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Comparison of time-series models for
monitoring temporal trends in endemic
diseases sero-prevalence: lessons from
porcine reproductive and respiratory
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Abstract

Background: Monitoring systems are essential to detect if the number of cases of a specific disease is rising. Data
collected as part of voluntary disease monitoring programs is particularly useful to evaluate if control and eradication
programs achieve the target. These data are characterized by random noise which makes harder to interpret temporal
changes in the data. Monitoring trends in the data is a possible approach to overcome this issue.
The objective of this study was to assess the performance of three time-series models that allows monitoring trends in
data in terms of its adaptability when used to monitor changes in disease sero-prevalence at a national scale based on
data collected as part of voluntary monitoring programs. We compared two Bayesian forecasting methods and an
Exponential smoothing method, specifically a Dynamic Linear Model, a Dynamic Generalized Linear Model and a Holt’s
linear trend method, respectively. These three different types of time series models were applied to data on weekly
sero-prevalence of Porcine Reproductive and Respiratory Syndrome (PRRS) in Danish swine herds.

Results: Comparing the linear cross-dependence between the filtered values obtained from the three models and the
raw data, we observed that the Holt’s linear trend method shows negative linear dependence for roughly half of the
time for breeding/nucleus and multiplier herds, having values close to zero for most of the period in finisher herds.

Conclusions: Bayesian forecasting methods adapt faster to changes in the data, compared to the deterministic Holt’s
linear trend method. The practical implication of this greater flexibility is that the Bayesian methods will provide more
reliable values of changes in the data and have potential to be implemented as part of a surveillance system in
Denmark.
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Background
Monitoring systems are essential to detect changes in dis-
ease status in a timely and effective manner. Failure of
control (and eradication) programs may have a devastat-
ing economic impact on herds with susceptible animals.
In the context of endemic diseases, slow and gradual

increases in incidence and prevalence are expected to be

observed due to the existence of vaccination and health
management programs and to previous exposure, which
can lead to natural immunity of several individuals in
the population [1]. When following up on control and
eradication programs, the failure to achieve a target
value of disease prevalence within a certain period of
time indicates that the implemented strategies should be
revised. These programs are often based on laboratory
diagnostic tests performed on a regular basis. As a re-
sult, the serological results generate large amounts of
data characterized by random noise, due to the variation
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in the disease prevalence and the number of herds tested
over time. The frequency of laboratory diagnostic testing
also depends on the economic value of the animal and
on the disease impact [2]. In these cases, the data differ
from those obtained from traditional surveillance (gener-
ally focused on identifying new cases) increasing their
complexity as disease burden is affected not only by new
cases but also by the duration and recovery rate.
In recent years, several studies explored the perform-

ance of different temporal monitoring methods in detect-
ing outbreaks of (re-)emerging diseases [3, 4]. However,
these methods might result in false alarms when applied
to laboratory diagnostic data characterized by random
noise and, as a consequence, with the costs of investiga-
tion of these alarms as well as a lower trust on the moni-
toring system. One alternative approach could be to
monitor the trend of the underlying level of the time
series, which can be positive or negative depending on
whether the time series exhibits an increasing or decreas-
ing pattern [5, 6]. This is particularly useful for monitoring
temporal changes in trends laboratory diagnostic results
collected as part of voluntary disease monitoring pro-
grams. Based on these data, veterinarian authorities can
implement control measures whenever certain thresholds
related to the disease status have been exceeded. Further-
more, the efficiency of implemented control measures and
eradication programs can be evaluated and redefine when-
ever the disease prevalence (and incidence) fails to achieve
a certain level.
In a previous simulation study [6], monitoring the

trend component showed great potential as a basis for
monitoring temporal changes in diseases prevalence.
However, those methods were not applied to real labora-
tory diagnostic data collected as part of voluntary dis-
ease monitoring programs, where challenges such as
shifts in the collection frequency often occur.
The objective of this study was to assess the perform-

ance of three time-series models in terms of their adapt-
ability when used to monitor changes in disease sero-
prevalence at a national scale based on real world data.
We compared two Bayesian forecasting methods,
namely a Dynamic Linear Model (DLM) and a Dynamic
Generalized Linear Model (DGLM), both with a linear
trend component. The third time series model was an
exponential smoothing method, specifically a Holts’ lin-
ear trend model. These three different types of time
series models were applied to data on weekly sero-
prevalence of Porcine Reproductive and Respiratory Syn-
drome (PRRS) in Danish swine herds.

