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Abstract

Background: Porcine reproductive and respiratory syndrome (PRRS) is a major threat to the swine industry. It is caused
by the PRRS virus (PRRSV). Determination and comparison of the nucleotide sequences of PRRSV strains provides useful
information in support of control initiatives or epidemiological studies on transmission patterns. The alignment of
sequences is the first step in analyzing sequence data, with multiple algorithms being available, but little is known on
the impact of this methodological choice. Here, a study was conducted to evaluate the impact of different alignment
algorithms on the resulting aligned sequence dataset and on practical issues when applied to a large field database of
PRRSV open reading frame (ORF) 5 sequences collected in Quebec, Canada, from 2010 to 2014. Five multiple sequence
alignment programs were compared: Clustal W, Clustal Omega, Muscle, T-Coffee and MAFFT.

Results: The resulting alignments showed very similar results in terms of average pairwise genetic similarity, proportion
of pairwise comparisons having 297.5% genetic similarity and sum of pairs (SP) score, except for T-Coffee where
increased length of aligned datasets as well as limitation to handle large datasets were observed.

Conclusions: Based on efficiency at minimizing the number of gaps in different dataset sizes with default open gap
values as well as the capability to handle a large number of sequences in a timely manner, the use of Clustal Omega
might be recommended for the management of PRRSV extensive database for both research and surveillance purposes.
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Background

Porcine reproductive and respiratory syndrome virus
(PRRSV) infection has a major economic impact on the
swine production with annual cost estimated at $664 M
for the US industry [1]. The virus causes reproductive fail-
ure as well as respiratory problems, impaired growth per-
formance and increased mortality in growing pigs [2]. The
important heterogeneity observed among North American
PRRSV strains, combined with the absence of complete
cross-protection following infection with heterologous
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PRRSV strains complicates disease management [3, 4].
Prevention of the disease mostly relies on limiting
between-herd transmission that could occur through sev-
eral direct and indirect pathways. In that regards, the gen-
etic diversity in PRRSV can be used to support
epidemiological investigations of a likely common source
of infection or transmission events between herds in a re-
search, surveillance or control context. A pairwise nucleo-
tide sequence similarity >97.5% is the threshold often used
to indicate if two sequences are considered similar and
likely to originate from a same source [5, 6]. This thresh-
old is also used into molecular-based interactive tools for
field investigations on sources of contamination [7]. These
tools are used to generate hypotheses about how a specific
herd got infected which can orient the implementation of
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specific preventive measures to avoid further introduction
and spread of the virus.

The alignment of sequences is a prerequisite for the
estimation of genetic distances between pairs of se-
quences. Several algorithms to align sequences are avail-
able but they differ in terms of computing approaches.
Dynamic programming is an exact method evaluating
each possible alignment to determine the best solution.
Unfortunately, it is too cumbersome to be run for more
than a few sequences. Thus, heuristic methods, progres-
sive or iterative, are preferably used to manage large se-
quence databases; they progressively incorporate
pairwise alignments into multiple alignment which con-
siderably decrease computing time [8]. Also, global or
local methods can be chosen according to how similar-
ities are maximized throughout the alignment process;
global methods consider the entire sequence length
whereas local ones focus on highly homologous areas of
the gene [9]. Finally, algorithms can be distinguished by
the number of sequences considered in the alignment
process and the purpose of analysis. A particular se-
quence can be aligned to each sequence found in a data-
base to find the most similar one using a pairwise
sequence alignment, or a large group of sequences can
be aligned simultaneously with multiple sequence align-
ment to better take into account genetic evolution [10].

For most algorithms, the alignment process generally
arranges gene sequences one over the other to maximize
identical matches of nucleotides between sequences [8].
Generally, algorithms try to optimize an objective func-
tion minimizing mismatches and gaps. In fact, gaps can
be inserted during the alignment process if deletion or
insertion sites are detected by the algorithm, so that sites
with identical nucleotides align together. Using large
penalties (cost) for opening a gap and a much smaller
one for extending it result in programs adding fewer
and/or shorter gaps [11]. Due to differences in objective
functions or approaches used to optimize them, as well
as several other parameter settings such as gap penalty,
variations can be observed in final alignments obtained
from different algorithms, sometimes leading to differ-
ences in inferred phylogenetic trees [12].

