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Abstract

Background: Avian-origin H3N2 canine influenza virus (CIV) has been the most common subtype in Korea and
China since 2007. Here, we compared the pathogenicity and transmissibility of three H3N2 CIV strains [Chinese CIV
(JS/10), Korean CIV (KR/07), and Korean recombinant CIV between the classic H3N2 CIV and the pandemic HIN1
virus (MV/12)] in BALB/c mouse and guinea pig models. The pandemic HIN1 (CA/09) strain served as the control.

Results: BALB/c mice infected with HINT had high mortality and obvious body weight loss, whereas no overt disease
symptoms were observed in mice inoculated with H3N2 CIV strains. The viral titers were higher in the group MV/12 than
those in groups JS/10 and KR/07, while the mice infected with JS/10 showed higher viral titers in all tissues (except for
the lung) than the mice infected with KR/07. The data obtained in guinea pigs also demonstrated that group MV/12
presented the highest loads in most of the tissues, followed by group JS/10 and KR/07. Also, direct contact transmissions
of all the three CIV strains could be observed in guinea pigs, and for the inoculated and the contact groups, the viral titer
of group MV/12 and KR/07 was higher than that of group JS/10 in nasal swabs. These findings indicated that the matrix
(M) gene obtained from the pandemic HINT may enhance viral replication of classic H3N2 CIV; JS/10 has stronger viral
replication ability in tissues as compared to KR/07, whereas KR/07 infected guinea pigs have more viral shedding than JS/
10 infected guinea pigs.

Conclusions: There exists a discrepancy in pathobiology among CIV isolates. Reverse genetics regarding the genomes of

CIV isolates will be helpful to further explain the virus characteristics.
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Background

Influenza A virus (IAV) is a highly contagious pathogen.
The natural hosts of IAV are birds, but certain IAV line-
ages may infect additional mammalian hosts, especially
humans, swine, and equines [1, 2]. Dogs were not con-
sidered a reservoir species for influenza virus, because
no evidence of the continuous spread of IAV among
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dogs was available until 2004, when an H3N8 influenza
virus of equine origin caused an extensive epizootic of
respiratory disease in racing dogs in Florida [2]. In 2007,
another canine influenza outbreak was confirmed in
South Korea [3]; sequence analysis revealed that the
causal agent was an avian-origin H3N2 influenza virus,
which was then demonstrated to be capable of direct
transmission between dogs [4]. Outbreaks of infections
caused by avian-origin H3N2 canine influenza virus
(CIV) have been continuously reported in South Korea
[4, 5], China [6, 7] and Thailand [8] since 2007, and
avian-origin H3N2 CIV has become the most prevalent
subtype in Asia [1].
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Recently, a large number of studies has evaluated the
pathogenicity of H3N2 CIV [7, 9-11]. From 2009 to 2010,
Lin et al. (2012) isolated six strains of avian-origin H3N2
CIVs in Jiangsu Province of China, and molecular analysis
indicated that all eight genes of the six strains shared high
sequence identity (>99%) with the H3N2 CIV strain iso-
lated in South Korea. The pathogenicity of the representa-
tive Chinese H3N2 CIV strain A/canine/Jiangsu/06/2010
(JS/10) has been characterized in both mice [7, 10] and
dogs [12]. Previous studies also characterized and com-
pared the pathogenicity of the classical Korean H3N2 CIV
A/canine/Korea/01/2007 (KR/07) in various animal
models, including mice [5], guinea pigs [13] and dogs [9].
In 2012, an H3N2 CIV reassortant (A/canine/Korea/
MV1/2012, MV/12), the M gene from the pHIN1 influ-
enza virus and seven other genes from classic H3N2 CIVs,
was isolated from a sick dog in South Korea [11, 14]. The
infection dynamics of this reassortant strain were investi-
gated via experimental infection in dogs and ferrets [14].
Nevertheless, the pathogenicity and transmissibility of
these CIV isolates have not been compared and analyzed
under the same experimental conditions to date.

The epidemic spread of H3N2 avian-origin CIVs rep-
resents not only highly contagious pathogens for dogs
but also a public health concern. Because dogs are the
most intimate companions of humans, the close contact
between humans and dogs may increase the potential
for the transmission of influenza viruses to humans [15—
17]. Companion animals in South Korea and China have
lots of opportunities (i.e., international travel and trade)
to encounter H3N2 CIV-infected dogs in pet shops, vet-
erinary clinics or outdoor areas, owing to the endemicity
of the virus in both countries recently [10, 15]. There-
fore, a comparison of the pathogenicity and transmissi-
bility of different CIV strains has special and important
meaning for both countries.

