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Abstract

Background: Bovine digital dermatitis (BDD) is considered the most important infectious cause of lameness in
dairy cattle worldwide, but has only recently been observed in New Zealand. Although many studies have
investigated the risk factors for BDD in confined dairy systems, information on risk factors in pasture-based system
is limited. Therefore a cross-sectional study including 59,849 animals from 127 dairy herds in four regions of New
Zealand was conducted to identify the herd-level factors associated with the probability of a herd being BDD-lesion
positive and with within-herd BDD prevalence.

Results: Purchasing heifers was associated with increased odds of a herd being BDD-lesion positive (odds ratio
[OR]: 2.33, 95% probability interval [PI]: 1.26–4.42) and a cow being BDD affected (OR: 3.76, 95%PI: 1.73–8.38),
respectively. Higher odds of a herd being BDD-lesion positive (OR: 2.06, 95%PI: 1.17–3.62) and a cow being BDD
affected (OR: 2.87, 95%PI: 1.43–5.94) were also seen in herds where heifers co-grazed with cattle from other
properties. In addition, using outside staff to treat lameness was associated with higher odds of a cow being BDD
affected (OR: 2.18, 95%PI: 0.96–4.98).

Conclusion: This study highlighted that movements of heifers are significantly associated with the spread of BDD
within and between dairy herds in New Zealand. To minimise the risk of disease introductions in herds where
moving heifers cannot be avoided, it is best to purchase heifers only from herds where BDD-freedom has been
confirmed and, if heifers have to graze-off a farm, they should be reared as a single biosecure management group,
especially since animals may be BDD-infected without having clinically obvious lesions.
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Background
Bovine digital dermatitis (BDD) has been found through-
out the world in both confined and pasture-based dairy
systems [1, 2]. In many countries, BDD appears to be
endemic in dairy herds [3] and is commonly considered
as the most important infectious cause of cattle lame-
ness [4]. Clinically, BDD lesions progress or regress
through different morphological stages, commonly de-
scribed using M scores [5, 6]. A rapid BDD lesion detec-
tion method such as visual examination during milking
is widely used in many studies [7]; although interpret-
ation of such diagnostic outcome is subjective, which

usually requires additional validation studies to assess
the agreement across the examiners [8].
Multiple studies have evaluated the risk factors associ-

ated with BDD prevalence within herds in confined dairy
systems. These studies have identified a wide-range of
potential risk factors including type of housing [9], using
outside staff to trim hooves [10], footbath regimen [11]
and access to pasture [12]. In contrast, very few studies
[13–15] have been undertaken in cattle that are princi-
pally pasture-based with no or very limited use of hous-
ing, where many of the risk factors identified in confined
animals are irrelevant. Specific research in such systems
is essential as there can be large variation between
pasture-based dairy herds in the prevalence of BDD [16].
In New Zealand, one previous study has evaluated

herd-level risk factors for BDD, but that was undertaken
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in only one region [14]. In that study we used a Bayesian
hurdle model to explore the associations between risk
factors and BDD prevalence at both the herd and animal
levels. The initial separation of the herds into
BDD-lesion-free and BDD-lesion positive was based on
whether BDD lesions were observed; i.e. a herd with ≥1
lesion was defined as being BDD-lesion positive, other-
wise it was defined as being BDD-lesion free [14]. How-
ever, simply basing herd status on the presence/absence
of visible lesions probably leads to loss of information
regarding probability of a herd having BDD and may
introduce misclassification bias at the herd level, as there
is a chance that a herd where BDD lesions are truly
present could be wrongly classified as being
BDD-lesion-free due to a combination of limited diag-
nostic sensitivity and low cow-level prevalence [17].
One method for overcoming this limitation is by using

a Bayesian latent class model, which estimates the mean
probability of a herd being BDD-lesion positive condi-
tional on the number of test positive animals, the total
number of animals tested, and the test characteristics
[17]. Thus, the mean probability contains more precise
information than the simple dichotomised outcome and
increases the power of the study to determine the im-
pact of risk factors on the likelihood of a herd being
BDD-lesion positive.
The aim of this study was to use Bayesian methods to

investigate the impact of farm management practices on
pasture-based dairy herds across New Zealand on 1) the
probability of a herd being BDD-lesion positive obtained
from a previous Bayesian latent class analysis [16] and 2)
the within-herd BDD prevalence, namely the probability
of a cow within a herd having BDD lesions.

