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Abstract

Background: Feeding dogs with diets rich in protein may favor putrefactive fermentations in the hindgut,
negatively affecting the animal’s intestinal environment. Conversely, prebiotics may improve the activity of health-
promoting bacteria and prevent bacterial proteolysis in the colon. The aim of this study was to evaluate the effects
of dietary supplementation with fructooligosaccharides (FOS) on fecal microbiota and apparent total tract
digestibility (ATTD) in dogs fed kibbles differing in protein content. Twelve healthy adult dogs were used in a 4 x 4
replicated Latin Square design to determine the effects of four diets: 1) Low protein diet (LP, crude protein (CP)
229 g/kg dry matter (DM)); 2) High protein diet (HP, CP 304 g/kg DM); 3) Diet 1+ 1.5 g of FOS/kg; 4) Diet 2+ 15 g
of FOS/kg. The diets contained silica at 5 g/kg as a digestion marker. Differences in protein content were
obtained using different amounts of a highly digestible swine greaves meal. Each feeding period lasted 28 d,
with a 12 d wash-out in between periods. Fecal samples were collected from dogs at 0, 21 and 28 d of each
feeding period. Feces excreted during the last five days of each feeding period were collected and pooled in
order to evaluate ATTD.

Results: Higher fecal ammonia concentrations were observed both when dogs received the HP diets (p <0.
001) and the supplementation with FOS (p < 0.05). The diets containing FOS resulted in greater ATTD of DM,
Ca, Mg, Na, Zn, and Fe (p < 0.05) while HP diets were characterized by lower crude ash ATTD (p < 0.05).
Significant interactions were observed between FOS and protein concentration in regards to fecal pH (p <O0.
05), propionic acid (p < 0.05), acetic to propionic acid and acetic + n-butyric to propionic acid ratios (p < 0.01),
bifidobacteria (p < 0.05) and ATTD of CP (p <0.05) and Mn (p < 0.001).

Conclusions: A relatively moderate increase of dietary protein resulted in higher concentrations of ammonia
in canine feces. Fructooligosaccharides displayed beneficial counteracting effects (such as increased
bifidobacteria) when supplemented in HP diets, compared to those observed in LP diets and, in general,
improved the ATTD of several minerals.
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Background

The bacterial populations that inhabit the intestinal tract
play a role of great importance in animal health, as they
are involved in nutritional, functional and immunological
processes [1]. Several studies have shown that the symbi-
otic relationship between intestinal microbiota and their
host may be positively modulated through dietary strat-
egies that include supplementation with prebiotics and
variation of the amount, type and balance of dietary nutri-
ents [2]. Among nutrients, protein represents a key factor
in dog nutrition and may have a significant influence on
the intestinal microbial fermentations by supporting prote-
olysis [3]. In particular, even though dogs are a carnivorous
species, high amounts of dietary protein have demon-
strated to favor a high synthesis of undesirable putrefactive
metabolites, such as ammonia and volatile branched-chain
fatty acids (BCFA) in the canine hindgut [4, 5].

Several publications have recently highlighted interest-
ing evidence on the use of prebiotic substances both in
humans [6] and other species, including companion
animals such as dogs [7, 8]. In particular, fructooligosac-
charides (FOS) have displayed beneficial effects on the
composition [9, 10] and metabolism of canine intestinal
microbiota, by favoring a shift from putrefactive to sac-
charolytic fermentations [11, 12].

Nowadays, the development of nutritional strategies
aimed at positively influencing the intestinal health of com-
panion animals is important, with recent trends in canine
nutrition focusing on diets rich in proteins (the so-called
“ancestral diets”) based on the philosophy of feeding dogs
foods similar to those eaten by their wild ancestors [13].
Our hypothesis is that higher dietary protein concentra-
tions may induce an intensification of intestinal putrefac-
tive fermentations and that FOS may counteract this effect.
As such, the objective of this study was to evaluate the
effects of a dietary supplementation with FOS on fecal
bacterial populations, fecal fermentative end-products con-
centrations and apparent total tract digestibility (ATTD) in
dogs fed diets with different protein content.