Mice have shown promising potential for underlying the
basic viral pathogenesis of influenza virus, which have
traditionally been used as a mammalian animal model [5,
18, 19]. Alternatively, guinea pigs have also been reported
to be a relevant model of influenza virus infection and are
suitable for evaluations of the transmissibility of IAVs in
mammalian hosts [18, 20]. Here, in order to compare the
pathogenicity and transmissibility of different CIV strains,
investigations were conducted with three H3N2 viruses
(Chinese CIV JS/10, Korean CIV KR/07 and reassortant
CIV MV/12) and one pandemic HIN1 CA/09 strain using
mouse and guinea pig models under the same experimen-
tal conditions.

Methods

Experimental animals

One hundred six-week-old specific pathogen-free (SPF)
female BALB/c mice (18-20 g) and 75 six-week-old SPF
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female outbred Hartley guinea pigs (300-350 g body
weight) were purchased from Yangsung Laboratory Ani-
mal (Yangsung, South Korea). All experiments with ani-
mals and viruses were conducted in biosafety level 2-
plus facilities at Korea University.

Ethics statements

Veterinarians took the samples for analysis purposes and
to check the health status of the mice and guinea pig
population. Before conducting the study, approval for
conducting the animal experiments was obtained from
the Animal Ethics Committee of Korea University, with
the approval number of KUIACUC-2016-132.

Viruses

Three virus strains of the avian-origin H3N2 subtype
[Chinese CIV strain A/canine/Jiangsu/06/2010 (JS/10),
Korean CIV strain A/canine/Korea/01/2007 (KR/07),
and H3N2 CIV reassortant A/canine/Korea/MV1/2012
(MV/12)] and one pandemic HIN1 influenza virus [A/
California/04/2009 (CA/09)] were used in this study.
Four virus strains of the second passage were propagated
in 10-day-old SPF embryonated chicken eggs. No se-
quence differences were found between the original wild
viruses and the egg adapted viruses. Viral titers were
measured by calculating the 50% egg infectious dose
(EID5o/mL) of the viral stock by using the method of
Reed and Muench [21]. The titers of the four viral
strains (JS/10, KR/07, MV/12 and CA/09) were 10°%
EIDso/mL, 10”°° EIDsy/mL, 10%'7 EIDso/mL and 10%'7
EID5o/mL, respectively.

Mouse infections

To compare the virulence of JS/10, KR/07, MV/12 and
CA/09, mice infected with each virus were set as a sep-
arate experimental group. Mice inoculated with CA/09
and phosphate-buffered saline (PBS) were used as the
positive and negative controls, respectively. All of the
mice in different groups were housed in individual com-
partments in stainless-steel wire cages [22]. For each
virus group, 15 mice were anesthetized by intramuscular
injection of Zoletil (15 mg/kg, Virbac, Carros, France) in
0.1 mL of PBS, and then inoculated with the virus. For
intranasal inoculation, 10° EIDso/mL of each virus in
50 pL of PBS was administered into the nostrils of the
anesthetized mice. The inoculated mice in each group
were distinguished by the ear tags. Three of the mice in
inoculated group were euthanized by carbon dioxide
(COy) inhalation, and then sampled for virus load
titration of different organs, including the brain, heart,
liver, lung, spleen, kidney, intestine and feces, for each
virus at 1, 4, 7, 11 and 14 days post-inoculation (dpi).
Three mice of each time point were inoculated with PBS
as a negative control. Beddings were changed every three
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days before mice were killed humanely at indicated time
points. Additionally, five mice in each virus group and
PBS group were selected to monitor their clinical signs,
survival rates and body weight loss for 14 consecutive
days. The observers were blinded as to the experimental
treatments and they had veterinary medical qualifica-
tions to make assessments about clinical signs [23]. Mice
were euthanized for humane reasons when they lost
more than 25% of their original body weight [18].