Even if preliminary evaluation of several alignment al-
gorithms or gap penalty settings on biological datasets is
often suggested, this is rarely done, and studies on
PRRSV are not an exception [13-15]. In fact, the choice
of the best algorithm is not a straightforward task when
using field data, since no reference alignment is available
contrarily to simulated dataset or reference alignment
based on the three-dimensional superposition of the
proteins [16, 17]. Some studies have compared algo-
rithms for highly divergent sequences belonging to dif-
ferent families of genes, or based on a collection of
known protein genes (e.g. ribosomal 16S or 23S subunit)
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across many species and showing important variation of
sequence length [16-18]. However, studies on PRRSV
North American genotype generally focus on relation-
ships among sequences from a single viral gene (ORF5)
that is expected to have considerably less diversity
(<25%) and to be relatively well conserved in length
[19-21], which are two characteristics reported to influ-
ence the alignment process [11]. Although one could ex-
pect that default parameters set to align distantly related
sequences should also work on less complex dataset, it
has been suggested that these parameters should be
evaluated on biological sequence datasets used in a spe-
cific context [11, 22]. Also, it has been recommended to
test simultaneously different algorithms, particularly on
large-scale phylogenetic studies [23]. The rationale being
that congruent results among several techniques should
give better support to the accuracy of the final alignment
[24]. This will also provide useful information on the
comparability of results from PRRSV diversity studies
based on different alignment programs.

This study was conducted to evaluate the impact of
the alignment algorithm on the resulting aligned se-
quence dataset as well as on practical issues such as the
capability to handle large dataset in a timely manner
when applied to a large database of PRRSV ORF5 se-
quences used for molecular-based epidemiological stud-
ies and surveillance program.

Methods

Data collection and study population

The PRRSV ORF5 sequence database of the Laboratoire
d’épidémiologie et de médecine porcine (LEMP) of the
Université de Montréal was used for the study. This
database comprises sequences from field samples sub-
mitted by veterinarians to different laboratories on a vol-
untary basis as part of their herd surveillance or control
programs. Since January 2010, a sharing agreement with
97% of all Quebec swine veterinarians have ensured that
all PRRSV ORF5 sequences obtained from their field
submissions to the veterinary diagnostic laboratory of
the Université de Montréal or to two other private la-
boratories were automatically transferred to the LEMP.
All sequences gathered between January 1st 2010 and
December 31st 2014 inclusively (n =2383), with the ex-
ception of one 606 base pair (bp) sequence, were used
for the evaluation of alignment algorithms. This latter
sequence was removed to ensure a balance of sequence
length (600, 603 bp) in further replicates.

Laboratory analyses

RT-PCR and sequencing of the gene ORF5 coding for
the major envelope protein GP5 was performed on all
samples to identify a PRRSV sequence. Approximately
55% of sequences gathered in the LEMP sequence
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database between 2010 and 2014 were submitted to the
Veterinary Diagnostic Laboratory of the Université de
Montréal. RNA was first extracted from serum or tissues
(e.g. lungs, tonsils) with different extraction kits accord-
ing to manufacturer’s instructions. RT-PCR was per-
formed using Qiagen OneStep RT-PCR Kit using various
primers. Prior to ORF5 sequencing, purification of PCR
products was done using EZNA Cycle Pure Kit (Omega
Bio-tek inc, Norcross, Georgia, US). Afterwards, both
strands of PCR amplicons were sequenced using the
same RT-PCR primers with BigDye terminator on ABI
Genetic analyzer (Applied Biosystems Canada, Streets-
ville, Ontario, Canada). The remaining sequences were
obtained from private diagnostic laboratories which have
used their routine protocols.

Detection of recombinant sequences

Detection of recombinant sequences was carried out by
doing an exploratory scan for mosaic signals using de-
fault detection methods implemented into Recombin-
ation Detection Program (RDP) version 4.76 [25].
Primary scan was performed using only RDP, Geneconv
and MaxChi. These latter methods were then used in
addition to Bootscan, SisScan, Chimaera and 3-Seq for
secondary scan. For each detection method, default par-
ameter settings were used. Sequences identified by at
least one primary method considering a 0.05 p-value
using a Bonferroni correction for multiple testing were
considered as significant recombinants.