Methods

The study was carried out according to the Italian legisla-
tion implementing the European Council Directive 2010/
63 on the protection of animals used for scientific pur-
poses. The experimental protocol was reviewed and
approved by the Scientific Ethics Committee on Animal
Experimentation of the University of Bologna. Informed
consent was obtained from all dog owners prior to the
beginning of the study.

Animals and diets

Twelve healthy adult dogs (household dogs, different
breeds and living in different environments; mean age +
SD = 3.6 + 1.6) were used. The average body weight + SD
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of the dogs was 19.5 + 6.2 kg. During the study they kept
living in their usual environment. Each dog was regularly
vaccinated and periodically treated for intestinal para-
sites; dogs had exhibited no clinical signs of gastrointes-
tinal disorders during the previous 12 months.

Four dry, extruded and complete diets formulated for
adult dogs (Effeffe Pet Food S.p.A., Italy), based on ce-
reals, meat and meat by-products, oils and fat, protein
plant extract, minerals and yeasts, were used: 1) Low
protein diet (LP, crude protein (CP) 229 g/kg dry matter
(DM)); 2) High protein diet (HP, CP 304 g/kg DM); 3)
LP + FOS; 4) HP + FOS. The sole source of animal pro-
tein in the diets was a swine greaves meal (CP 685 g/kg
DM; in vitro DM and CP digestibility 0.71 and 0.86,
respectively). Fructooligosaccharides (Beneo OPS, FOS
from partially hydrolyzed inulin from chicory with a de-
gree of polymerization between 2 and 8; Beneo GmbH,
Mannheim, Germany) were incorporated in diets 3 and
4 before extrusion, at a final concentration of 15 g/kg.
The experimental diets did not contain significant
amounts of soluble fiber sources other than the FOS
added to diets 3 and 4. Silica was included in all diets at
the dose of 5 g/kg as a source of acid-insoluble ash to be
used as a digestion marker. The amount of greaves meal
and the presence or not of FOS in the formulation
represented the only remarkable difference between the
four experimental diets.

In vitro digestibility of the swine greaves meal included
in the experimental diets was performed following the
method based on the 2-step procedure (2 h incubation
with HCI, pepsin and gastric lipase followed by 4 h with
pancreatin and bile salts) described by Biagi et al. [14].
Dry ground samples of the swine greaves meal were
digested in triplicate. The chemical composition of the
experimental diets and the swine greaves meal is shown
in Table 1.

Experimental design and samples collection

Dogs received four dietary treatments according to a 4 x 4
Latin square experimental design. Each feeding period
lasted 28 days, with 12 days wash-out periods in between.
During the wash-out periods all dogs were fed the LP diet,
as it represented the basal diet during the study. Over the
whole crossover study, each dog received all experimental
diets, following the same sequence (LP— HP—LP +
FOS — HP + FOS) but starting from a different diet.

Dogs were fed twice a day; the daily food amount for
each dog was calculated on the basis of the energy con-
tent of the experimental diets (calculated using the
modified Atwater conversion factors) and the animals’
daily energy requirements, according to the recommen-
dations for the maintenance of small and medium sized

adult dogs: 132 kcal/kg BW®7> [15].
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Table 1 Nutrient analysis (g/kg DM) of the experimental diets
and swine greaves meal used as the sole source of animal protein

LP+FOS HP+FOS

Swine greaves meal  LP HP

DM, as fed 982 929 935 939 934
CcP 685 229 304 241 312
Fat 161 120 140 118 134

Crude ashes 151 66.1 816 667 81.0
NDF - 83.0 109 850 106
ADF - 270 270 280 26.0
Starch - 464 364 456 363

Ca - 915 127 103 139
P - 665 805 625 7.55
Mg - 080 080 080 0.80
Na - 570 820 540 745
K - 775 605 5.00 6.10
Zn - 023 023 022 023
Mn - 006 003 005 0.02
Fe - 049 039 041 032
Cu - 002 002 002 0.02

FOS fructooligosaccharides, HP high protein diet, LP low protein diet

On days 0, 21 and 28 of each feeding period a fresh
fecal sample was collected from each dog within 30 min
from defecation and thereafter frozen at - 80 °C for
chemical and microbiological analyses. From days 24 to
28 of each feeding period, feces excreted from dogs were
pooled and stored at - 20 °C for nutrients analyses and
ATTD assessment.

