 in different subtypes of RHDV. The Y axis is the percentage of potential N-glycosylation of this site
in all strains

Fig. 4 Predicted phosphorylation sites in VP60 in different subtypes of RHDV. The Y axis is the percentage of potential phosphorylation of this
site in all strains
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classic RHDV, RHDVa, and RHDVb had 19, 21, and 13
phosphorylation sites, respectively (Fig. 4). RHDVa and
RHDVb had some phosphorylation sites that differed
from those in classic RHDV, which may also contribute
to the differences in virulence among classic RHDV,
RHDVa, and RHDVb.

Discussion
VP60 is the major viral structure and immunogenic pro-
tein of RHDV [43]. The differences of VP60 among three
subtypes of RHDV caused the variances of genetic, anti-
genic, and epidemiological diversity and immunological
response among classic RHDV, RHDVa, and RHDVb.

And it’s composed of three domains: the N-terminal arm
(NTA, aa 1–65), the shell (S, aa 66–229), a short hinge (aa
230–237) and the protrusion (P, aa 238–579) which is di-
vided into two subdomains (P1 (aa 238–286, 450–466,
and 484–579) and P2 (aa 287–449 and 467–483)) [28, 29].
We analyzed the potential functional divergence-related

sites in VP60 between RHDVb and RHDV or RHDVa and
identified 33 identical sites, including 17 sites in the vari-
ant regions of the P2 subdomain, 11 sites in the P1 subdo-
main, 2 sites in the S domain, and 2 sites in the NTA
region (Additional file 4: Table S4). We also found 17 dis-
tinct potential functional divergence-related sites in differ-
ent types of RHDV (Additional file 4: Table S4), including

Fig. 5 Three-dimensional structure of VP60 P domain. a Stick model showing locations of the common divergent sites among classic RHDV, RHDVa,
and RHDVb in the VP60 P domain. b Stick model showing locations of N-glycosylation sites in classic RHDV VP60 P domain. c Stick model showing
locations of N-glycosylation sites in the RHDVa VP60 P domain. d Stick model showing locations of N-glycosylation sites in RHDVb VP60 P domain
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12 sites in the variant regions of the P2 subdomain, 4 sites
in the P1 subdomain, and 1 site in the NTA region. We
further analyzed the biological significance of these
distinct potential functional divergence-related sites by
predicting their precise location in the three-dimensional
structure of the VP60 P domain (PDB ID: 4X1W)
using PyMOL software (Fig. 5a). Some of the potential
functional divergence-related sites in RHDVb were located
in a functional domain on the outer surface of RHDV
VP60. This domain has been reported to comprise three
cavities (1–3), which are responsible for the binding of
RHDV to HBGAs. Similar to norovirus structural protein
VP1, VP60 of RHDV also has L2 and L6 loops that can
bind to HBGA Lewis [32, 44]. We found three potential
functional divergence-related sites (aa 331, 345, and 431)
of RHDVb VP60 located in the L2 and L6 loops. Other
potential functional divergence-related sites may also lead
to structural changes in VP60 in RHDVb, potentially
allowing RHDVb to bind to new cellular receptors. Fur-
ther studies are needed to investigate this possibility.
However, we speculated that the potential functional
divergence-related sites might affect the recognition of
HBGAs. Then we analyzed the potential functional
divergence-related sites in VP60 between RHDVb and
RCV and identified 37 identical sites, including 18 sites in
the P2 subdomain, 8 sites in the P1 subdomain, 9 sites in
the S domain, and 2 sites in the NTA region (Additional
file 4: Table S4) and these sites specially located in the P2
subdomain may play a role in the virulence and organs
tropism of RHDV. Although it still needs to be improved.
Post-translational modifications of polypeptides or pro-
teins, such as ubiquitination, phosphorylation, and glyco-
sylation, are essential biological features of viral proteins
[45]. Glycoproteins make up more than 50% of cellular
proteins, and glycosylation is a common post-translational
modification in eukaryotes, with roles in important pro-
cesses such as cell recognition differentiation, develop-
ment, signal transduction, and the immune response [41,
42]. N-glycosylation site prediction showed that RHDVb
had two unique N-glycosylation sites and lacked three N-
glycosylation sites in VP60. Glycosylation is known to be
related to infection or virulence in many non-enveloped
viruses such as rotavirus and hepatitis E virus [46–49].
The positive N-glycosylation sites in VP60 showed that
glycosylation might influence the pathogenicity of RHDV
[50]. RCV that lacked some of the positive N-glycosylation
sites couldn’t infect the rabbits, which also provided
evidence for this viewpoint [50]. Deletions of aa 307 and
308 in RHDV VP60 were recently shown to affect the
pathogenicity of RHDV [51]. In addition, we further ana-
lyzed the biological significance of these distinct potential
functional N-glycosylation sites of different subtypes of
RHDV by predicting their precise location in the three-
dimensional structure of the VP60 P domain (PDB ID:

4X1W) using PyMOL software. As showed in Fig. 5b-d,
some of the potential functional N-glycosylation sites in
RHDV were located in a functional domain on the outer
surface of RHDV VP60. The current results identified aa
307 and 308 as potential N-glycosylation sites in the V1
variable region of VP60. We therefore speculated that the
divergence of N-glycosylation sites in VP60 might have af-
fected the virulence of RHDV. Phosphorylation is also an
important form of post-translational modification in
eukaryotic cells, and plays an important role in the
regulation of many biological processes, such as signal
transduction, gene expression, and cell division [52, 53].
The current analysis of phosphorylation sites showed that
some sites differed among RHDVa, RHDVb, and classic
RHDV. However, further studies are needed to determine
if these changes might affect the pathogenicity or
evolution of RHDV.