Guinea pig infections
To compare virulence and to assess the efficiency of the
transmission of each virus by direct contact, 72 guinea
pigs were randomly divided into four virus experimental
groups; the remaining three guinea pigs were inoculated
with PBS as a negative control. Nine of 18 guinea pigs of
each group were randomly selected and put in one cage
to be anesthetized. Anaesthesia was induced by intra-
muscular injection of Zoletil (20 mg/kg, Virbac, Carros,
France) in 0.1 mL of PBS. Then intranasal administra-
tion of 10° EIDso/mL of JS/10, KR/07, MV/12 or CA/09
in a total volume of 300 pL (150 pL per side) into the
nostrils of every guinea pig was performed. Guinea pigs
in the control PBS group were inoculated with the same
volume of PBS. Another nine guinea pigs of each virus
groups and the three guinea pigs in the PBS group were
housed in separate cages in independent isolators. The
ambient conditions were set at air temperature of 22 °C
with a relative humidity of 30% [22, 23]. The heads of
three of the nine guinea pigs in each virus-inoculated
group were stained with crystal violet for nasal swab col-
lection according to a pre-designated schedule.
Twenty-four hours later, nine naive guinea pigs were
introduced into each virus group as the contact group.
By then, each cage contained only one infected and one
naive contact guinea pig. Tails of three of the nine
guinea pigs in each virus-contact group were stained
with crystal violet. Nasal swabs for viral titration were
collected from each guinea pig stained with crystal violet
in the inoculated groups, contact experimental groups
and PBS control group every day until 10 dpi by apply-
ing moistened cotton wads to both nostrils. Guinea pigs
in the PBS and contact groups were handled first to pre-
vent inadvertent physical transmission of the virus by
the researchers. In addition, all materials used to handle
and manipulate the animals during nasal wash collection
were changed between guinea pigs in different virus
groups [24]. Three guinea pigs in each virus-inoculated
group at 3 and 5 dpi and three contact guinea pigs in
the four virus experimental groups at 3 and 5 days post-
exposure (dpe) were euthanized by CO, inhalation. The
organs were collected from the guinea pigs, including
the lung, trachea, nasal turbinate, soft palate, brain, and
rectum. Whole lung tissues connecting the tracheas
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were collected, from both the inoculated and contact
guinea pigs of the four virus groups for the gross lesion
observation. (-I) represents for the viral inoculation
group and (-C) represents for the virus contact group of
four viruses.

Virus titration and serological test

Nasal viral shedding and the viral loads of all organs col-
lected from both the mice and the guinea pigs were quan-
tified by real-time PCR as described previously [7, 10]. In
brief, the amount of RNA of three avian-origin CIVs and
human-origin influenza viruses was calculated from the
standard curve on Step One plus Real Time PCR System.
Blood samples collected from infraorbital veins in BALB/c
mice and hearts in guinea pigs from all groups were used
for serological assessment prior to infection and at 10 dpi.
Sera from the experimentally inoculated groups were two
fold serially diluted in duplicate wells with an initial dilu-
tion of 1:10 and the antibodies against CIV were measured
using a hemagglutination inhibition (HI) assay [25, 26]
coupled with a commercially available competitive nucleo-
protein (NP) ELISA kit (Bionote, Hwaseong-si, South
Korea) [27]. HI titers were expressed as the inverse of the
highest dilution that yielded complete inhibition of haem-
agglutination activity.

Histopathological examination

To evaluate the histopathology of the lung tissues, necrop-
sies were conducted following standard procedures. All
mice and guinea pigs were humanly euthanized by inhal-
ation of carbon dioxide in a gas chamber. Briefly, the mice
were sacrificed at 7 dpi, and lung tissues from the guinea
pigs in the four virus groups were collected for patho-
logical examination at 3 dpi and 5 dpe, respectively. Four
micrometer-thick sections were prepared from the
paraffin-embedded tissues by immersing the lung tissues
fixed in 10% neutral buffered formalin. Sections were
stained with hematoxylin and eosin (H&E) as previously
described [10]. Histopathological lesions of each lung tis-
sue sample from the guinea pigs were evaluated in two
categories representing pneumonic lesions (lymphocyte
infiltration and congestion or hemorrhaging). Each cat-
egory was graded as O (normal), 1 (mild), 2 (moderate)
and 3 (severe) depending on the lesion severity [7].

Statistical analysis

Data were collected and analyzed by using MS Excel
2010 and the SPSS Statics v20.0 software. Body weight
loss and viral titers were analyzed by using analysis of
variance (ANOVA) followed by Tukeys multiple com-
parison test, with P<0.05 or P<0.01 considered a sig-
nificant difference.
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Results

Clinical signs and body weight changes in the mouse model
Mice infected with CA/09 showed progressive clinical
signs, such as decreased activity, labored breathing, lack
of appetite, and ruffled fur. All of these mice died after 7
dpi. In contrast, all of the mice inoculated with the three
H3N2 CIV strains and PBS survived and demonstrated
no obvious clinical signs.

As depicted in Fig. 1, the body weights of the mice in-
oculated with PBS gradually increased, with the average
body weight increasing by more than 20% until 14 dpi.
The body weights of the mice in three H3N2 CIV groups
demonstrated similar trends. No significant differences
were found in body weight between the JS/10 and KR/07
groups or between the KR/07 and MV/12 groups. How-
ever, the body weights of the mice in the MV/12 group
were significantly decreased compared with those of the
mice in the JS/10 group from 3 to 14 dpi (P < 0.05), es-
pecially from 4 to 7 and 11 and 12 dpi, when the body
weights of the mice in the MV/12 group were signifi-
cantly decreased compared to those of the mice in the
JS/10 group (P<0.01). In contrast, an average weight
loss of more than 15% was observed in the mice inocu-
lated with CA/09 by 3 dpi, subsequently a rapid and sig-
nificant weight loss of up to 25% of the body weight
until 7 dpi, when all mice were euthanized.