Methods
Target and source population
The target population was the pasture-based dairy herds
in New Zealand and the source population was the
herds in the four regions across New Zealand: Waikato
and Manawatu in the North Island and the West Coast
and Canterbury in the South Island. These regions en-
compass most of the dairy systems (all grass fed and
self-contained; feed imported, either supplement or
grazing-off and feed imported to extend lactation) used
in New Zealand [16].

Data collection
The dataset was collected as described by Yang et al.
[16]. Briefly, the data collection started in the Waikato
and moved south following the seasonal pattern of calv-
ing to ensure that the great majority of the herds were
milking at the herd examinations. In the first phase, half
the sampled herds were visited in each region before
moving on to the next. In the second phase, the order

was reversed, starting in Canterbury and going back
north. Within each herd, visual assessment was per-
formed on cows’ rear feet in the milking parlour after
hosing the feet gently [7].
The farm management practices undertaken in the

previous 12 months were collected alongside the visual
inspection for BDD using a questionnaire given to the
owners or managers of the study herds. The question-
naire was modified by the authors from that used in
Yang et al. [14]. The questionnaires were answered after
the herd inspection while the first author was still on the
farm, so that if the owners or managers were unsure of a
question, the first author could explain the intent of the
question. The categorical management predictors col-
lected via the questionnaire are shown in Table 1 and a
copy of the questionnaire is provided as an additional
file (see Additional file 1).

Data processing
The data were imported into Stata 13.1 for cleaning and
analysis (StataCorp, USA). One-way tables were used to
examine the frequency of responses for each level within
the categorical variables. Levels with low frequencies
were combined with adjacent levels where biologically
plausible. As hoof trimmers were rarely used to trim
cows or treat lame cows, this level was combined with
using vets to treat lame cows, to create a new dichotom-
ous variable of whether or not the farm had outside staff
trimming cows or treating lame cows. Since few farmers
reported chemically disinfecting hoof trimming equip-
ment, “chemical disinfection” and “washed by water”
were combined to create a new variable of whether or
not trimming equipment was cleaned between animals.
Since few farmers reported purchasing dairy heifers or
cows from saleyards, “saleyards” was combined with
“other farms”, to create new variables of whether heifers
and cows were purchased from outside. Similarly, cow
houses were rarely used, so “cow house” was combined
with “stand-off pad” and a new variable was created to
describe whether the cows were permanently
pasture-based (except for milking) or not. All categorical
variables included in the final analysis had at least two
levels and each level had at least ≥15% of the total re-
sponses for the question.

Evaluating seasonal variation
As this was a cross-sectional study, the impact of season
on BDD-lesion status and lesion prevalence was not of
primary interest. However, as all the data were collected
by the first author, it was not possible to complete the
data collection in a short time frame and therefore herds
were sampled at different points throughout the 2016/
2017 lactation season. To confirm that BDD-lesion sta-
tus and lesion prevalence did not vary significantly
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Table 1 Herd-level predictors on BDD collected from 127 New Zealand dairy herds

Variable Levels Herds with BDD lesions
N (%)

Herds without BDD lesions
N (%)

Total

Type of milking parlour Rotary 29 (51%) 28 (49%) 57

Herringbone 34 (49%) 36 (51%) 70

Calving season Spring only 57 (49%) 59 (51%) 116

Spring and Autumn 6 (55%) 5 (45%) 11

Whether or not having dairy cattle milking
on more than one farm

Yes 9 (14%) 6 (9%) 15

No 54 (48%) 58 (52%) 112

Source of acquired adult cows (> 2 years old) Other farms 8 (62%) 5 (38%) 13

Saleyard 2 (50%) 2 (50%) 4

Not acquiring 53 (48%) 57 (52%) 110

Source of acquired bulls Other farms 36 (47%) 41 (53%) 77

Saleyard 9 (64%) 5 (36%) 14

Not acquiring 18 (50%) 18 (50%) 36

Source of acquired heifers Other farms 15 (68%) 7 (32%) 22

Saleyard 1 (50%) 1 (50%) 2

Not acquiring 47 (46%) 56 (54%) 103

Whether your calves/heifers co-grazing with
calves/heifers from other farms

Yes 46 (59%) 32 (41%) 78

No 17 (35%) 32 (65%) 49

Whether your milking dairy cattle co-grazing with
cows from other farms in winter