Conclusions
In summary, we employed bioinformatics software to
analyze genetic variations among classic RHDV, RHDVa,
RHDVb, RCV, and MRCV, covering the near-complete
regions of two ORFs, and to predict the N-linked glycosyl-
ation and phosphorylation sites in VP60. The genetic rela-
tionship between RHDVb and RCV was closer than that
with classic RHDV isolates, while RHDVb had two unique
N-glycosylation sites but lacked three sites present in
classic RHDV and RHDVa VP60. This divergence of N-
glycosylation sites might affect the virulence of RHDV. All
these results may provide new clues for further investiga-
tions of the origin of new types of RHDV and the mecha-
nisms of genetic variation in RHDV.

Methods
Sequence data collection and alignment
We selected 184 partial and/or complete genome se-
quences of RHDV, 46 genome sequences of RCV, and
1 genome sequence of MRCV from GenBank (Add-
itional file 1: Table S1). These sequences were aligned
using ClustalW, and the codon reading frames were then
checked manually to remove ambiguous codons. The se-
quence of Z29514 was chosen as the standard sequence.

Phylogenetic analysis of RHDV isolates
Two phylogenetic trees were constructed based on VP60
[54] and the complete sequence (as aligned to Z29514)
using MEGA5.0 software (www.megasoftware.net) with
maximum likelihood statistical methods [55]. The confi-
dence levels of the reconstructed trees were evaluated by
the bootstrap method with 1000 replicates [56]. RCV
and MRCV were chosen as out-groups.
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Recombination detection
Recombination Detection Program (RDP) v4.56 software
package was used to detect the recombination of the
RHDV genomes [57] with the BOOTSCAN [58], GENE-
CONV [59], Maximum Chi Square (MAXCHI) [60],
RDP [61], and Sister Scanning (SISCAN) methods [62].
The P-value cutoff was set as 0.05 throughout, and the
RHDV genomes happening recombination events were
removed.

Divergence scan
Simplot program was used to assess the divergence of
the nucleotide sequences within the three subtypes of
RHDV [33]. The reference sequences were chosen ran-
domly as follows: classic RHDV subtype, M67473, and
Z49271; RHDVa subtype, DQ205345, and AF258618;
and RHDVb subtype, KM979445, and MF421692. A
sliding window (200 nt) was moved along the entire
coding sequences in steps of 20 nucleotides. The
reliability of the recombination sites was assessed by
Genetic Algorithm Recombination Detection (GARD,
http://www.datamonkey.org).

McDonald-Kreitman (MK) analysis of coding sequences of
individual proteins
McDonald-Kreitman (MK) analysis was used to examine
if adaptive evolution had contributed to the diversity
among the three subtypes of RHDV by comparing the
numbers of synonymous and replacement (non-syn-
onymous) changes, both between and within these
phylogenic subtypes [63].. We performed the MK test to
identify adaptive diversification in individual protein
using http://mkt.uab.es. The divergence was corrected
using the Jukes-Cantor model [64], and independence
was analyzed by Fisher’s exact test.

Test for functional divergence in coding sequences of
putative diversified proteins
We detected the signature of adaptive diversification at
each amino acid sites by implementing the type-II diver-
gence method in DIVERGE 3 covering the ORF1 coding
region (nt 10–7044 aligned to Z29514) and ORF2 coding
region (nt 7025–7378 aligned to Z29514) of classic
RHDV, RHDVa, RHDVb and RCV [38, 39]. The type-II
functional divergence at the early stage was calculated
after the subtypes split from an ancestor [38, 65]. The
result of type-II functional divergence analysis showed
that the homologous amino acid residues are conserved
in each subtype, but their physicochemical properties
are different in each subtype. Moreover, we calculated
the coefficient of type II functional divergence (θII) be-
tween the individual subtypes [38], and the statistical
evaluation was accessed by the Z-score test based on the
value of θII and its standard error (θIISE) [39, 65]. The

invalid hypothesis is θII = 0, it means that the evolution-
ary rates are almost identical between the individual sub-
types. For a significantly θII value, it means that a
valuable change in amino acid physicochemical proper-
ties which might have occurred among the subtypes. In
addition, in order to predict the amino acid residues of
the functional differences, a posterior probability-based
confidence measure was introduced with a probability
cutoff > 0.95 [38].

Analysis of amino acids of RHDV
The amino acids in each protein of RHDV were analyzed
with MEGA5.0 software (www.megasoftware.net) [55].
The potential N-linked glycosylation and phosphorylation
sites of VP60 were also predicted using http://www.cbs.
dtu.dk/services/NetNGlyc/ [66] and http://www.dabi.tem-
ple.edu/disphos/ [67, 68], respectively.
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