Results
Data description
A total of 51,639 laboratory submissions from 5095 Da-
nish swine herds sent between 2007 and 2014 were

included in the analysis, corresponding to 386 Red SPF
herds, 3441 Blue SPF herds and 2174 Non SPF herds.
The median (Q1 — Q3) number of weekly herds tested
was 59 (50–68), 53 (42–62), 23 (19–28) for Red SPF,
Blue SPF and non SPF herds respectively. The median
PRRS sero-prevalence from 2010 to 2014 is 0.10 (0.06–
0.14) for the Red SPF, 0.32 (0.26–0.37) for the Blue SPF
and 0.35 (0.27–0.43) for Non SPF herds. For the Red
SPF herds with at least one positive submission through-
out the study period, the median (Q1 – Q3) number of
weeks between two consecutive submissions was 4 (1–5)
weeks. For the Red SPF herds with all submissions
negative for PRRS, the median number of weeks be-
tween two consecutive submissions was 4 (4–5) weeks.
For Blue SPF herds, the corresponding values were 37
(13–52) and 51 (45–54) while for the Non SPF herds
they were 32 (3–40) and 25 (2–27) respectively.

Models initiation and parametrization
The DLM was run with deltas of 0.95, 0.97 and 0.98 for
Red, Blue and Non SPF herds respectively; deltas of 0.98,
0.97 and 0.98 were used in the DGLM for the same herd
types respectively. For PRRS sero-prevalence in Red SPF
herds, the initial trend was − 0.0004 with an initial level of
0.129 and a beta of 0.001 and alpha of 0.08 for the Holt’s
linear trend method; an initial trend of 0.0004 and initial
level of 0.373 with a value of beta of 0.001 and alpha of
0.21 was defined for Blue SPF herds. For modeling PRRS
sero-prevalence in Non SPF herds, the Holt’s linear trend
method was defined with an initial trend of − 0.0004, an
initial level of 0.404 with a beta of 0.113 and alpha of
0.002.

Modeling performance
Results of the forecast errors obtained for the three
modeling approaches are shown in Table 1. The root
mean of squared errors (RMSE) of the DGLM is signifi-
cantly smaller than the RMSE of the DLM for Red and
Non SPF herds. The RMSE of Holt’s linear trend method
is significantly larger than both Bayesian forecast
methods for Red SPF herds and significantly lower for
Non SPF herds. For Blue SPF herds the RMSE values
only differed on the 4th decimal place.
Comparing the filtered means obtained from the dif-

ferent models (Fig. 1), it is possible to observe that the
DLM is the method with the highest flexibility to adapt
to changes in PRRS sero-prevalence for the different
herd types. This is most evident for the period between
June 2011 and January 2013 for Non SPF herds where
the filtered values of the DLM followed the decreasing
shifts in PRRS sero-prevalence in contrast with the HW
filtered mean, which stayed at a constant level.
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Local linear cross-dependence
A Kernel smoother parameter of 4 for the DLM and
DGLM and of 30 for the Holt’s linear trend method
were found to minimize the generalized cross-validation
gamma deviance of the multivariate Evolutionary Wave-
let Spectrum analysis. Figure 2 illustrates the local linear
cross-dependence between PRRS sero-prevalence in the
different herd types and the filtered values obtained from
the three different models for level j = 1, i.e. the wavelet
should include 1 time unit corresponding to 1 week. The
local linear cross-dependence between PRRS sero-
prevalence in the different herd types and the filtered
values obtained from the DLM and the DGLM show a
positive linear dependence for most of the time (i.e. the
filtered values obtained from these models followed the
observed changes in PRRS sero-prevalence). The linear
cross-dependence between PRRS sero-prevalence in the
different herd types and the filtered values obtained from
the Holt’s linear trend method shows a negative linear
dependence for roughly half of the time for Red and
Blue SPF herds, having values close to zero for most of
the period in Non SPF herds. The sum of the local linear
cross-dependence absolute values obtained for the whole
period of study (256 weeks starting from 23rd July 2012
to 31st December 2014) are presented in Table 2.