Yes 28 (57%) 21 (43%) 49

No 35 (45%) 43 (55%) 78

Providing grazing for stock from other farms
at your farm or not

Yes 3 (50%) 3 (50%) 6

No 60 (50%) 61 (50%) 121

Using a transport company to transport animals
(not for slaughter) or not

Yes 43 (49%) 45 (51%) 88

No 20 (51%) 19 (49%) 39

Share a loading ramp or not Yes 7 (41%) 10 (59%) 17

No 56 (51%) 54 (49%) 110

Who did most of the hoof trimming/ lame cattle
treatment on your farm

Vet 7 (39%) 11 (61%) 18

Hoof trimmer 6 (86%) 1 (14%) 7

On-farm staff 50 (49%) 52 (51%) 102

Trimming equipment cleaning methods Washed by water 28 (51%) 27 (49%) 55

Chemically disinfected 11 (55%) 9 (45%) 20

Not wash 24 (46%) 28 (54%) 52

Use a footbath or not Yes 10 (63%) 6 (37%) 16

No 53 (48%) 58 (52%) 111

Whether or not use stand-off pads or cow houses
in winter or poor weather

Stand-off pad 18 (49%) 19 (51%) 37

Cow house 2 (22%) 7 (78%) 9

Neither 43 (53%) 38 (47%) 81

Main material of the walking track/race from paddock
to the milking parlour

Gravel 22 (35%) 40 (65%) 62

Concrete 1 (50%) 1 (50%) 2

Other 40 (63%) 23 (37%) 63

Use feedpad or not Yes 23 (48%) 25 (52%) 48

No 40 (51%) 39 (49%) 79

BDD, bovine digital dermatitis; N (%), numbers of herds having such a predictor (row percentage of herds having such a predictor)
Average herd milk solid production in BDD-lesion positive/negative herds were 414.9 kg/cow year and 414.1 kg/cow year, respectively
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between different months, generalized estimating equa-
tions [18] and beta regression models were respectively
used to examine whether the average cow-level preva-
lence or probabilities of a herd being BDD-lesion posi-
tive differed significantly between months in Waikato
and Manawatu regions. This process was not applied to
Canterbury since 18/19 herds were visited in the same
month.

Univariable models
For the two outcome variables (within-herd prevalence
and probability of a herd being BDD-lesion positive),
univariable logistic regression models and univariable
beta regression models in the frequentist framework
were respectively used to select predictors for fitting in
the multivariable models. Any predictors with p-value
≤0.2 were included in the further analyses.

Multivariable model 1
This analysis was designed to quantify the strength of
associations between farm management practices and
within-herd prevalence. A Bayesian binomial model was
constructed. The model was built using a forward step-
wise strategy. The predictors were retained in the model
when the 90% probability intervals of their correspond-
ing regression coefficients did not overlap 0. If inclusion
of a predictor altered the coefficient of any of the exist-
ing predictors by > 15%; the newly included predictor
was considered as a confounder and was forced into the
model regardless its 90% probability interval [19]. Once
the preliminary main effect model was constructed,
two-way interactions between all predictors in the model
were created. An interaction term was retained if its 95%
probability interval excluded 0. The final model struc-
ture is presented below:

y j ∼ binomial p j; nj

� �
logit p j

� �
¼ β0 þ β1x j þ β2g j þ β3hj þ Uregion jð Þ

þ W jUregion jð Þ ∼ N 0; σUð ÞW j ∼ N 0; σWð Þ
ð1Þ

where yj was the number of the cows with visible BDD
lesions in the jth herd of all the regions, which was mod-
elled using a binomial distribution with the parameters:
the proportion of cows with visible lesions (pj) and num-
ber of cows being examined (nj); β0 was the intercept,
β1, β2 and β3 were the regression coefficients for the pre-
dictors xj, gj and hj which represented whether heifers
were purchased from outside sources, whether heifers
were co-grazed with heifers from other farms and
whether outside personnel treated lame cows. Finally,
Uregion(j), Wj were the random effects at regional and
herd level, respectively and modelled using two

independent normal distributions with zero means and
standard deviations σU and σW.

The choice of prior distributions contributes to the
posterior distributions, thus utilising informative priors
results in better inferences compared to “vague” priors
[20]. It is difficult to place informative priors for the re-
gression coefficients. However, such priors can be indir-
ectly induced to define probabilities for different
combinations of predictors. Partially informative priors
were assigned to β0, β1 and β2. First, the proportion of
cows with visible lesions (prevalence) in a “typical”
closed herd was defined as ~p0 . This meant x = 0, g = 0
and h = 0. Therefore, according to Eq. 1, β0 ¼ logit ð~p0Þ.
Second, specify ~p1 as the prevalence of a herd where
some heifers were purchased from outside, in this case,
x = 1, but g = 0 and h = 0. Thus, β1 ¼ logit ð~p1Þ−β0 .
Finally, let ~p2 denote the prevalence of a herd which
contained purchased heifers, and, at the same time, sent
its own heifers to co-graze with heifers from other farms
(x = 1 and g = 1, but h = 0). This gave β2 ¼ logit ð~p2Þ−
logit ð~p1Þ . Logit-normal distribution was used for these
prevalence priors. Below we use ~p0 as an example to
illustrate the way to convert a prevalence estimate to
its corresponding logit-normal distribution such as
logit ð~p0Þ � Nðμβ0; τβ0Þ , where τ is the precision term