Chemical analyses and ATTD calculation

Determination of nutrients in diets, swine greaves meal
and fecal samples was performed according to AOAC
International standard methods [16] (method 950.46 for
water, method 954.01 for CP, method 920.39 for ether ex-
tract, method 920.40 for starch, method 942.05 for crude
ash). Fiber fractions were determined according to the
procedure described by Van Soest et al. [17], where neu-
tral detergent fiber (NDF) was assayed with a heat stable
amylase, and acid detergent fiber (ADF) was expressed in-
clusive of residual ash. Acid-insoluble ash was determined
according to Vogtmann et al. [18]. For the determination
of minerals, samples of diets and feces were previously
diluted with a nitric acid solution (15 M) and processed
through microwave mineralization, according to the
method US EPA 3052 [19]. The analysis was carried out
by inductively coupled plasma-optical emission spectrom-
etry (ICP-OES Optima 2100; PerkinElmer, Waltham, MA,
USA). Quantification of macrominerals was performed
with the torch in radial position by using a Meinhard
nebulizer coupled with a cyclonic spray chamber, while
trace elements were assessed with the torch in axial
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position with the utilization of an ultrasonic wave
nebulizer (CETAC U5000; Teledyne Cetac Technologies,
Omaha, NE, USA), according to the method US EPA
6010c [20].

Apparent total tract digestibility of DM was calculated
using the following equation:

100 - [(100 x % marker in the
feces]

Apparent total tract digestibility of each nutrient was
calculated using the following equation:

100 — [%nutrient in feces x (100 — % DM digestibility)/
% nutrient in the diet]

Fecal pH was measured using a SevenMulti pH meter
(Mettler Toledo, Milan, Italy) on diluted fecal samples (1:
10 in distilled water). Ammonia was measured using a
commercial kit (Urea/BUN - Color; BioSystems S.A.,
Barcelona, Spain). Volatile fatty acids (VFA) were analyzed
according to Biagi et al. [21]. For the determination of bio-
genic amines, samples were diluted 1:5 with perchloric
acid (0.3 M); biogenic amines were later separated by
HPLC and quantified through fluorimetry, according to
the method proposed by Stefanelli et al. [22].

diet)/ % marker in

Microbial analyses

Bacterial genomic DNA was extracted and isolated from
fecal samples (~200 mg) using the QIAamp DNA Stool
Mini-Kit (QIAGEN GmbH, Hilden, Germany). Isolated
DNA concentration and purity were measured using a
NanoDrop 2000c spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). Template DNA was diluted to
50 ng/ul and stored at —20 °C until further analysis.
Quantitative Polymerase Chain Reaction (qPCR) was
performed using specific primers for total bacteria, Escher-
ichia coli, Bifidobacterium genus, Lactobacillus genus,
Enterococcus genus, and Clostridium perfringens (Table 2).