Quantitation of the viral RNA loads in the mouse model

Real-time PCR was used to assess the kinetics of the
viral RNA loads in organs including the brain, heart,
liver, lung, spleen, kidney, intestine and the feces of the
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Fig. 1 Body weight changes in mice inoculated with four influenza
virus strains. Four experimental groups of 6-week-old BALB/c mice
were challenged with 10° EIDso/mL of the JS/10, KR/07, MV/12 and
CA/09 strains. Mice inoculated with same volume of PBS served as the
negative control. Mice were monitored for body weight loss
throughout the observation period for 14 days. Each error bar indicates
the standard deviation. The results are expressed in terms of percent
body weight. *, P < 0.05, or **, P <001, indicates significantly different
weight compared between group JS/10 and MV/12
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inoculated mice with the four viruses. All the three
H3N2 CIVs and pandemic HIN1 virus RNA could be
detected by the quantitative PCR. For the inoculated
mice in the CA/09 group, only the viral RNA loads at
the first three time points were tested, since all mice
were euthanized after 7 dpi. Importantly, we observed
that the viral titers were highest in the lung tissues and
lowest in the intestinal tissues. Moreover, the highest
viral titers were found in the mice in group CA/09,
whereas group KR/07 had the lowest viral titers with the
exception of the lung tissues (Fig. 2). The dynamic
changes of viral titers in the tissues and feces of the mice
in the JS/10 and KR/07 groups were similar, with peak
viral titers were observed at 4, 7 or 11 days after infec-
tion, followed by a decline at 14 dpi. However, in con-
trast to the JS/10 and KR/07 viruses, the peak viral titers
of MV/12 in the mouse organs (except for the brain)
and feces were observed at the earliest two time points
(1 or 4 dpi). The viral titers in group CA/09 also reached
the peak at 1 or 4 dpi in all organs and the feces except
for the brain and intestine. The viral titers in the differ-
ent organs (except for the lung and intestine) and the
feces were significantly higher in the mice infected with
JS/10 than in the mice infected with KR/07 at the differ-
ent post-infection time points.

To be noted, the lung was the main target organ, be-
cause viral RNA could be detected in the lung from all
the virus inoculated groups at each time point and the
titers were higher compared to the other tissues. As
depicted in Fig. 2d, the viral titers of groups MV/12 and
CA/09 reached the peak at 4 dpi, whereas those of
groups JS/10 and KR/07 reached the peak at 7 dpi. The
peak viral titers of group MV/12 were significantly
higher than those of groups JS/10 and KR/07 respectively.
However, with the prolongation of viral infection, the viral
titers of group MV/12 became significantly lower com-
pared to group KR/07 at 11 dpi. Additionally, the viral ti-
ters in the lung tissues were significantly lower in group
JS/10 than those in group KR/07 at 7 and 11 dpi.

Histopathological findings in the mouse lungs

To compare the pathological findings in mice infected
with different viruses, the lung tissues from each group
at 7 dpi were selected to perform a histopathological
analysis, because the viral titers of the lung tissues were
the highest among all tissues. All of the sampled tissues
from the mice in the four virus-infected groups showed
lesions to different extents. The lung tissues of the mice
infected with JS/10 (Fig. 3a) and KR/07 (Fig. 3b) showed
mild histopathological lesions with widened lung inter-
stitial spaces, narrowed bronchial lumens, mild infiltra-
tion with a number of inflammatory cells and thickening
in the alveolar septum. In contrast, the mice infected
with MV/12 (Fig. 3c) and CA/09 (Fig. 3d) showed
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(See figure on previous page.)

Fig. 2 Viral loads in collected tissues and fecal samples from mice at five different time points after infection with four virus strains. Mice were
inoculated with 10° EIDso/mL of the JS/10, KR/07, MV/12 and CA/Q9 strains. In each virus group, the brain (a), heart (b), liver (c), lung (d), spleen
(e), kidney (f), intestine (g) and feces (h) were collected from the mice to determine the viral loads using real-time PCR at 1,4, 7, 11 and 14 days
post-challenge. *, P < 0.05, or **, P < 0.01, indicates significantly different virus titers compared between group JS/10 and KR/07. #, P < 0.05, or ##,

P <0.01, indicates significantly different virus titers compared between group MV/12 and KR/07. For viral loads in different organs mentioned above,

the results are expressed as log (viral RNA copies)/g. The horizontal line means the detection limit of this assay (158 copies of RNA per g)

moderate lymphocyte infiltration and congestion or
hemorrhage. No histopathological lesions were observed
in the lung tissues from the PBS group (Fig. 3e).