defined as the reciprocal of the variance. Our best esti-
mate of the prevalence in a closed herd was m0 and we
were 95% confident that it was less than l0; then μβ0 =
logit(m0). The standard deviation σβ0 = [logit(l0) −
logit(m0)]/1.645, eventually τβ0 ¼ 1=σ2β0.

The best estimates of ~p0, ~p1 and ~p2 came from the previ-
ous analyses of BDD data in Taranaki and the authors’ ex-
pert opinion. One important observation was that in
contrast to previous studies of housed cattle, the apparent
cow-level prevalence of BDD was very low (mean = 1.2%,
Yang et al. [1]) with 26.8% of herds having fewer than1%
of cows with observed lesions. In Canterbury region,
where median herd size was 840 and > 21% of herds had
≥1000 cows; we were able to detect BDD at an apparent
within-herd prevalence of 0.1% (i.e. one cow with lesions
in a 1000-cow herd). Thus to reflect our belief that a
closed herd was likely to have no or extremely rare BDD
lesions, we took 0.05% as our “best point estimate” for ~p0.
Furthermore we were also 95% confident that it was less
than 0.35%, i.e., one cow with BDD lesion(s) in a 300-cow
herd. Based on the method described in the last para-
graph, this led to μβ0 = − 7.6 and τβ0 = 0.71. Table 2 sum-
marises our “best estimates” for ~p0 , ~p1 and ~p2 . Uniform
priors (0, 3) and (0, 2) were set for σU and σW, respectively.
This reflected our belief that the variability of herd-level
prevalence across regions was bigger than the variability
across herds. However, the parameter values assigned to
the uniform priors were considered to be non-specific as
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we did not know the standard deviations of the two ran-
dom effects.
Under the partially informative priors, the fit of the

model to the data was evaluated using posterior predict-
ive checks which compared the observed outcome data
to the data simulated/predicted by the posterior predict-
ive distribution [21]. The Bayesian P-value quantifies the
probability that the discrepancy between the predicted
and observed values. A Bayesian P-value close to 0.50 in-
dicates adequate model fit, although a value between
0.20 and 0.80 is also accepted [22].
Sensitivity analysis was used to assess the sensitivity of

the posteriors to the priors. Table 3 summarises the dis-
tributions of the model priors and the priors used for
the sensitivity analysis. The model was developed using
OpenBUGS [23]. Posterior inferences were obtained
using Markov chain Monte Carlo (MCMC) approxima-
tion. The posterior distribution of each parameter was
reported using median and 95% probability interval (PI).
After discarding the first 10,000 iterations as burn-in
period, the model was further run for 100,000 iterations.
Convergence was assessed using BGR-plots by running
three chains with different sets of initial values [24].

Multivariable model 2
This analysis was designed to assess the associations be-
tween farm management predictors and the probability
of herd being BDD-lesion positive (PP). This analysis did
not include herds on the West Coast as the region was
determined to be free of the disease [16].

The data were modelled using a Bayesian beta model
[25]. πk was used to denote the PPk for kth herd . The
variable “region” was initially modelled as a random ef-
fect VregionðkÞ � Nð0; 1ffiffi

τ
p

V
Þ , where τV was the precision

term. The model was constructed as follows:

πk∼Beta ak ; bkð Þ

ak ¼ μkφ ð2Þ

bk ¼ φ 1−μk
� � ð3Þ

logit μk
� � ¼ γzk þ Vregion kð Þ ð4Þ

Vregion kð Þ∼N 0;
1ffiffiffiffiffiffi
τV

p
� �

where zk was the predictor vector, γ denoted the regres-
sion coefficient vector and μk the mean and φ a measure
of variability, with a larger value of φ indicating less vari-
ability [26].
Diffuse normal distributions (mean = 0, precision =

0.01) were set for all the regression coefficients, and a
vague gamma distribution (1, 1) was set for φ and τV.
The model was built using a forward stepwise strategy.
Predictors were retained if the 90% probability interval
for the regression coefficients excluded 0. Confounders
were assessed using the method described as per Multi-
variable model 1. Two-way interactions between all pre-
dictors in model were investigated after building the
main effect model. Inclusion criteria for an interaction
term were the same as for Multivariable model 1. In this
model, the linear predictor was the log-odds. The odds
were defined as the probability of a herd being
BDD-lesion positive divided by the probability of a herd
being BDD-lesion-negative at each level of a predictor.
The model was therefore able to identify any farm man-
agement practice associated with higher odds of being
BDD-lesion positive for a randomly selected herd in any
BDD-affected region.