Table 2 Primers used for quantitative PCR analysis

Target species  Primer Sequence (5-3") Reference
Total bacteria  FP 165 GGTAGTCYAYGCMSTAAACG (53]
RP 165  GACARCCATGCASCACCTG
Escherichia coli E. coliF GTTAATACCTTTGCTCATTGA [54]
E coliR  ACCAGGGTATCTAATCC TGTT
Bifidobacterium g-Bifid-F  CTCCTGGAAACGGGTGG (55]
genus g-Bifid-R  GGTGTTCTTCCCGATATCTACA
Lactobacillis ~ Lab-0159 GGAAACAG(A/GITGCTAATACCG  [56]
gents Univ-  ATCGTATTACCGCGGCTGCTGGCA
0515
Enterococcus EnteroF  CCCTTATTGTTAGTTGCCATCATT  [57]
genus EnteroR  ACTCGTTGTACTTCCCATTGT
Clostridium ~ CP1 AAAGATGGCATCATCATTCAAC  [58]
perfringens — p, TACCGTCATTATCTTCCCCAAA
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Samples were analysed in duplicate in FrameStar® 96
Well Skirted ninety-six-well reaction plates capped with
qPCR Adhesive Clear Plate Seal (4titude Limited, Surrey,
UK). The qPCR assay was performed using a MasterCycler
ep realPlex* (Eppendorf, Wesseling-Berzdorf, Germany).
Amplification was performed in duplicate for each bacterial
group within each sample. For amplification, 15 pl final vol-
ume containing 7.5 pl 2X SensiFAST No-ROX PCR Master
Mix (Bioline GmbH, Luckenwalde, Germany), 4.8 ul of
nuclease-free water, 0.6 ul of each 10 pmol primer and 1.
5 pl of template DNA were used. The amplification cycle
was as follows: initial denaturation at 95 °C for 2 min, at
95 °C for 5 s, primer annealing at 55-61 °C for 10 s and at
72 °C for 8 s. The cycle was repeated 40 times. Cycle
threshold values were plotted against standard curves for
quantification of the target bacterial DNA from fecal sam-
ples. To generate standard curves, 10-fold serial dilutions of
purified and quantified PCR products were used. The
standard curves of the individual qPCR assays were ob-
tained by PCR using specific primers (Table 2) and DNA
extracted from the fecal samples. Individual reactions of the
standard curves were run in duplicate on each plate for the
respective bacterial group. Melting curves were checked
after amplification to ensure single product amplification of
consistent melting temperature. Results were reported as
log10 16S ribosomal DNA gene copies/g fresh matter.

Statistical analysis

First, for each tested parameter except digestibility data,
results obtained after 21 and 28 d of each treatment were
compared by one-way ANOVA. Since significant differ-
ences were not observed for any of the measured parame-
ters, it was decided to use the mean values obtained from
each dog at 21 and 28 d for statistical data analysis.

In the present study a 2 x 2 factorial arrangement of
treatments (two different protein concentrations and the
presence or absence of FOS in the diet) was used. Data
were analyzed by the General Linear Model procedure.
The model included dietary protein concentration, FOS
and their respective interaction as fixed effects and the
dog and period as random effects. Results from samples
collected at the beginning (Day 0) of each feeding period
were not included in the analysis. Differences were con-
sidered statistically significant when p<0.05. All the
statistical computations were performed with Statistica
10.0 (Stat Soft Italia, Padua, Italy).

Results
All the animals remained in good health throughout
the study (experimental design provided for a duration
of 160 days).

The interaction between protein concentration and
FOS influenced fecal pH (p<0.05). Supplementation
with FOS resulted in lower pH in feces of dogs receiving
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the HP diet and, conversely, increased this parameter
when dogs were fed with the LP diet (Table 3). Fecal
concentrations of ammonia were affected by both dietary
protein concentration (41.1 vs. 58.6 umol/g of feces for
LP and HP, respectively; p < 0.001) and FOS (53.1 vs. 46.
6 pmol/g of feces for diets with or without FOS, respect-
ively; p < 0.05) (Table 3). Fecal moisture and concentra-
tions of biogenic amines and total VFA were not
affected by treatments (Table 3). A significant interaction
between protein concentration and FOS was observed in
regards to fecal concentration of propionic acid (p<0.
05), acetic to propionic acid ratio (p < 0.01) and acetic +
n-butyric to propionic acid ratio (p < 0.01). In particular,
FOS decreased propionic acid when dogs were fed with
the LP diet and increased it when dogs were fed with
the HP diet. Accordingly, in the presence of FOS, the
acetic to propionic acid ratio (p <0.01) and the acetic +
n-butyric to propionic acid ratio were increased in the
LP diet and reduced in the HP diet (Table 3).

Most of the bacterial populations evaluated were not
modified by any dietary treatment, with the only excep-
tion of bifidobacteria for which a significant interaction
between protein concentration and FOS was observed
(p <0.01). In particular, FOS reduced these bacteria in
feces when dogs were fed with the LP diet and, con-
versely, they increased them with the HP diet (Table 4).