Alignment algorithms

Selection

Considering that a high level of similarity was expected over
the entire ORF5 gene and that the overall objective was to
manage a large PRRSV sequence database, only global mul-
tiple sequence alignment methods available in freeware were
considered for selection. Five algorithms were selected con-
sidering their accuracy and popularity: Clustal W v.2.1 [26],
Clustal Omega v.1.2.0 [27], Muscle v.3.8.31 [28], T-Coffee v.
11,00,8¢cbe486 [29] and MAFFT v.7.215 [18].

Parameter settings — other than open gap penalty value

When possible, options were set to obtain the maximal
accuracy reachable by the algorithms according to the
user manual provided by their authors. For Clustal W,
sequences were aligned in pairs using dynamic program-
ming to generate a DNA weight matrix using Inter-
national Union of Biochemistry (IUB) scoring matrix
(used in BESTFIT). Scores were then converted into dis-
tances and used to build a neighbor-joining guide tree
(option Clustering = NJ). Iteration refinements were per-
formed throughout the progressive approach (option It-
eration = Tree). Default settings were used for Clustal
Omega except for the use of full distance matrix in
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guide-tree calculation and iteration. Default settings
were used in Muscle and T-Coffee. For MAFFT,
G-INS-I was chosen based on highest accuracy and suit-
ability for the study of sequences having similar lengths
(MAFFT manual 2007-06-09, https://mafft.cbrc.jp/align-
ment/software/manual/manual.html).
Needleman-Wunsch algorithm computed pairwise align-
ments (globalpair option) in combination with a max-
imum of 1000cycles of iterative refinement or
convergence of scoring alignment (option maxiterate =
1000). Default values were attributed to other parame-
ters except for the open gap penalty value.

Parameter settings for open gap penalty value

For each alignment algorithm, a sensitivity analysis was
used to determine the open gap penalty parameter to be
used for subsequent comparison of algorithms. The only
exception was for Clustal Omega, for which the gap param-
eter is directly handled by the algorithm. Sequences includ-
ing recombinants (n =2383) were randomly selected
without replacement to form replicates of different sizes:
ten replicates of 238 sequences, five replicates of 476, two
replicates of 1191 and one including all 2383 sequences.
For each algorithm and replicate, alignment was attempted
for 11 different open gap penalty values ie. from baseline
to upper limit by equal increment. The open gap penalty
values were the following: Clustal W (0 to 100 by 10),
MAFFT (0 to 10 by 1), Muscle (0 to — 1000 by - 100) and
T-Coffee (0 to — 1000 by — 100). The impact of gap penalty
value was evaluated according to three criteria: average
pairwise genetic similarity, proportion of pairwise compari-
sons having >97.5% genetic similarity (Fig. 1), as well as the
maximal number of gaps introduced per sequence. The
open gap value from which a plateau was reached for the
three criteria (i.e. minimum average pairwise similarity,
minimum proportion of pairwise comparison with >97.5%
genetic similarity, minimum number of gaps) was selected
for further analyses based on visual assessment. Dataset
sizes unable to run on all algorithms in less than 2 weeks
were not considered for the choice of the open gap value.

Implementation

All alignments were run in a Linux environment (Ubuntu
14.04 LTS) on a Dell Precision T7610 workstation with 10
Intel Xeon Processor E5-2670 @ 2.5GHz, 128 GB of
RAM (DDR3) and a 2TB HD. All computer resources
were solely attributed to the alignment process.

Selection and evaluation of comparison criteria

Analytical criteria

To compare performances of the five algorithms, two
replicates of 1191 sequences were created from the data-
set. A stratified random selection was used for sequence
allocation to each replicate to ensure a similar
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proportion of sequences with 600 and 603 bp as well as
recombinant sequences in each replicate.

The average pairwise genetic similarity, the proportion
of pairwise comparisons having >97.5% genetic similarity
and the length of final aligned dataset were computed
for the two replicates for each algorithm using either
SAS version 9.3 software (SAS Institute Inc., Cary, North
Carolina, USA) or scripts written in Python. Characteris-
tics of gap insertions, i.e. if they were introduced in
singleton or triplets, were noted for each aligned dataset.

