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Abstract

Background: Accelerometer-based technologies could be useful in providing objective measures of canine ambulation,
but most are either not tailored to the idiosyncrasies of canine gait, or, use un-validated or closed source approaches. The
aim of this paper was to validate algorithms which could be applied to accelerometer data for i) counting the number of
steps and ii) distance travelled by a dog.

To count steps, an approach based on partitioning acceleration was used. This was applied to accelerometer data from 13
dogs which were walked a set distance and filmed. Each footfall captured on video was annotated. In a second experiment,
an approach based on signal features was used to estimate distance travelled. This was applied to accelerometer data from
10 dogs with osteoarthritis during normal walks with their owners where GPS (Global Positioning System) was also captured.
Pearson’s correlations and Bland Altman statistics were used to compare i) the number of steps measured on video footage

and predicted by the algorithm and ii) the distance travelled estimated by GPS and predicted by the algorithm.

Results: Both step count and distance travelled could be estimated accurately by the algorithms presented in this paper:
4695 steps were annotated from the video and the pedometer was able to detect 91%. GPS logged a total of 20,184 m
meters across all dogs; the mean difference between the predicted and GPS estimated walk length was 211 m and the

mean similarity was 79%.

Conclusions: The algorithms described show promise in detecting number of steps and distance travelled from an
accelerometer. The approach for detecting steps might be advantageous to methods which estimate gross activity because
these include energy output from stationary activities. The approach for estimating distance might be suited to replacing
GPS in indoor environments or others with limited satellite signal. The algorithms also allow for temporal and spatial
components of ambulation to be calculated. Temporal and spatial aspects of dog ambulation are clinical indicators

which could be used for diagnosis or monitoring of certain diseases, or used to provide information in support of canine

weight-loss programmes.
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Background

The ability to make objective measurements of physical ac-
tivity is of clinical importance for many movement related
disorders and to understand lifestyle risk factors for disease.
As an example, osteoarthritis is estimated to affect 20% of
adult dogs [1]. Affected dogs have changes in mobility, in-
cluding reduced willingness to exercise, and a tendency to
stop on walks [2]. Assessing changes in mobility forms a
core part of monitoring treatment response in this disease.

* Correspondence: cas@vetsens.co.uk

Centre for Behaviour and Evolution, Henry Wellcome Building, Newcastle
University, Newcastle NE2 4HH, UK

VetSens. 53 Wellburn Park, Jesmond, Newcastle NE2 2JY, UK

Full list of author information is available at the end of the article

( ) BiolVled Central

However, current outcome measures for this purpose are
frequently un-validated and at risk of bias [3]. The few
widely available outcome measures that are validated to
assess canine mobility are reliant on owner observations
that may be subjective or inaccurate [3, 4]. To solve this
issue, researchers are turning to accelerometer based tech-
nologies that have the potential to objectively measure
such movement based parameters. In addition to monitor-
ing movement related disorders, movement based param-
eters could also monitor general levels of physical activity
or energy exertion. Lack of physical activity is an import-
ant lifestyle risk factor, both directly, and indirectly
through contributing to obesity, for a wide variety of dis-
eases and behaviour problems [5]. In order to facilitate
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monitoring of physical movement parameters, here we
present an open-design algorithm for monitoring canine
steps (number and distance).

Accelerometer based activity monitors have been stead-
ily gaining popularity and are generally available as either
research-grade or consumer-based devices. Over the past
decade, researchers have started to experiment with their
suitability for animal populations, including domestic dogs
(Canis familiaris). Particular focus has been given to
measuring Physical Activity as a proxy for dysfunction or
disease [6—10]. Research grade devices such as such as the
Actical (Philips Respironics, Netherlands) and GT3X
(Actigraph Inc., USA) (used in [11, 12] respectively) are at-
tractive as they have software that facilitates data export in
formats suitable for post-processing. Unfortunately, the
parameters calculated are optimised for human measure-
ments and parameters such as rest, calories and steps are
invalid for canine subjects. This leaves the researcher to
either make coarse mappings (as in [12]), or export raw
data and develop their own species-specific algorithms.
More recently, consumer based devices tailored for canine
Physical Activity have emerged [13—19]. However, studies
such as [20] which examine robustness, reliability and val-
idity are limited. As the devices are tailored for con-
sumers, management and extraction of bulk data from
such devices (which is necessary for research studies) is
often manual and cumbersome (e.g. using provided Apps).
Most of the consumer devices are collar based and despite
recognition of the influences of fitting and placement [21-
23], these aren’t standardised between devices. Currently
neither research or consumer based products targeted at
dogs offer clear, characterized and detailed explanations of
underlying algorithms to calculate parameters such as ac-
tivity, sleep, step-counts or behaviour. This means before
use in research, validation processes must be carried out.
Furthermore, there is the possibility of further re-
validation requirements following changes to algorithms
or calculation approaches between firmware updates or
across device versions or models. To mitigate these issues,
some animal researchers have made attempts to fill gaps
between dog-specific consumer devices and research-
grade human devices by making their own sensors [10,
24]. This step is challenging and is a barrier to most.