Supplementation with FOS significantly improved
ATTD of DM (0.89 and 0.85 for diets with or without
FOS, respectively; p <0.05), Ca (0.25 and 0.02 for diets
with or without FOS, respectively; p < 0.05), Mg (0.20 and
0.01 for diets with or without FOS, respectively; p < 0.05),
Na (0.98 and 0.96 for diets with or without FOS, respect-
ively; p < 0.05), Zn (0.34 and 0.19 for diets with or without
FOS, respectively; p < 0.05) and Fe (0.15 and 0.01 for diets
with or without FOS, respectively; p <0.05) (Table 5).
High protein diets resulted in lower ATTD of crude ash
(0.52 and 046 for LP and HP respectively; p <0.05)
(Table 5). Furthermore, a significant interaction between
protein concentration and FOS was observed in regards to
CP and Mn ATTD (p<0.05 and p <0.001, respectively).
In particular, FOS improved the ATTD of both nutrients
in the LP diet and decreased it in the HP diet (Table 5).
Apparent total tract digestibility of ether extract, P, K, Cu
and starch was not influenced by treatments (average
ATTD coefficient of starch was 0.99; data not shown).

Discussion
During the present study, the effects of a moderate FOS
supplementation (15 g/kg) on fecal bacterial populations
and activity and ATTD were investigated in diets differ-
ing in protein content.

Fecal water content was not influenced by dietary treat-
ments and none of the dogs involved in the study showed
any gastrointestinal disturbances (such as diarrhea or
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Table 3 Chemical analysis of fecal samples from dogs fed with diets differing in protein concentrations and in presence of

fructooligosaccharides

Anova p-value

LP HP LP+FOS HP+FOS  Protein concentration  FOS Protein concentration x FOS ~ Pooled SEM
pH 612 658 646 6.50 0.008 0004 0011 0.07
Water content (mg/g feces) 601 588 615 578 0354 0923 0754 376
NH; (umol/g feces) 39.1 541 431 63.1 <0.001 0027 0543 4.01
VFA (umol/g feces)
Acetic acid 928 930 851 91.3 0.629 0487 0649 8.63
Propionic acid 583 419 449 487 0.213 0577  0.049 6.80
n-Butyric acid 163 190 139 130 0.747 0.136 0514 240
iso-Butyric acid 237 253 180 2.78 0.226 0652  0.083 0.18
iso-Valeric acid 469 468 330 4.55 0400 0327 0391 0.29
Total VFA 176 159 149 159 0.759 0286 0272 10.7
c2a 162 229 203 1.97 0.024 0842 0008 0.12
C2+n-C4C3 190 273 235 227 0.014 0831 0.003 0.18
Biogenic amines (umol/g feces)
Putrescine 718 765 695 709 0.798 0668 0860 90.6
Cadaverine 461 381 348 329 0.641 0406  0.728 86.5
Spermidine 482 604 491 586 0.129 0877 0741 394
Spermine 341 271 383 293 0.186 0495 0843 49.7

Values are the means of 12 dogs per treatment

C2/C3 acetic acid/propionic acid ratio, C2 + n-C4/C3 acetic acid + n-butyric acid/propionic acid ratio, FOS fructooligosaccharides, HP high protein diet, LP low

protein diet

flatulence). Among the dietary factors causing greater mois-
ture in feces (and negatively influencing fecal quality), there
are both the increase of proteolytic fermentations in the
hindgut [23] and dietary supplementation with non-
digestible oligosaccharides (NDO) [12]. Protein digestion
and absorption are considered efficient biological processes
in the dog [24]. However, the intake of diets containing
large amounts of proteins, even if high digestible, may
exceed the digestive/absorptive capacity of the gastrointes-
tinal tract [25]. Consequently, this may lead to a significant
increase of proteins reaching the hindgut available for pro-
teolytic fermentations [4, 26], which are known to favor
higher osmotic pressure and, consequently, greater water

emission into the intestinal lumen [23]. Nevertheless, an in-
crease of fecal water content and negative effects on fecal
quality (up to the appearance of diarrhea, in some cases)
have been described in dogs receiving diets containing
higher protein content compared to that of the HP diets
used in the present study (CP 382 and 392 g/kg DM [27];
655 g/kg DM [28]). It could be presumed that, in the
present trial, the HP diets did not affect fecal moisture
because of their relatively moderate (and highly digestible)
protein content (around 310 g/kg DM).