Two additional criteria were evaluated: the sum of
pairs (SP) score and the percentage of congruent cells
having >97.5% similarity. SP-score is a measure of accur-
acy defined as the proportion of shared homologies by
estimated and reference alignments over the total num-
ber of homologies in the reference alignment [22]. Since
the reference alignment was unknown in the current
study, alignment from each algorithm was by turns con-
sidered as the reference, and the SP-score was used as a
measure of agreement between algorithms. SP-score was
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computed using FastSP, an open-source executable writ-
ten in Java available online [23]. The percentage of con-
gruent cells having 297.5% similarity among algorithms
was computed as follows. For each alignment, a pairwise
similarity matrix was calculated and transformed into a
binary matrix: 0 for < 97.5% similarity, 1 for 297.5%. For
each combination of two alignment algorithms, the bin-
ary matrices were compared and the proportion of cells
in agreement (having the same binary value) over total
number of cells was computed. The operational flow-
chart used in computations of all analytical criteria is de-
scribed in Fig. 1.

Technical criteria

Four technical criteria were also used to compare per-
formance of algorithms, i.e. handling capability of large
dataset, rapidity, multi-platform availability and manage-
ment of IUB ambiguity symbol characters (symbols other
than A, T, C and G). The first two criteria were evaluated
for 10 replicates of 238 sequences, 5 of 476, 2 of 1191 and
1 of 2383. Results were averaged over replicates. Data
were analyzed in SAS.

Sensitivity analysis on recombinant inclusion

All analyses described for the analytical criteria assessment
were reconducted to evaluate the impact of recombinant
sequences using the same two replicates of 1191 se-
quences, but without detected recombinants (n = 1183).

Results
Following the sensitivity analysis for the determination of
open gap penalty values, the open gap penalty parameter
was set at 30 for Clustal W, 7 for MAFFT, -200 for
T-Coffee, — 1000 for Muscle and default value for Clustal
Omega. In general, the open gap penalty value had only a
minimal impact on average pairwise similarity, proportion of
pairwise comparisons having >97.5% similarity and maximal
number of gaps per sequence for MAFFT and T-Coffee, but
was more influential for Muscle and to a lesser extent for
Clustal W (Fig. 2). The impact of the gap penalty value on
the pairwise similarity and number of gap introduced tended
to increase with dataset size, but convergence was obtained
at approximately the same open gap penalty value whatever
the size of the dataset. For each algorithm, a plateau was ob-
served generally first (i.e. at lower gap penalty value) for the
proportion of pairwise comparisons having >97.5%, followed
by the average pairwise similarity and number of gaps. Once
the plateau was reached for the three parameters, all algo-
rithms converged to a similar number of gaps introduced
(ie. 3) for datasets with <1191 sequences, except for
T-Coffee which introduced more gaps (up to 9 for one repli-
cate of 1191 sequences).

A total of 17 recombinant sequences were identified
within 12 distinct recombination events. In order to allow
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even number of recombinants (n =8) in each replicate
(n =1191) formed to investigate analytical criteria, one 603
bp recombinant sequence was excluded. The evaluation of
the analytical criteria revealed a high and very similar aver-
age pairwise genetic similarity across all algorithms and
replicates, ranging from 88.28 to 88.84% (Table 1). The pro-
portion of pairwise comparisons of sequences having
>97.5% genetic similarity was also very similar, <0.25% vari-
ation between algorithms within replicates and a slightly
larger variation (0.5%) between replicates for the same algo-
rithm. The sequence length of aligned dataset differed ac-
cording to algorithm. Whereas Clustal W, Muscle and
Clustal Omega introduced the minimal number of gaps
(n = 3) on 600 bp sequences to integrate them with the 603
bp sequences in the final alignment, MAFFT introduced 3
to 6 gaps and T-Coffee, 7 to 9 gaps depending on replicates.
For Clustal W, Clustal Omega, MAFFT and Muscle algo-
rithms, all gaps were introduced as triplets, representing
the code frame shift. Most gaps (>98%) introduced by
T-Coffee were singletons. Based on the SP-score, more than
99.7% of all pair homologies were shared between each
combination of two algorithms, with T-Coffee showing a
slightly higher disagreement with all other algorithms. A
similar finding was observed for the proportion of congru-
ent cells (=99.86%).