Influenza virus strain transmission among Guinea pigs by
direct contact

To compare the pathogenicity of the four influenza virus
strains and to evaluate the capacity of the four viruses to
be transmitted between guinea pigs by direct contact,
nasal washes from both the inoculated and contact
guinea pigs were collected to test the presence of the
virus. As shown in Fig. 4, the nasal swab viral titers from
guinea pigs in each group showed similar trends after in-
fection by inoculation or contact. In the inoculated
group, the viral titers of each virus group reached peak
levels at 2 or 3 days and then declined to the lowest levels
at 8, 9 or 10 days. The peak viral titers of the JS/10, KR/
07, MV/12 and CA/09 groups were 10 373, 1033, 10>77
and 10°7° copies/g, respectively. In contrast, for the direct
contact guinea pigs, the viral titers of each group first had
lower levels of approximately 10°°° copies/g and then
gradually increased to the peak values at 5 to 6 dpi (4 to 5
dpe). In the contact groups, the peak viral titers of the JS/
10, KR/07, MV/12 and CA/09 groups were 10”%’, 10%'°,

10*%” and 10%*’ copies/g, respectively, which were lower
than those of the inoculated groups.

For the inoculated group, the viral titers of group CA/
09 were highest between 3 to 8 dpi, whereas the titers of
group JS/10 were lowest between 2 to 5 dpi. The viral
titers of group JS/10 were significantly lower than those
of group KR/07 at 4, 6 and 7 dpi, and the viral titers of
group MV/12 group were significantly higher than those
of group KR/07 at 2 and 3 dpi. Additionally, no signifi-
cant differences were found between groups JS/10 and
KR/07 or between groups KR/07 and MV/12 at 8 to 10
dpi. For the contact group, the viral titers of groups CA/
09 and MV/12 were higher than those of groups JS/10
and KR/07 except for 2 dpi. The viral titers of group JS/
10 were significantly lower than those of group KR/07 at
2 and 6 dpi, whereas the viral titers of group JS/10 were
significantly higher than those of group KR/07 at 4 dpi.
Additionally, the viral titers of group MV/12 were sig-
nificantly higher than those of group KR/07 at 4, 5, 7, 8,
9 and 10 dpi.

Serological analysis of Guinea pigs both by inoculation
and direct contact

Seroconversion was confirmed by nucleoprotein-specific
ELISA and a HI assay. Seroconversion was observed in

-

congestion and hemorrhaging. (E) Lung tissue in the normal state

Fig. 3 Histopathological lesions in lung samples from mice infected with the four virus strains at 7 dpi. Histopathological findings in the lungs of mice
at 7 days post-inoculation with 10° EIDso/mL of the JS/10, KR/07, MV/12 and CA/09 strains. All inoculated groups demonstrated histopathological
pneumonic lesions. (A) — (E) are representative microscopic images of the histopathological pneumonic lesions from each group (X100). (A) JS/10 and
(B) KR/07 resulted in mild lymphocyte infiltration and congestion. (C) MV/12 and (D) CA/09 resulted in mild lymphocyte infiltration and moderate
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Fig. 4 Nasal swab shedding of guinea pigs infected with the four virus
strains in both the inoculation and contact groups. Guinea pigs were
inoculated with the JS/10, KR/07, MV/12 and CA/09 virus strains. After
24 h on 1 dpi, additional naive guinea pigs were placed into each virus
group as the contact group. Nasal swabs were collected every day for
determination of the viral loads using real-time PCR and the results are
expressed as logyo (viral RNA copies)/g. The solid line represents for the
viral inoculation group (-) and the dotted line represents for the virus
contact group (-C) of four viruses. Each error bar indicates the standard
deviation. *, P < 0.05, or **, P < 0.01, indicates significantly different virus
titers in nasal swabs compared between group JS/10 and KR/07. * in
black, represents significant difference in inoculation group, while * in
red demonstrates significant difference in contact group. #, P < 0.05, or
##, P < 0.01, indicates a significant difference in virus titers for group
MV/12 compared with group KR/07. # in black, represents significant
difference in inoculation group, while # in red demonstrates significant
difference in contact group. All significant differences are shown above

the figure
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all guinea pigs regardless of whether they were infected
by inoculation or direct contact (shown in Table 1). The
average titers of groups MV/12 and CA/09 were signifi-
cantly higher than those of groups JS/10 and KR/07.
Additionally, the HI titers of guinea pigs infected
through inoculation were higher than those of guinea
pigs infected by direct contact.