Discussion
The performance of three time-series models for moni-
toring trends in PRRS sero-prevalence in different types
of Danish swine herds was assessed. Bayesian forecasting
methods demonstrated more flexibility to adapt to shifts
in PRRS sero-prevalence time-series when compared to
the Holt’s linear trend method.
The Red SPF herds are tested for PRRS on a monthly

basis, while for Blue SPF herds the frequency of testing

is once per year and Non SPF herds have no legal re-
quirements for testing frequency. For Red SPF and Blue
SPF herds, the laboratory diagnostic data are a good in-
dication of the between-herd PRRS sero-prevalence at
country level. For Non SPF herds, the frequency of test-
ing depends on suspicions of outbreaks, farmer compli-
ance, trading purposes and ongoing control and
eradication programs. This resulted in time-series char-
acterized by random noise, as a result of the variation in
the disease prevalence and the number of herds tested
over time, as well as larger shifts on the level, as seen in
Fig. 1.
One core feature, which separates the two Bayesian

methods from the Holt’s linear trend method, is that the
Bayesian methods are fundamentally stochastic in their
way of updating the parameter vector, while the Holt’s
linear trend method is fundamentally deterministic; in
the Bayesian approach, the values in the parameter vec-
tor are updated at each time step, based not only on the
magnitude of the forecast errors but also the level of
confidence we can have in the forecast error, expressed
as the forecast variance in the Kalman filter [7]. Further-
more, the observational variance, which is used when
calculating the forecast variance [7] was dependent on
the number of herds observed at a given time step. In
other words, the amount by which the model would
error-correct was influenced by the reliability of the ob-
served prevalence values, as well as the reliability of the
model-based forecasts and forecast errors. With all of
these factors, which went into the Bayesian estimation of
the most likely underlying true levels of the time series,
it is perhaps not surprising that both of the Bayesian
methods showed greater flexibility than the deterministic
method. This is particularly useful to veterinarian au-
thorities to provide reliable information when imple-
menting (and revising) disease control and eradication
programs whenever certain thresholds related to the dis-
ease status have been exceeded. Also, in cases where a
shift occurs from voluntary to mandatory surveillance
programs (or vice versa), it would be expected that the
variance of the prevalence would be significantly af-
fected; for the mandatory records, you would expect that
the farms being tested are much the same from one
month to the next, leading to less variation. The Bayes-
ian methods would be able to take such changes into ac-
count when estimating the true prevalence, while this
would be impossible for deterministic methods such as
the Holt’s linear trend method.

Conclusions
We showed that Bayesian forecasting methods adapt fas-
ter to changes in the data, compared to the deterministic
Holt’s linear trend method. The practical implication of
this greater flexibility is that the Bayesian methods will

Table 1 Forecast accuracy comparison of modeling weekly
Porcine Reproductive and Respiratory Syndrome sero-prevalence
in Danish swine herds. The out of the sample period is January
2010 to December 2014. The Red SPF herds are tested on a
monthly basis for PRRS; the Blue SPF herds are tested at least
once a year for PRRS; the Non SPF herds are tested with other
frequencies for PRRS

Root Mean of Squared errors

Model Red SPF herds Blue SPF herds Non SPF herds

DLM
(95%CI)

0.061
(0.057–0.066)

0.081
(0.079–0.083)

0.128
(0.125–0.132)

DGLM (95%CI) 0.056
(0.053–0.060)

0.081
(0.079–0.083)

0.124
(0.120–0.127)

HM (95%CI) 0.219
(0.204–0.235)

0.081
(0.079–0.083)

0.096
(0.093–0.099)

CI Confidence Intervals
DLM Dynamic Linear Model
DGLM Dynamic Generalized Linear Model
HM Holt‘s linear trend method
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provide more reliable values of changes in the preva-
lence and have the potential to be implemented as part
of a surveillance system in Denmark. Understanding
these differences in utility of various monitoring
methods will allow veterinarian authorities to improve
the implementation (and revisions) of disease control
and eradication programs at national scales.

Methods
Data sources
Laboratory submission data stored in information man-
agement systems in the National Veterinary Institute -
Technical University of Denmark and in the Laboratory
for Swine Diseases - SEGES Pig Research Centre were
used to determine the weekly PRRS sero-prevalence in
Danish swine herds from January 2007 to December

2014. The laboratory diagnostic test results for PRRS
from both laboratories were only available for this period
of time. Collections of individual blood samples col-
lected on the same day from different animals from a
given herd are processed as individual laboratory sub-
missions. Only submissions with at least 10 individual
blood samples tested by serological tests (Blocking
Enzyme-Linked Immunosorbent Assay — ELISA ([8];
IDEXX, Ludwigsburg, Germany) and/or Immunoperoxi-
dase monolayer assay — IPMA [9]) were included in the
study. Herds were classified as PRRS sero-positive when
at least 2 individual blood samples in each submission
tested PRRS positive. The country-level between-herd
PRRS sero-prevalence was calculated weekly as the pro-
portion of PRRS positive herds for a given time period
from the total number of herds tested for PRRS on that