All algorithms were able to handle datasets of up to 1191
sequences, whereas only MAFFT, Muscle and Clustal
Omega could process a 2383 sequence dataset in less than 2
weeks (Table 2). The rapidity mirrored the same tendency,
as MAFFT, Muscle and Clustal Omega were the fastest, in-
dependently of dataset size, aligning sequences in less than
20 s on the smallest dataset (238 sequences) and less
than 29 min on the largest dataset (2383 sequences).
T-Coffee and Clustal W were generally very slow,
varying from 13 min for the smallest dataset (238 se-
quences) to over 9-17 h for the largest dataset proc-
essed (1191 sequences). All algorithms were available
on the Web, Windows and Linux platforms. MAFFT
and T-Coffee managed a greater number of IUB am-
biguity symbols, followed by Muscle and Clustal
series.

Two replicates of 1183 sequences were formed by re-
moving the 16 recombinants from the initial two repli-
cates of 1191 sequences. The exclusion of recombinant
sequences had a very minor impact on the results. The
average pairwise similarity and the proportion of pairwise
comparisons having >97.5% similarity slightly increase
when excluding recombinant sequences (Table 3). For
these two criteria, the greater difference was observed for
T-Coffee. The length of aligned dataset, SP-score and pro-
portion of congruent cells were very similar regardless of
the presence of recombinants for all algorithms except
T-Coffee for which small differences were observed, and
this was mainly associated with the second replicate.
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Fig. 2 Impact of open gap penalty value on average pairwise similarity, proportion of pairwise comparison having 297.5% genetic similarity and
maximal number of gaps introduced per sequence for Clustal W, MAFFT, T-Coffee and Muscle. The different statistics were computed on each
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Discussion
We investigated the impact of the choice of alignment
algorithm when applied on a PRRSV North American
genotype 2 sequence dataset. The dataset of 2383 se-
quences employed was rather homogenous in regards to
both similarity (279.1% minimum pairwise similarity ob-
tained with different algorithms and open gap settings)
and sequence length (603, 600 bp) reflecting viral popu-
lation field studies as opposed to benchmark datasets
such as BAIiBASE [17, 18]. A priori, the multiple se-
quence alignment did not appear to face specific hur-
dles, and good accuracy from most algorithms was to be
expected. In this study, although it was not possible to
determine which alignment algorithm was more accur-
ate due to the absence of a reference alignment [23], we
compared algorithms by quantifying the variation in
genetic similarity, which is important for molecular epi-
demiology studies on PRRSV. Moreover, algorithms were
compared from a practical perspective, namely for sur-
veillance of PRRSV which requires timely analyses.

The sensitivity analysis on open gap values revealed
differences in gap management for the algorithms

evaluated. In the study, the gap value parameter was op-
timized to minimize the number of introduced gaps.
This decision seemed biologically sound since the
aligned sequences were from one gene with no
non-coding DNA, and that fewer gap insertions usually
gives better alignment accuracy [30]. Globally, Muscle
and Clustal W were the most affected by variation of the
open gap parameter value and inserted a large number
of gaps especially when the penalty was low. The results
therefore supported that empirical investigations should
be conducted before using default open gap value on a
large PRRSV dataset. For all algorithms, default values
were inadequate to minimize the number of gaps intro-
duced into the resulting alignment, particularly on the
datasets with more than 1000 sequences. However, using
default open gap values on smaller dataset (n =238 or
476) had a negligible effect for Clustal W and Muscle,
and practically no effect for MAFFT and T-Coffee.

For PRRSV field investigations and molecular epidemi-
ology studies, a pairwise genetic similarity threshold (e.g.
>97.5%) is often used to determine whether two herds
have similar strains [5, 6]. Results showed that most
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Table 1 Results on analytical criteria investigated in a comparative study on PRRSV sequence alignment algorithms®