Moreover, the moderate dose of FOS used in the
present study (15 g/kg) might justify the lack of impact
on this parameter. In fact, although the physical water-

Table 4 Microbial analysis (log copies dsDNA/g feces) of fecal samples from dogs fed with diets differing in protein concentrations

and in presence of fructooligosaccharides

ANOVA p-value

LP HP LP+FOS HP + FOS Protein concentration FOS Protein concentration x FOS Pooled SEM
Total bacteria 887 850 898 887 0.246 0.243 0.543 0.17
C. perfringens 5.58 544 562 592 0623 0.291 0455 0.23
Lactobacillus spp. 8.59 8.19 8.63 861 0.250 0.195 0.292 0.14
Enterococci 553 5.62 6.00 5.89 0.960 0.139 0685 020
Bifidobacterium spp. 5.36 392 4.00 4.29 0.032 0.061 0.002 0.21
E. coli 547 5.12 551 569 0.699 0.152 0.215 0.17

Values are the means of 12 dogs per treatment
FOS fructooligosaccharides, HP high protein diet, LP low protein diet
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Table 5 Apparent total tract digestibility coefficients in dogs fed with diets differing in protein concentration and in presence of

fructooligosaccharides

ANOVA p-value
LP HP LP +FOS HP + FOS Protein concentration FOS Protein concentration x FOS Pooled SEM

DM 0.86 0.85 0.89 0.87 0.136 0017 0.282 0.01
CcpP 0.84 0.88 0.90 0.84 0.503 0528 0.034 0.02
Ether extract 0.97 0.97 0.98 0.97 0.876 0436 0.397 0.01
Crude ash 048 047 057 045 0.024 0.304 0.157 0.03
Macrominerals

Ca 0.01 0.04 0.25 0.25 0519 0.010 0.883 0.06

P 039 040 0.55 038 0353 0.602 0.120 0.04

Mg 0.01 0.01 0.17 0.23 0.607 0.043 0.231 0.08

Na 0.96 0.97 097 0.98 0318 0.034 0.527 0.01

K 0.96 0.95 0.96 0.96 0.224 0.445 0264 001
Trace minerals

Zn 0.17 0.21 0.36 0.33 0.746 0.042 0.718 0.06

Mn 0.14 0.19 092 0.10 <0.001 <0.001 <0.001 0.05

Fe 0.01 0.01 0.18 0.13 0.799 0.025 0.686 0.06

Cu 0.26 0.37 045 0.39 0.636 0.166 0.358 0.07

Values are the means of 12 dogs per treatment
FOS fructooligosaccharides, HP high protein diet, LP low protein diet

holding properties of NDO and the osmotic action of
molecules such as VFA produced by their fermentation
are well known [29], several authors, in accordance with
the present results, did not report any detrimental effect
on fecal moisture (or fecal quality) in dogs when short-
chain fructans were supplemented at concentrations
lower than 30 g/kg of diet [11, 26, 30].

Interestingly, protein concentration showed a statistically
significant, although modest, influence on fecal ammonia,
which was increased by HP diets. Ammonia is produced by
proteolytic bacteria and represents a toxic and potentially
carcinogenic compound that, when present at relevant con-
centrations in the intestinal lumen, has demonstrated the
ability to damage the mucosa [31]. In our study, the in-
crease of fecal ammonia in dogs when fed HP diets induces
us to hypothesize increased proteolytic fermentations in the
hindgut, as previously suggested [4, 26]. Nevertheless, the
fecal concentration of other markers of intestinal bacterial
proteolysis (such as BCFAs and biogenic amines) did not
increase during HP dietary treatments.

The present results are partially in accordance with re-
cent similar studies in canine species. In a previous simi-
lar investigation, the authors described higher fecal
ammonia in dogs fed with diets characterized by increas-
ing CP content (from 296 to 485 and 535 g/kg of DM
[26]. In a previously cited study, higher ammonia levels
(together with higher fecal BCFA concentrations) were
observed in feces of dogs fed with a diet containing high
amounts of protein (CP from 214 to 655 g/kg of DM)
[28]. Similarly, in another study evaluating diets differing

in protein content, the authors observed an increase of
ammonia and BCFA concentrations when dogs received
diets containing higher concentrations of protein
(CP from 214 to 392 g/kg of DM) [5].