Table 2 The “best estimates” for within-herd prevalence (~pk) of
BDD conditional on the different covariates

Prevalence

Purchasing heifers Heifers co-grazing prior mode 95th percentile

~p0 No No 0.05% 0.35%

~p1 Yes No 0.2% 1%

~p2 Yes Yes 0.5% 3%

BDD, bovine digital dermatitis

Table 3 The prior distributions for parameters used in the Bayesian multilevel multivariable binomial model

Parameter Main analysis Sensitivity analysis scenarios

1 2 3

β0 N (−7.6, 0.71) N (−5, 0.001) N (−7.6, 0.71) N (−7.6, 0.71)

β1 logitð~p1Þ−β0 N (0, 0.001) logitð~p1Þ−β0 logitð~p1Þ−β0
β2 logitð~p2Þ−logitð~p1Þ N (0, 0.001) logitð~p2Þ−logitð~p1Þ logitð~p2Þ−logitð~p1Þ
β3 N (0, 0.001) N (0, 0.001) N (0, 0.001) N (0, 0.001)

σU Uniform (0, 3) Uniform (0, 3) Uniform (0, 5) Uniform (0, 9)

σW Uniform (0, 2) Uniform (0, 2) Uniform (0, 3) Uniform (0, 2)

β0, intercept; β1, purchasing heifers; β2, heifers co-grazing; β3, lameness treated by outside staff
σU and σW, standard deviation of random effects at region and herd levels
~p1 ~ logit-normal (−6.21, 1.03); ~p2 ~ logit-normal (−5.29, 0.82)
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Multivariable model 3
Although the mixed effects beta model modelled the
overall variability of the probability in different regions;
it was not able to describe the difference between par-
ticular regions, therefore we also built a model which
treated “region” as a fixed effect. Assuming the model
had in total t farm management practices, Eq. (4) was
changed to:

logit μk
� � ¼ γczck þ γwzwk þ γ1z1k þ…þ γtztk ð5Þ

with VregionðkÞ � Nð0; 1ffiffi
τ

p
V
Þ dropped . Here, zck and zwk

were the dummy variables for the regions Canterbury
and Waikato (level “Manawatu” was treated as reference
level). This fixed effects model can be used to predict
the probability of a herd being BDD-lesion positive with
different covariates in any particular region.
The deviance information criteria (DIC) of both beta

models were compared. In addition, a global measure of
variation explained by each of the beta models was ob-
tained by computing pseudo-R2 defined as the squared
correlation between the linear predictor and the
logit-transformed outcome variable [27]. Both beta
models were developed using OpenBUGS [23]. After
discarding the first 5000 iterations as the burn-in period,
the model was further run for 100,000 iterations. Con-
vergence was assessed using BGR-plots by running three
chains with different sets of initial values [24]. The
OpenBUGS code for Multivariable model 1, 2 and 3 is
provided as an additional file (see Additional file 2).

Results
There was no evidence to support seasonal differences
in any of the outcome variables. In Waikato region, the
average cow-level prevalences in September 2016 and in
January 2017 were not significantly different (P = 0.94).
The probabilities of BDD-lesion positive also did not dif-
fer significantly between these two months (P = 0.65). In
Manawatu, the average cow-level prevalences in Septem-
ber (P = 0.46) and November (P = 0.22) were not signifi-
cantly different to that in December. Similarly,
significant differences in the probabilities of BDD-lesion
positive in September (P = 0.86), November (P = 0.28)
and December were not evident. These findings ruled

out the potential seasonal impact on BDD prevalences in
this study. Table 4 displays the total herds and animals
sampled as well as the proportions of herds/animals hav-
ing BDD lesions in each region during the data collect-
ing period.
The outputs from the Bayesian binomial model (Mul-