Fig. 1 Comparison between filtered means obtained from the different models and Porcine Reproductive and Respiratory Syndrome sero-prevalence
between January 2010 and December 2014. The filtering values obtained from the Dynamic Linear Model (DLM), from the Generalized Dynamic Linear
Model (DGLM) and from the Holt’s linear trend method (HM) are represented for the different herd types. The Red SPF herds are tested on a monthly
basis for PRRS; the Blue SPF herds are tested at least once a year for PRRS; the Non SPF herds are tested with other frequencies for PRRS
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week. This will be referred to as “PRRS sero-prevalence”
throughout the manuscript.
In Denmark, the Specific Pathogen Free (SPF) system

is a voluntary health program with established rules for

monitoring several diseases, including PRRS [10]. The
designations “Red”, “Blue” and “Green” are used within
the SPF system to classify the herds according to its bio-
security status. Within the SPF herds, the “Red” herds
are tested every month for PRRS and the “Blue” and
“Green” herds are tested at least once a year. The labora-
tory submission data were merged with the SPF database
and, based on the herd id numbers, the herds were clas-
sified as Blue, Red and Non SPF herds (i.e. if the herds
were not part of the SPF system). Due to the low num-
ber of “Green” SPF herds in the SPF system, these herds
were included in the analysis as Blue SPF herds. The in-
dividual time-series for each herd type were created and
modeled separately. The seasonality test was performed
based on auto correlation plots (ACF function in R) of

Fig. 2 Wavelet coherence plot at scale-scale j = 1. The x-axis indicates specific time points (weeks) observed in the time-series since the first
observation (i.e. t = 1 corresponds to 23rd July 2012 until 31st December 2014). The coherence obtained for the Dynamic Linear Model (DLM),
from the Generalized Dynamic Linear Model (DGLM) and from the Holt’s linear trend method (HM) are represented

Table 2 Sum of the local linear cross-dependence absolute
values observed between 23rd July 2012 and 31st December
2014

Model Red SPF herds Blue SPF herds Non SPF herds

DLM 223.55 234.32 242.33

DGLM 213.81 234.68 229.74

HM 159.51 191.24 113.46

DLM Dynamic Linear Model
DGLM Dynamic Generalized Linear Model
HM Holt‘s linear trend method
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individual time-series and by comparing the fitness of
the Holt Winters model with and without seasonal com-
ponents (both “additive” and “multiplicative”). No auto-
correlation or seasonality was found in the time series.
The datasets for this manuscript are not publicly avail-

able because are owned by the National Veterinary Insti-
tute — Technical University of Denmark and by the Pig
Research Centre–SEGES.

Modeling
All methods described below were performed in R (ver-
sion 3.5.0) [11].

Bayesian forecasting methods
Two Bayesian forecast models, a DLM and a DGLM,
both with a linear trend, as described by [6] were used
to model the different time-series. The aim of these
models is to estimate the underlying true value combin-
ing the observed data (i.e. PRRS sero-prevalence) with a
conditional distribution t given by Dt ( t| Dt) sequen-
tially for each time step. A linear growth component in-
cludes a time-varying slope (or local linear trend) was
incorporated in the model to allow the system to adapt
to a possible positive or negative growth for each t.
A DLM model is represented by a set of two equa-

tions, defined as the observation equation (Eq. 1) and
the system equation (Eq. 2).

Y t ¼ F
0
: θt þ vt ; vt � N 0;Vtð Þ ð1Þ

θt ¼ G: θt−1 þ wt ; wt � N 0;Wtð Þ ð2Þ
where Vt and Wt are referred to as the observational
variance and system variance, respectively. The trans-
posed design matrix (F′) had the following structure:

F 0 ¼ 1 0½ � ð3Þ
Eq. 2 describes the evolution of from time t-1 to t.

The system matrix (G) for a local linear trend model is
given as:

G ¼ 1 1
0 1

� �
ð4Þ

In our study, the observational variance was adjusted
for the number of submissions in a given week:

vt ¼ Y t−1 1−Y t−1ð Þ
nt

ð5Þ

where nt was the number of herds tested for PRRS on
that week.
Unlike the DLM, the DGLM was based on a binomial

distribution. The observation equation for the DGLM
was defined as:

Pt ¼ F 0: θt ð6Þ
For both models, the system variance (wt), which de-

scribed the evolution of variance-covariance of the sys-
tem for each time step, was modelled using a discount
factor (δ), as previously described by [7].
The parameter vector was updated according to

Bayesian principles. This was achieved with model-
specific implementations of the Kalman filter, as de-
scribed in detail by [7].
In order to account for value of zero in PRRS sero-

prevalence, the parameter vector would be updated de-
terministically in accordance with eq. 2, but the stochas-
tic, i.e. Bayesian, aspects of the update [7] would be
omitted.
The DLM and DGLM were both programmed and im-

plemented as described by [6]. The R code used for each
model can be found as Additional file 1. The same im-
plementation of the DLM and DGLM was validated on
simulated data in a previous study [6]. These models
have further been validated and used in previous studies
[12–15].