Criterion Algorithm
Clustal W MAFFT T-Coffee Muscle Clustal Omega
1. Similarity: average pairwise genetic similarity (%) of aligned sequences within the dataset (mean + standard deviation)
Replicate 1 (1191 sequences) 88.77 +4.19 8884 +4.17 88.71+£4.23 88.78 +£4.19 88.78 £4.19
Replicate 2 (1191 sequences) 88.68+4.11 8869 +4.11 88.28 £4.31 88.69+4.11 88.69+4.11
2. Proportion of pairwise comparisons of sequences having = 97.5% genetic similarity (%)
Replicate 1 (1191 sequences) 517 517 519 517 517
Replicate 2 (1191 sequences) 491 491 4.66 491 491
3. Length of aligned dataset: number of sites per sequence in the aligned dataset
Replicate 1 (1191 sequences) 603 606 607 603 603
Replicate 2 (1191 sequences) 603 603 609 603 603
4. Average sum of pairs (SP) score: proportion of shared homologies with reference alignment (%)°
Clustal W as reference - 99.93 99.74 99.91 99.94
MAFFT as reference 99.93 - 99.78 99.97 99.97
T-Coffee as reference 99.92 99.96 - 99.94 99.97
Muscle as reference 99.91 99.97 99.76 - 99.95
Clustal Omega as reference 99.94 99.97 99.78 99.95 -
Average 99.92 99.95 99.76 99.94 99.95

5. Congruent cells 2 97.5% similarity: proportion of cells between two pairwise similarity matrices having the same binary value

(0: < 97.5%; 1: 297.5%) for genetic similarity®
Clustal W as reference - 100.00 99.86 99.99 99.99
MAFFT as reference 100.00 - 99.86 99.99 99.99
T-Coffee as reference 99.86 99.86 - 99.86 99.86
Muscle as reference 99.99 99.99 99.86 - 99.99
Clustal Omega as reference 99.99 99.99 99.86 99.99 -
Average 99.96 99.96 99.86 99.95 99.95

*The open gap penalties used was 30 for Clustal W, 7 for MAFFT, —200 for T-Coffee, —1000 for Muscle and default for Clustal Omega. The dataset included 2383
sequences collected in 2010-2014 divided in two replicates
PAverage of 2 replicates of 1191 sequences

Table 2 Results on technical criteria investigated in a comparative study on PRRSV sequence alignment algorithms?
Criterion Algorithm
Clustal W MAFFT T-Coffee Muscle Clustal Omega

1. Handling capability of large dataset: capacity to generate results in less than 2 weeks (yes/no)

10 replicates of 238 sequences yes yes yes yes yes
5 replicates of 476 sequences yes yes yes yes yes
2 replicates of 1191 sequences yes yes yes yes yes
Full dataset (2383 sequences) no yes no yes yes

2. Rapidity: average time (minutes) necessary to align (Linux platform, 10 physical cores)

10 replicates of 238 sequences 128 0.2 13.1 0.2 02
5 replicates of 476 sequences 57.1 1.0 56.1 0.7 04
2 replicates of 1191 sequences 1040.5 7.0 540.0 39 1.2
Full dataset (2383 sequences) n/a 285 n/a 17.0 29

3. Multiplatform availability (yes/no)
Web, Windows and Linux yes yes yes yes yes

4. Management of IUB ambiguity symbol characters: ability to manage symbols other than A, T, C and G

List of managed symbols N N, R Y, W, N, R Y, W, N, R, Y N
S, K, M, D, S, K, M, D,
V,H,B V,H B

*The open gap penalties used was 30 for Clustal W, 7 for MAFFT, —200 for T-Coffee, —1000 for Muscle and default for Clustal Omega. The dataset included 2383
sequences collected in 2010-2014
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Table 3 Differences in results for analytical criteria when excluding or not recombinants for the different algorithms®

Criterion Algorithm
Clustal W MAFFT T-Coffee Muscle Clustal Omega
1. Difference in similarity: average pairwise genetic similarity (%) of aligned sequences within the dataset (mean)
Replicate 1 0.01 -0.05 0.01 0.01 0.01
Replicate 2 0.02 001 0.15 0.01 0.01
2. Difference in proportion of pairwise comparisons of sequences having = 97.5% genetic similarity (%)
Replicate 1 0.07 0.07 0.07 0.07 0.07
Replicate 2 0.05 0.05 027 0.05 0.04
3. Difference in length of aligned dataset: number of sites per sequence in the aligned dataset
Replicate 1 0 -3 0 0 0
Replicate 2 0 0 -1 0 0
4. Difference in average sum of pairs (SP) score: proportion of shared homologies with reference alignment (9%)°
Clustal W as reference - 0.01 0.04 0.01 0.01
MAFFT as reference 0.01 - 0.04 0.01 0.00
T-Coffee as reference 0.01 001 - 0.01 0.00
Muscle as reference 0.01 0.01 0.04 - 0.00
Clustal Omega as reference 0.01 0.00 0.04 0.00 -
Average 0.01 0.01 0.04 0.01 0.01