tivariable model 1) with our partially informative priors
are shown in Table 5. Lack of model fit was not evident
(Bayesian P-value = 0.5). The posteriors for β1, β2 and β3
were robust in all sensitivity analysis scenarios. The pos-
terior median for β0 increased slightly (− 8.05 vs. − 7.67)
and its 95%PI was also wider (− 10.65, − 5.707) given the
diffuse prior N (− 5, 0.001) rather than the informative
prior. The posterior for σW was not sensitive to its prior,
although the posterior for σU was sensitive to its prior.
The posterior median of σU increased from 2.4 to 3.2
when the prior changed from Uniform (0, 3) to Uniform
(0, 5). It further increased to 4 if the prior changed to
Uniform (0, 9). Nevertheless, there was no impact on
the posteriors for the regression coefficients. The results
of the sensitivity analyses are provided as an additional
file (see Additional file 3).
Based on Multivariable model 1, cattle in a herd

which purchased heifers from outside were more
likely to have BDD lesions than cattle in a herd that
did not purchase heifers (OR: 3.76, 95%PI: 1.73–8.38).
Being in a herd which co-grazed heifers with animals
from other properties also increased the odds of a
cow having BDD lesions (OR: 2.87, 95%PI: 1.43–5.94).
The use of outside staff to treat lameness was found
to be associated with the increased within-herd preva-
lence (OR: 2.18, 95%PI: 0.96–4.98).
Except for the intercepts, the posteriors for the param-

eters reported by the Bayesian mixed effects beta model
and fixed effects beta model were nearly identical.
Table 6 summarises the models’ outputs. The DIC for
each model was also very similar, − 533.3 for the fixed
effects model and − 533.5 for the mixed effects model.
Two farm management practices were identified as be-
ing significantly associated with the odds of a herd being
BDD-lesion positive. Based on the mixed effects beta
model, the odds of a herd being BDD-lesion positive was
2.33 times (95%PI: 1.26–4.42) higher in a herd with pur-
chased heifers compared to one without, and 2.06 times

Table 4 Total (#) herds/cattle sampled, proportions (%) of herds/cattle with BDD lesions detected in each region

Region

Parameters Waikato Manawatu The West Coast South Canterbury

# of herds 40 41 27 19

# and % of affected herds 34 (85%) 15 (37%) 0 14 (74%)

# of cows 15,522 15,546 12,978 15,803

# and % affected cows 241 (1.6%) 68 (0.4%) 0 337 (2.1%)

BDD bovine digital dermatitis
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(95%PI: 1.17–3.62) higher if heifers co-grazed with cattle
from other properties. The predicted probabilities from
the fixed effects model of a herd being BDD-lesion posi-
tive conditional on different farm management practices
and region are displayed in Fig. 1. However, 74% of the
variation in the probability of a herd being BDD-lesion
positive remained unexplained by either beta model
(pseudo-R2 = 0.26).

Discussion
This study found that both co-grazing with heifers from
other properties and purchasing heifers from other
farms were associated with an increased probability of a
herd being BDD-lesion positive as well as increased
within-herd prevalence. Our previous study [14] also
found that that youngstock movement between farms

considerably increased the probability of a farm having
at least one visible lesion (OR: 4.15, 95%PI: 1.39–15.27).
Compared to Yang et al. [14], our current study evalu-
ated youngstock movement in a more detailed way by
dividing such movements into heifer purchasing and
heifer co-grazing. Unlike Yang et al. [14] who reported
that youngstock movement affected only a herd’s prob-
ability of having at least one cow with BDD lesions but
not within-herd prevalence, this broader-scale study
(along with the more detailed way of recording the pre-
dictors) found that youngstock movement increased
both the probability of a herd being BDD-lesion positive
and the within-herd prevalence. The likely inference is
that heifers act as a reservoir for BDD transmission be-
tween dairy herds and between cows within herds in
New Zealand [28]. In contrast, both this analysis and
Yang et al. [14] found no effect of purchasing adult cattle
on BDD risk. This lack of effect is most likely due to the
much smaller numbers of purchased adult cows com-
pared to the numbers of heifers purchased for replace-
ment [13, 14].
Yang et al. [14] reported that herds with a rotary plat-

form were more likely to have at least one cow with
BDD lesions than herds with a herringbone (OR: 3.19,
95%PI: 1.31–8.51), though as with heifer movement, no
effect was seen on within-herd prevalence. This may
have been due to the ease of finding at least one lesion
in herds with rotary platforms rather than being an ac-
tual risk factor [14]. Our current analysis did not include
parlour type in the final model as the analysis found it
to be neither statistically significant nor a confounder.
Two New Zealand studies [14, 15] reported that on