Exponential smoothing method
The Holt linear trend method was also used to model
the different time-series. The method is described by
[16] and is an exponentially weighted moving average fil-
ter of the level and trend components of a time series.
Briefly, the Holt’ linear trend method allows forecasting
of data with a trend. The level (l) and the trend (b) are
then updated with the following equations:

lt¼α Y t þ 1−αð Þ lt−1 þ bt−1ð Þ ð7Þ
bt¼β lt−lt−1ð Þ þ 1−βð Þbt−1 ð8Þ

and the k-step ahead forecast is then:

Ŷ tþhjt ¼ lt þ btk ð9Þ
where lt denotes an estimate of the level of the series at
time t, bt denotes an estimate of the trend (or growth) of
the series at time t, α is the smoothing parameter for the
level (0 < α < 1), β is the smoothing parameter for the
trend (0 < β < 1).
The Holt’s linear trend method was used based on the

‘HoltWinters’ function in R.

Models initialization and parameterization
Reference analysis was used to estimate the initial pa-
rameters D0~[m0,C0] for the DLM and the DGLM as
described by [7]. The DLM and the DGLM models
were run on the data between 2007 and 2009 with
different values for δ ranging from 0.1 up to 1 by in-
crements of 0.01. The discount factor which mini-
mized the sum of the squared forecast errors was
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chosen for the analysis. For the DLM and the DGLM,
the forecast errors et, standardized with respect to
their variance Qt, such ut ¼ et=

ffiffiffiffiffiffi
Qt

p
In order to estimate the initial trend to initiate the

Holt’s linear trend method, a subset of the sero-
prevalence for each herd type in 2007 was used. A linear
model was used to estimate this initial declining trend
where the week of each year was used as predicted vari-
ables for PRRSV sero-prevalence. The initial level was
estimated as the average sero-prevalence in 2007 for
each herd type. -.
The different combinations of the smoothing parame-

ters α and β ranging from 0 up to 1 with increments of
0.00001 where tested in the different subsets with data
between 2007 and 2009. The combination of α and β
which minimized the sum of the squared forecast errors
for the Holt’s linear trend method was used.

Modeling performance
The model fitting was evaluated using the following
quantitative measures [7]:

Root Mean Squared Error RMSEð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi

t¼1et
2

N

s
ð10Þ

, where et is forecast errors and N is the total number of
observations in data from 1st January 2010 to 31st De-
cember 2014.
Additionally, the 95% confidence intervals (CI) for

RMSE were calculated, assuming that the prediction er-
rors were normally distributed around a mean of 0 with
a constant standard deviation for all forecast errors.
Thus, the χ2 distribution could be used to estimate the
CI as:

95%CIRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
n

χ1
1−5

2;n

s
: RMSE;

ffiffiffiffiffiffiffi
n
χ15

2;n

s
: RMSE

2
4

3
5
ð11Þ

, where n is the number of degrees of freedom, equiva-
lent to the number of herds included in the study for
each herd-type.

Linear cross-dependence
We used the method described by [17] as it provides a
measure of the presence (or lack) of local linear cross-
dependence between PRRS sero-prevalence and the fil-
tered values obtained from the three different models
for each time step t and level j; the level expresses how
many time units the wavelets should be “stretched over”
and it can be interpreted as the time-series lag. The
functions ‘mvEWS’ and ‘coherence’ from the R package

‘mvLSW’ (version 1.2.1) [18] were used to estimate and
quantify the dynamic linear cross-dependence between
PRRS sero-prevalence and filtered means obtained from
the three models with a default wavelet and values ran-
ging from 1 to 30 with increments of 1 were used as
Kernel smoothing parameters. The scale of j = 1, which
corresponds to 1 week lag, was used to evaluate the
cross-dependence.
This method requires time-series with lengths of 2J

where J is a positive integer. Data with the latest 256 (28)
observations (i.e. data from 1st February 2010 to 31st
December 2014) were used.

Additional file

Additional file 1: R code used for a Dynamic Linear Model (DLM) and a
Dynamic Generalized Linear Model (DGLM), both with a linear trend
component. (TXT 5 kb)
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