As described in omnivores such as humans [32] and
swines [33], in dogs and cats there is evidence that an
increase in dietary protein content increases proteolytic
bacteria and reduces microbial populations (in particular,
bifidobacteria and lactobacilli) [34, 35] that have been
recognized to be beneficial also in these carnivorous
species [36]. These outcomes are supported by the well-
known “antagonistic pattern” concerning proteolytic
bacteria such as clostridia and saccharolytic bacteria
such as lactobacilli and bifidobacteria [34]. However, in
the present study, protein concentration did not have
any effect on the fecal bacterial populations evaluated,
partially in accordance with a previously cited study [5].
Conversely, in a previous in vitro trial with canine fecal
inoculum, high-protein diets were associated with lower
presence of lactobacilli and enterococci [37]. It is pos-
sible that in the present study the difference in protein
content between LP and HP diets was not large enough
to clearly influence fecal microbial populations other
than bifidobacteria.

Volatile fatty acids represent the most important fer-
mentative end-products largely produced by bacterial
saccharolytic fermentations of non-digestible carbohy-
drates (such as NDO) [32] and are considered to be
beneficial for the host mainly because of their trophic
effects on intestinal mucosal cells [38]. For this reason,
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an increase in VFA production represents a positive out-
come often observed during prebiotics (such as FOS)
supplementation, also in canine species [7]. Conversely,
FOS (as main effect) failed to exert any positive “prebiotic”
outcome on fecal parameters evaluated in the present
study. On the contrary, FOS diets increased ammonia con-
centration in the dogs’ feces. In the previously cited in vitro
study with canine fecal inoculum, FOS supplemented in
the same LP and HP diets used in the present study (but
different in protein digestibility) at the same concentration
(15 g/kg), decreased pH values and ammonia and increased
VFA levels [37]. However, results from in vivo studies in-
vestigating the effects of fructans in dogs are contradictory.
In this regard it is well known that ammonia and VFA de-
riving from microbial metabolism are rapidly absorbed
along the intestinal tract and that feces may not reflect
their actual concentration in the colon [32, 39].

While these mechanisms could explain the lack of ef-
fect of FOS supplementation on fecal VFA observed in
the present study, the increasing effect on fecal ammonia
is more difficult to explain. According to the present
results, other authors reported higher ammonia (as well
as iso-valerate and total biogenic amines) fecal levels in
dogs receiving fructans at doses between 3 and 9 g/kg
[12]. Moreover, an increase of fecal concentration of sev-
eral proteolytic compounds, including ammonia, BCFA
and some biogenic amines has been observed during a
study with adult cats receiving a diet supplemented with
40 g of FOS/kg [40]. As suggested by the authors of this
latter study, the increase of fecal ammonia observed
after a dietary supplementation with FOS may be attrib-
utable to a shift of nitrogen excretion from urine to
feces, as previously described in other investigations in
both dogs [41] and cats [42]. In studies evaluating the ef-
fects of FOS in pigs’ diets, a complete FOS fermentation
prior to the terminal ileum has been documented [43].
This could favor higher bacterial replication in the small
intestine. The absence of carbohydrates and the presence
of undigested protein available as a source of energy in
the hindgut could have favored increased proteolytic
activity by a larger number of bacteria [44]. In canine
species, there is a paucity of in vivo studies evaluating
the effects of FOS on microbial composition and activity
in the ileal digesta (given the obvious ethical limits
recently imposed by legislation). A study by Swanson et
al. with ileally cannulated dogs reported increased con-
centration of lactobacilli in ileal digesta (and feces) of
dogs fed with diets supplemented with FOS and MOS,
supporting the hypothesis that prebiotics are able to
exert microbial changes even in the upper intestinal
tract [45]. In vitro conditions FOS have shown to be
readily fermentable also by canine microbiota [46]. Thus,
the higher fecal ammonia observed in present study
could be also justified by a potential saccharolytic
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activity favored by FOS in the small intestine or in the
proximal colon that was not maintained throughout the
large intestine, due to the depletion of the relatively mod-
est dose of the prebiotic ingested. The greater amount of
bacteria reaching the hindgut, associated with the unavail-
ability of carbohydrates, might have led to more intensive
putrefactive fermentations [44], as demonstrated by the
previously cited investigations in swine species [43].