BDD-positive farms, the within-herd prevalence was
higher on farms where the outside staff came for hoof
trimming (prevalence ratio [PR]: 3.13, 95%PI: 1.25–7.29
and risk ratio [RR]: 2.06, 95% confidence interval [CI]:
1.05–4.06). Although our current analysis did not con-
firm this finding, the calculated OR 2.18 was still in the
realm considered to be biologically important [10] and
the 95%PI: 0.96–4.98 only just included 1. It is not en-
tirely clear how these effects could be mediated under
New Zealand conditions. The use of outside staff for
lame cows is typically unrelated to BDD since BDD
rarely causes lameness in New Zealand dairy cattle.
However, failure to clean trimming equipment properly
between cows and between herds could represent a
mechanism for spread [14]. To confirm this hypothesis,
our current study included whether trimming equipment
was cleaned between cows as a potential risk factor.
However, no effect of cleaning/washing equipment be-
tween cows was found; this suggests that if there is an
effect of outside staff on the within-herd prevalence of
BDD that it is not mediated via dirty equipment. Further
research is required to better estimate the impact of

Table 5 The posterior distributions for parameters of the
Bayesian multilevel multivariable binomial model

Parameter Interpretation Posterior distribution

Median 2.5th
Percentile

97.5th
Percentile

β0 Intercept -7.67 −8.9 −6.46

β1 Purchasing heifers 1.32 0.55 2.13

β2 Heifers co-grazing 1.06 0.36 1.78

β3 Lameness treated
by outside staff

0.78 −0.04 1.61

σU Region level
random effect

2.36 1.33 2.97

σW Herd level
random effect

1.41 1.12 1.8

Table 6 The posterior distributions for parameters of the
Bayesian beta models

Parameter Posterior distribution

Median 2.5th Percentile 97.5th Percentile

Mixed effects beta model

γ0 Intercept 0.07 −1.13 1.36

γ1 Heifers co-grazing 0.73 0.16 1.29

γ2 Purchasing heifers 0.85 0.23 1.49

φ 0.53 0.42 0.66

τV 1.43 0.22 4.81

Fixed effects beta model

γ0 Intercept −0.38 −0.93 0.16

γ1 Heifers co-grazing 0.72 0.15 1.28

γ2 Purchasing heifers 0.84 0.22 1.48

γc Canterbury 0.82 0.11 1.55

γw Waikato 0.50 −0.08 1.09

φ 0.53 0.42 0.66

φ = a + b, where a and b are shape parameters of a beta distribution
τV, precision term of the region level random effect defined as 1/variance
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using outside staff to treat lame cows on BDD preva-
lence and to investigate potential pathways by which
such an effect could be mediated.
The only other study of risk factors for BDD in

pasture-based cows is that by Rodriguez-Lainz et al.
[13]. However, of the 22 farms in that study only 2 kept
their cattle at pasture all year round, with 13/22 keeping
cattle in an open corral or loose yard for at least part of
the year, whereas in this study, all 127 farms grazed their
cattle throughout the year. As such many of the factors
analysed by Rodriguez-Lainz et al. [13] (e.g. housing type
and season of calving) are not directly relevant to the
New Zealand situation and thus not included in our ana-
lysis. Although it is difficult to directly compare the
study findings, Rodriguez-Lainz et al. [13] did find that
there was an effect of purchasing replacement heifers on
within-herd prevalence of BDD (OR: 3.16, 95%CI: 1.61–
6.21), but not purchasing adult cows (OR: 1.31, 95% CI:
0.72–2.38). The data from Rodriguez-Lainz et al. [13]
provided no evidence as to whether, in pasture-based
cattle, using outside staff to trim feet increases the
within-herd prevalence of BDD as in that study all cattle
were treated or trimmed by farm staff. However, using
hoof trimmers who operated on multiple farms was
found to be significantly associated with higher BDD
within-herd incidence in housed cattle (OR: 2.8, 95% CI:
1.9–4.2) [10].
Many studies on dairy cattle from intensive housing

systems in the northern hemisphere have also identified
herd-level risk factors for this disease. Decreasing the ac-
cess to pasture was found to increase the risk of BDD
[12, 29, 30]. The type of housing for animals was also

associated with BDD prevalence, i.e. cows that housed in
cubicles had higher BDD prevalence and more severe
BDD cases [31] than cows in straw yards, which also
agreed with Onyiro et al. [9]. In cubicles houses, the size
of cubicles was linked to the risk of BDD [29]. This is
because cows tend to spend longer time standing in
shorter and narrower cubicles; therefore the contact be-
tween heels and slurry was increased [32]. However,
these factors tend not to be an issue in New Zealand
pasture-based systems and were therefore not included
in the current study. It could be interesting in future
studies to evaluate cleanliness of legs in cattle since
higher prevalence of BDD had been found in cows with
dirty legs [33]. This is one possible explanation why no
BDD lesions were seen on the West Coast where the
cows’ feet were generally much cleaner compared to
other regions.
The results of this study show that even in New Zealand