(50: < 97.5%; 1: 297.5%) for genetic similarity®
Clustal W as reference - —0.01
MAFFT as reference -0.01 -
T-Coffee as reference 0.11 0.11
Muscle as reference 0.00 0.01
Clustal Omega as reference 0.00 0.00
Average 0.02 0.02

. Difference in congruent cells = 97.5% similarity: proportion of cells between two pairwise similarity matrices having the same binary value

0.1 0.00 0.00
0.1 0.01 0.00
- 0.11 0.11
0.1 - 0.00
0.1 0.00 -

0.11 0.03 0.03

“The open gap penalties used was 30 for Clustal W, 7 for MAFFT, —200 for T-Coffee, —1000 for Muscle and default for Clustal Omega. The five criteria presented in
Table 1 for the two replicates including recombinants (Replicates 1 and 2, n = 1191) were re-evaluated for each replicate without recombinants (Replicates 1 and
2, n =1183). Then, differences in results were computed (i.e. the result obtained with recombinant was subtracted from the result obtained without recombinant

PAverage of 2 replicates of 1183 sequences

algorithms provided highly similar results in terms of aver-
age pairwise similarity of sequences, both when using the
>97.5% similarity threshold or on continuous scale, and
thus the use of different algorithms should not signifi-
cantly affect epidemiological conclusions. This is also sup-
ported by the SP-score, which revealed that almost all pair
homologies were conserved from one aligned dataset to
the others, even when gaps were introduced. T-Coffee
seemed to behave differently compared to other algo-
rithms and showed more variation between replicates.
PRRSV usually evolves through punctual mutations, but
recombination events are also a part of the virus evolution
[31-34]. The detection of recombinant sequences should
be an important concern for molecular epidemiology study
using classic phylogenetic analyses since the evolutionary
histories of recombinants are not correctly taken into ac-
count by these methods [33, 35]. Since the recombinants
are not necessarily identified before the alignment process,
either because of the need of a timely analysis of sequences

for surveillance purposes or considering that alignment of
sequences is the first step in investigating the presence of
recombinants, it was therefore advisable to determine
their influence on alignment according to the algorithm
used. As expected, the inclusion of recombinants led to a
decrease in pairwise genetic similarity; however, the results
were highly similar between algorithms. Moreover, the
number of gaps introduced stayed stable no matter if
recombinants were included or not with the exception of
T-Coffee. From an end-user perspective, even if excluding
recombinants from PRRSV sequence dataset is favorable
before performing phylogenetic analyses, their presence at
the initial alignment step does not seem to influence the
behavior of most algorithms, at least when they represent
a small proportion of the sequences as we observed in our
field database. The reasons underlying the greater influ-
ence of recombinants on T-Coffee were not investigated
in our study; however, as these differences were mostly
seen in one replicate, they could have resulted from
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specific characteristics of the recombinants or the
sub-datasets.

Finally, technical aspects showed major differences in
speed and capability of handling large datasets. Since
runtimes vary according to genetic diversity observed in
datasets, number and length of sequences, as well as
processor and memory allowed for computing align-
ments, results obtained from different studies are not
directly comparable. Considering the current datasets,
algorithm settings and computational resources, the abil-
ity to timely align large sequence datasets (2383 se-
quences) by Clustal Omega, MAFFT and Muscle is a
significant advantage.

Conclusion

The different algorithms compared for the analysis of a
PRRSV ORF5 sequence dataset provided very similar
alignments, but differed in their ability to handle large
datasets. Results from most algorithms were not affected
by the presence of recombinants detected in our field
database. Our study also revealed that prior investigations
to set open gap parameter are advisable, especially when
used on more than 1000 sequences. Muscle and Clustal
W inserted many gaps when the open gap parameter was
left at default or near zero values. Based on the efficiency
at minimizing the number of gaps on different dataset
sizes with default open gap value, the congruency of sev-
eral analytical criteria with other algorithms as well as the
capability to handle a large number of sequences in a
timely manner, Clustal Omega might be warranted to
manage large PRRSV database for both research and on-
going disease surveillance purposes.
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