Quantitation of the viral RNA loads in the Guinea pig model
According to the nasal swab viral titers discussed above,
the lung, trachea, brain, nasal turbinate, soft palate and
rectum of the guinea pigs in the inoculated and contact
groups were collected to determine the viral loads at 3
and 6 dpi, respectively. As depicted in Fig. 5a, the viral ti-
ters of all tissues except for the brain were higher in group
MV/12 than in groups JS/10 and KR/07, whereas the viral
titers were higher in the trachea, brain, nasal turbinate
and soft palate in group JS/10 than in group KR/07. We
also observed that the viral titers of the nasal turbinate
were highest in all tissues for groups JS/10 and MV/12,
whereas the highest viral titers for groups KR/07 and CA/
09 were found in the lung and soft palate, respectively.

For the contact group (shown in Fig. 5b), the viral titers
of the lung, nasal turbinate and soft palate were signifi-
cantly higher for group MV/12 than for group KR/07,
whereas the viral titers of the trachea and soft palate were
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Table 1 Serological responses of guinea pigs against four virus
strains in both inoculated and contact groups

Virus group Positive rate of NP Average HI titer’
Day 0 Day 10 Day0 Day 10
JS/10 inoculation 0/3 3/3 <10 533
JS/10 contact 0/3 3/3 <10 267
KR/07 inoculation 0/3 3/3 <10 66.7
KR/07 contact 0/3 3/3 <10 26.7
MV/12 inoculation 0/3 3/3 <10 133.3
MV/12 contact 0/3 3/3 <10 80.0
CA/09 inoculation 0/3 3/3 <10 266.7
CA/09 contact 0/3 3/3 <10 106.7

“Samples with an HI titer < 10 were classified as negative

significantly higher for group JS/10 than for group KR/07.
However, we observed that the viral titers of the lung tis-
sues were significantly higher for group KR/07 than for
group JS/10. The viral titers in the lung tissues were the
highest for groups KR/07 and MV/12, whereas the viral
titers of the soft palate were the highest for groups JS/10
and CA/09. Additionally, none of the four viruses were
detected in the rectums of any of the guinea pigs.

Gross lesions and histopathological findings in the

Guinea pig lungs

According to the viral titers corresponding to nasal swab
shedding by the guinea pigs in the four virus groups, the
guinea pigs in the inoculated and contact groups were
selected for sacrifice at 3 and 6 dpi, respectively. No ap-
parent differences were observed for the guinea pigs in
groups JS/10-1 (Fig. 6a) and KR/07-1 (Fig. 6¢) infected
through inoculation, and only moderate hemorrhaging
and edema were observed in parts of the left or right
caudal lobes. However, MV/12-1 showed the most severe
lesions; the left caudal and right cranial lobes of the in-
fected lungs showed the most severe pneumonia, and a
wide range (more than 25% of the lobes) of the lungs
appeared to show hemorrhages, especially in the right
upper lobe (Fig. 6e). While the range of hemorrhages
and some parts of edema in the lungs in group CA/09-1
(Fig. 6g) was less severe than that in group MV/12-L. In
contrast, the lung tissues of the guinea pigs in the PBS
group showed no pneumonia (Fig. 6i). Similar to the in-
oculated group, the lung tissues of the contact groups
showed gross lesions to different degrees. Group MV/
12-C also demonstrated the most severe gross lesions
(Fig. 6f) with all four lung lobes almost full of hemor-
rhages (more than 80% of the lobes). The lung tissues in
group CA/09-C showed reddish hemorrhages and a
small amount of edema (Fig. 6h), whereas the lungs in
groups JS/10-C (Fig. 6b) and KR/07-C (Fig. 6d) showed
slight gross lesions with very little hemorrhaging.
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Fig. 5 Viral loads in tissues collected from guinea pigs infected with the four virus strains at 3 dpi for the inoculated group and 5 dpe for the
contact group. Guinea pigs were inoculated with 10° EIDso/mL of the JS/10, KR/07, MV/12 and CA/09 strains. Organs including the lung, trachea,
brain, nasal turbinate, soft palate and rectal were collected for the determination of the viral loads using real-time PCR at 3 dpi and 5 dpe, for the
inoculated group (a) and contact group (b) for each virus, respectively. The results are expressed as log;o (viral RNA copies)/g. *, P < 0.05, or **,
P < 0.01, indicates significantly different virus titers compared between JS/10 and KR/07 virus group. #, P < 0.05, or ##, P < 0.01, indicates a significant
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As shown in Fig. 7, the pattern of the histopatho-
logical findings was consistent with the gross lesions
described above. Among the inoculated groups, groups
JS/10-1 (Fig. 7a) and KR/07-I (Fig. 7c) showed mild to
moderate histopathological lesions, with mild lympho-
cyte infiltration and slight to moderate hemorrhaging.
While group MV/12-1 (Fig. 7e) demonstrated the most
severe histopathological lung lesions, with severe
lymphocyte infiltration and congestion or hemorrha-
ging. The histopathological lesions of group MV/12-1
were more severe than those of group CA/09-1 (Fig. 7g),
which showed moderate lymphocyte infiltration and con-
gestion or hemorrhaging. Histopathological lesions were