where BDD prevalence is very low, heifers are the most
likely source of disease spread between and within herds.
Particular care should be taken when purchasing heifers
as replacement animals and ideally, replacement heifers
should only be purchased from herds where
BDD-freedom has been confirmed. The latter may be dif-
ficult in New Zealand since many heifers are purchased in
late-autumn when cows are not being milked and it is
therefore not possible to observe the milking herd for
BDD. In such cases, visual inspection of the whole heifer
group (not just the heifers for purchase) is a potential al-
ternative to increase the probability of finding at least one
animal with BDD lesions. If any of the heifers have visible
lesion(s), then the entire group should not be purchased

Fig. 1 Predicted probability of a herd being BDD-lesion positive given different farm management practices. 1 = a closed herd, 2 = a herd having
heifers co-grazing with animals from other properties only, 3 = a herd having heifers co-grazing with animals from other properties and having
purchased heifers, 4 = a herd having purchased heifers only; BDD = bovine digital dermatitis
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as animals can still be infected with BDD in the ab-
sence of visible lesions [34]. Where heifers are
co-grazing with animals from multiple herds, it be-
comes much more difficult to ensure that co-grazing
heifers will not come in contact with BDD infected
cattle, although little is currently known about the
transmission dynamics of BDD in grazed dry stock.
Thus, the only reliable method to ensure that heifers
grazed away from the farm do not become infected
with BDD is to require that they are grazed as a sin-
gle biosecure management group. This is important
to prevent the spread of many infectious diseases as
well as BDD.
Bayesian methods were adopted as the analytical ap-

proach in this paper. Bayesian analyses incorporate pre-
vious scientific understanding, e.g. such as the likely
association between a farm management practice and
BDD within-herd prevalence, into analysis (see Multivar-
iable model 1), so that the inference (i.e. the posterior
distribution) is based on both the data and our prior in-
formation. This is in contrast to other methods which
typically ignore such previous understanding [35]. Fur-
thermore even if previous information of a research
question is not available, the Bayesian methods still has
significant advantages such as being able to directly
compare the relative probabilities of two or more hy-
potheses rather than simply using the probability of the
data given the null hypothesis to determine whether an
alternative hypothesis was plausible.
Multivariable model 2 and 3 used uniform priors, as

this was the first use of beta models to study risk factors
on the herd-level BDD outcome estimated from a previ-
ous Bayesian latent class analysis. This use of the out-
come from the latent class analysis reduced the
likelihood of misclassification errors at the herd level, as
the effect of diagnostic sensitivity and specificity on the
herd level diagnosis was factored into the latent class
model [16].
Although misclassification bias has been adjusted at

the herd level in Multivariable model 2 and 3, our Multi-
variable model 1 did not account for animal level mis-
classifications. This could potentially have influenced the
analysis of risk factors affecting within-herd prevalence.
Misclassification at the individual level, as at the herd
level, can be minimised by incorporating the known sen-
sitivity and specificity of a diagnostic method [36]. How-
ever, when the impact of specificity and sensitivity on
the diagnosis of BDD in the individual animal was in-
cluded during the modelling process, it resulted in
non-convergence of the Markov chains. This may be re-
lated to the model being non-identifiable. Using a more
sensitive detection method inspecting lifted cows’ feet in
the trimming chute, would have decreased any potential
impact but would have been cost prohibitive [7].

The other limitation was that Multivariable models 2
and 3 explained only 26% of the variation in the prob-
ability of a herd being BDD-positive. This indicates that
further investigation of more factors which could poten-
tially affect the probability of herd being BDD-lesion
positive was required.

Conclusions
Our study investigated potential risk factors for BDD
across New Zealand and identified that purchasing re-
placement heifers and co-grazing heifers with animals
from other herds were significantly associated with a
higher probability of a herd being BDD-lesion positive
and higher within-herd prevalence of BDD. This is con-
sistent with previous findings from pasture-based sys-
tems. However, the identified risk factors only explained
a small proportion of the variation in probability of a
herd being BDD-lesion positive. Our study also found
that using outside staff for trimming had a large effect
on within-herd prevalence (doubling the odds of an indi-
vidual cow having BDD). Given that we can’t rule out
the possibility of contaminated hoof trimming equip-
ment contributing to the between-herd spread of BDD,
it would be advisable for farms to maintain their own set
of equipment. Further research should be undertaken to
better estimate the impact of this factor on BDD and
how it can be mediated through different biosecurity
interventions.
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