The significant protein concentration x FOS interac-
tions observed in the present study express a different
outcome on some fecal parameters (fecal pH, propionic
acid, VFA ratios and bifidobacteria) when dogs con-
sumed FOS supplemented diets in relation to their pro-
tein content. In particular, FOS exerted typical prebiotic
effects when added to HP diets (as they favored lower
fecal pH, higher bifidobacteria and propionic acid
concentration and, consequently, lower VFA ratios) and,
unexpectedly, they acted in the opposite way in LP diets.
Based on the previously described hypotheses concern-
ing the potential early fermentation of FOS before the
distal colon, the consequent greater bacterial growth
eventually stimulated by this substrate might have
favored more intensive proteolytic activity in the hindgut
that could justify the effects described for LP diets
(higher fecal pH, lower propionic concentration and re-
duced bifidobacteria). In regards to HP diets outcomes,
we can only speculate on the possible influence of FOS
and higher amount of proteins along the canine intestinal
tract on the potential interactions between microbiota and
their metabolites [47] that seem to have partially counter-
acted the effect observed in LP diets. In this regard, also
the decreasing effect of FOS on protein ATTD when dogs
were fed with HP diets might represent an expression of
the previously described and difficult to explain prebiotic
effect. Prebiotics can increase the amount of fecal nitrogen
of microbial origin by stimulating microbial growth in the
hindgut of dogs [48], with a decreasing effect on protein
ATTD [26, 49]. In the present study, FOS exerted this ef-
fect only in HP diets presumably because of the higher
undigested proteins reaching the hindgut where greater
proteolysis might have occurred, with consequent higher
fecal nitrogen losses.

The slight improvement of ATTD of DM in diets sup-
plemented with FOS observed in the present study can
be presumably attributable to the greater bioavailability
of some minerals. In this regard, ATTD coefficients of
some minerals (in particular, Ca and Mg) in the diets
that were not supplemented with FOS were surprisingly
low. During the present study, dogs continued to live
with their owners and, for that reason, they drank waters
characterized by a potentially different mineral content.
Nevertheless, the present investigation was based on a
crossover experimental design and so a potential “water
effect” on ATTD of minerals was presumably avoided.
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Results from the present study seem to confirm that
NDO and, in particular, inulin-type fructans like FOS,
may improve the intestinal absorption of several macro-
and trace minerals, as already observed in previous stud-
ies in dogs [8]. Among the mechanisms proposed to ex-
plain this effect, the acidification of the intestinal chyme
(consequent to an increase in VFA production) may rep-
resent the more plausible condition favoring higher solu-
bility and bioavailability of minerals [50]. Previously,
some authors reported improved crude ash ATTD (and
Mg and Ca ATTD, in particular) in dogs receiving a diet
supplemented with oligofructose at 10 g/kg, with no
effect on fecal pH [51]. Similarly, in our study, FOS (as
main effect) did not reduce fecal pH. However, as previ-
ously mentioned, feces may not reflect the status of the
intestinal environment and it could be supposed that the
greater mineral bioavailability induced by FOS may be
the consequence of a temporary acidification of digesta
along the ileal and/or colonic tract [52], where FOS might
have exerted their best prebiotic effect, as previously
speculated.

Conclusions

Results from the present study show that even a relatively
moderate increase of protein in the diet of adult dogs may
exert a negative influence on the canine hindgut, as sug-
gested by the increase of fecal ammonia in the dogs when
fed with HP diets. Conversely, the supplementation with
FOS improved the ATTD of several minerals, suggesting a
transitory acidifying effect along the intestinal tract of the
dogs. Moreover, this substrate exhibited some opposite out-
comes depending on dietary protein content, displaying, in
particular, beneficial counteracting effects on a particularly
important bacterial population such as bifidobacteria, when
added to HP diets.

Certainly, in companion animals more studies are
needed to gain a better understanding of dietary ef-
fects on gut microbiota and the consequent impact
on health.

In fact, at present, the interactions between dogs and
cats and their intestinal microbiome are poorly investi-
gated and many assumptions regarding which bacteria
are beneficial and which ones may be detrimental derive
from human medicine, despite the fact that the opti-
mal composition of the intestinal microbial community
may differ between humans and animals with a more
carnivorous nature.
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