not observed in the lung tissues of guinea pigs in the PBS
group (Fig. 7I). Additionally, the histopathological findings
of the lungs in the contact groups were similar to those of
the inoculated group. To compare the histopathological
lesions more directly, the histopathological lesions were
evaluated in two categories based on lymphocyte infiltra-
tion (LI), and congestion or hemorrhage (CH), which were
graded as 0 (normal), 1 (mild), 2 (moderate) and 3 (se-
vere). Therefore, the lesion scores of each image was as
following: (A) LI: 1 and CH: 2; (B) LL: 1 and CH: 1; (C) LI
1 and CH: 1; (D) LI: 1 and CH: 1; (E) LL: 3 and CH: 3; (F)
LI: 2 and CH: 3; (G) LI: 2 and CH: 2; (H) LI: 2 and CH: 1;
() LLI: 0 and CH: 0.



Xie et al. BMC Veterinary Research (2018) 14:149

Page 9 of 12

S
°

°
®

IS

*

°
> @
°

oo
°
»
>

® o
* o o
SEA 5 .

® o

LK IEY
® o 0 0

(R

* o o
°

® & o o

.
* o
Ee-lg¥y

Fig. 6 Gross lesions of lung samples from guinea pigs infected with the four virus strains in both the inoculation and contact groups. Guinea
pigs were inoculated with 10° EIDso/mL of the JS/10, KR/07, MV/12 and CA/09 strains. After 24 h on 1 dpi, additional naive guinea pigs were
placed into each virus group as the contact group. Pictures were taken of the gross lesions of the viral inoculation groups at 3 dpi for JS/10 (a),
KR/07 (c), MV/12 (e) and CA/09 (G) and of the virus contact groups at 6 dpi (5 dpe) for JS/10 (b), KR/07 (d), MV/12 (f) and CA/09 (H). Macroscopic
images of guinea pig lungs in the PBS negative control (I) were also taken

Discussion
Outbreaks of infections caused by H3N2 CIV, which can
be transmitted directly in dogs, have been constantly re-
ported in Asian countries since 2007, including South
Korea, China, and Thailand [3, 7, 10, 11, 28]. Recently,
Asian canine H3N2 virus was also imported to U.S. [29,
30]. In this study, we assessed the pathogenicity and trans-
missibility of classic H3N2 virus strains (Chinese CIV JS/
10, Korean CIV KR/07 and reassortant CIV MV/12) under
the same conditions. Because the pathogenesis of the pan-
demic HIN1 CA/09 strain has been well addressed in ani-
mal models, including mice [19, 31] and guinea pigs [32],
we used this viral strain as a reference.

Body weight loss is the most common parameter used
to assess influenza viral pathogenicity in mice [7, 33]. In
this study, three H3N2 CIV strains showed similar trends

in body weight changes, with a slight decrease at one to
three days, followed by a slight increase until 14 dpi.
These findings were consistent with the results from pre-
vious studies [5, 10, 34]. Regarding the individual viral
strains, JS/10 resulted in lower weight loss than MV/12
from 3 to 14 dpi, but no significant difference was found
between JS/10 and KR/07.The viral titer of group MV12
was significantly higher than that of groups JS/10 or KR/
07 in almost all infected tissues, while group JS/10 showed
significantly higher titer in most of the tissues than group
KR/07, except for the lung. And the lung histopathological
findings of the mice infected with the four viral strains
were consistent with the body weight change and viral
load trends. Therefore, the data obtained in the mouse
model indicated that the pathogenicity of MV/12 was
higher than the pathogenicity of JS/10 and KR/07.
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Fig. 7 Histopathological lesions in guinea pig lung samples after infection with the four virus strains at 3 dpi for the inoculation group and 5 dpe
for the contact group. Guinea pigs were inoculated with 10° EIDso/mL of the J5/10, KR/07, MV/12 and CA/09 strains. Each microscopic image
represents histopathological pneumonic lesions in the viral inoculation group (-I) at 3 dpi for JS/10 (a), KR/07 (c), MV/12 (e) and CA/09 (g) and in
the virus contact group (-C) at 6 dpi (5 dpe) for JS/10 (b), KR/07 (d), MV/12 (f) and CA/09 (h) (X100). The lesion scores of each image was as
following: (@) LI: 1 and CH: 2; (b) LI: 1 and CH: 1; (¢) LI: T and CH: 1;(d) LI: T and CH: 1; (e) LI: 3 and CH:3; (f) LI: 2 and CH: 3; (g) LI: 2 and CH: 2;(h)

The guinea pig model has been reported to offer
advantages over other mammalian models for the
study of influenza virus transmission [35]. In this
study, viral RNA loads were detectable in the nasal
swabs of all guinea pigs infected with the four viral
strains regardless of whether the infection route was
inoculated or direct contact. Notably, the transmissi-
bility results in guinea pigs of this study was in con-
flict with a previous report conducted with the H3N2
CIV strain KR/07 [13], in which no direct contact
transmission was observed in guinea pigs. The reason
for the inconsistent results may partly be due to dif-
ferent initial co-caged time or detection limit for the
viral titers. For the inoculated and the contact groups,
the viral titers of nasal swabs in group MV/12 were
higher than those of groups JS/10 and KR/07, and the
viral titers of group KR/07 were higher than those of
group JS/10 at most time points. This finding indi-
cated that MV/12 and KR/07 infected guinea pigs
might have more viral shedding than JS/10 infected
guinea pigs. To be noted, the viral RNA of all the
three H3N2 CIV strains could be detected in brain
tissues in both inoculated mice and guinea pigs, indi-
cating that the H3N2 CIV may have ability to break
through the blood-brain barrier.

Similar to the findings in the mouse model, the viral ti-
ters of group MV/12 were higher than the titers of groups
JS/10 and KR/07 in most tissues regardless of whether the
guinea pigs were infected by inoculation or contact. Add-
itionally, the soft palate was the only tissue that the viral
titers could be detected in all guinea pigs from the contact
group. The viral titers of the soft palate infected by each
virus were higher than those of the other tissues except
for the lung. Previous studies reported that human influ-
enza virus (A/Changchun/01/2009(H1N1)) could replicate
in the lung, trachea, brain and nasal turbinate in guinea
pigs [15, 24], and the soft palate is an important adapta-
tion site for transmissible influenza virus [20]. Thus, we
speculated that the soft palate might also be a key site for
the adaptation of H3N2 CIV. Unlike the BALB/c mouse
model, the lung tissues of the guinea pigs in both the inoc-
ulated and contact groups all showed obvious gross le-
sions and corresponding histopathological findings. This
result may suggest that the guinea pig was a better host
model to evaluate the pathogenicity of H3N2 CIV. Taken
together, the results obtained in guinea pigs also demon-
strated that the pathogenicity of MV/12 was higher than
that of JS/10 and KR/07 and that JS/10 had much wider
organ tropism than KR/07. These results were consistent
with previous studies that evaluated the pathogenicity of
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JS/10 [12] and KR/07 [3] using beagle dogs. The gross le-
sions of beagle dogs infected with KR/07 were limited to
the lungs [4]; however, most of the tissues from beagle
dogs infected with JS/10, including the heart, liver, spleen,
lung, kidney and duodenum, showed varying degrees of
lesions and high viral RNA loads. Sequence analysis
showed a unique two amino acid insertion in the distal
end of the NA stalk in JS/10 compared to KR/07 [10].
Interestingly, our previous study [6] demonstrated that
the two amino acid insertion in JS/10 increased viral in-
fectivity and led to a higher proportion of detectable viral
RNA in mouse tissues. Therefore, the wider organ tropism
may be partially attributed to the presence of the two
amino acids.

Reassortment and mutations can drive influenza A virus
evolution [36]. Recently, some investigators have con-
firmed that the influenza virus M gene influences viral
replication. Ozaki et al. [37] reported that the PB2 and M
genes affected H6 influenza virus replication in chickens.
Ma et al. [38] reported that the 2009 pandemic influenza
HINT1 virus will facilitate efficient replication and trans-
missibility in pigs when the neuraminidase (NA) and
matrix (M) genes cooperated functionally. Additionally, M
gene reassortment in HIN2 influenza virus promoted
early infection and replication in chickens [39]. In this
study, MV/12 and CA/09 demonstrated an early surge in
progeny virus production and more severe pathology than
JS/10 and KR/07 in both the mouse and guinea pig
models. MV/12 was highly identical (above 99%) to JS/10
and KR/07 in nucleotide sequences of the viral RNA seg-
ments, except for the M segment that has been identified
to be from CA/09 [11]; therefore, we can reasonably
speculate that the M gene may contribute to the higher
pathogenicity of MV/12.

Conclusions

We demonstrated that the Chinese CIV JS/10 virus has
wider tissue tropism than the Korean CIV KR/07 virus
and that the recombinant H3N2 CIV MV/12 virus
showed the highest pathogenicity among the three
H3N2 CIV strains. The data presented here indicated
that the M gene obtained from pHINI1 may contribute
to the pathogenicity of recombinant H3N2 CIV MV/12,
although more rigorous future studies will be required.
This study highlighted the pathogenicity and transmissi-
bility of H3N2 CIV strains, which will be crucial for un-
derstanding the evolutionary characteristics of CIVs and
preventing the emergence of potential pandemic strains.
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