Akin to humans, some of the most common diseases and
welfare concerns have exercise-related outcome measures.
Walking forms an important part of exercise for dogs [5]
and thus a step counting measure has promise to be a suit-
able replacement for otherwise complex actigraphy signal,
which measures gross motor activity. Step counts may be a
more precise alternative to gross motor activity because
they don'’t include energy resulting from stationary behav-
iours like scratching or shaking. Furthermore, gross activity
and step counts could be used synergistically to partition
energy expended through walking separate to activities
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such as playing or tail chasing. Some dogs might engage in
more play at home and expend more energy this way than
out on walks which would not be apparent from the gross
activity measures alone, but could be if combined with step
count data. In humans, providing tools to monitor both cu-
mulative [25] and temporal distribution of step counts [26],
as well as the variability of step frequency and length of any
one bout of walking, have proved useful in improving
health outcomes. We hypothesise similar benefits could be
realised in the domestic dog population, and thus an accur-
ate tool for detecting steps and measuring their distance is
important.

In this paper, a pedometer algorithm is described that is
adapted specifically for the quadruped gait cycle and is
optimised for canine gait. Measuring canine gait has dif-
ferent requirements to measuring human gait, both due to
positioning of device and differences between the way hu-
man and dog gait is modelled. Our twofold aim was to de-
velop a method for: (i) Counting steps; and (ii) Estimating
distance travelled. The methods were designed to be suit-
able for quadrupeds, and particularly the domestic dog.
The intention behind developing these methods was that
they would replace existing methods that are: closed
source [13, 14, 16, 19]; offer uncharacterised performance
[27]; or are optimised for capturing human gait [28].

To count steps, an approach based on partitioning ac-
celeration was used. We used data from an experimental
cohort of healthy dogs (described further in [29]). Par-
ticular consideration was given to algorithms to only de-
tect continuous forward locomotion; it rejects stumble
or shuffles. The performance of the proposed algorithm
was characterised by comparing step estimates from al-
gorithms to those made through manual annotations of
video footage.

To estimating step length, an approach based on signal
features was used. This method was evaluated in a sec-
ond experiment where walks were measured using a
GPS system in a free-living setting (on- and off- lead
walks without intervention) in a clinically relevant popu-
lation (dogs with osteoarthritis). This sample of dogs
was chosen for convenience and were recruited as part
of a larger study and is described in more detail in [2].
The performance of the proposed algorithm was charac-
terised by comparing estimates of walk length from algo-
rithms to those made using GPS data.

Methods

Subjects - step counting

For the step count experiment a convenience sample of
13 healthy adult dogs were recruited from a local demo-
graphic using posters and local advertising. The dogs
represent a range of breeds, sizes and ages of dogs, as
well as being roughly sex balanced (see Table 1). Ethical
approval was obtained from the animal welfare and
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Table 1 Details of subjects, steps detected using algorithm applied to accelerometer signal, and counts detected from video

footage

D Height (cm) Weight (kg) Breed Age Sex? Steps Counted Video Steps Detected Algorithm
D.1 474 17.5 Springer Spaniel 9 FN 455 398
D2 515 27 Mixed 8 FN 351 309
D3 54 28.1 Labrador 5 FN 348 307
D4 50.5 28.2 Mixed 10 FN 313 274
D5 534 18.1 Lurcher 6 MN 311 269
D6 60.6 39 Labrador 2 MI 275 242
D7 458 11.3 Lurcher 19 F 323 293
D38 64.4 25 Lurcher 9 MN 331 305
D9 46.8 12 Springer Spaniel/Collie 5 FN 414 370
D.10 84.9 64.0 Irish Wolf hound 55 FN 274 274
D.11 38 11.8 Corgi 35 FN 491 455
D.12 444 15 Cocker Spaniel/Poodle 2 MN 489 374
D3 61.5 38 Rhodesian Ridgeback 7 FN 320 281

®For sex F Female, M Male, N neutered

ethical review body at Newcastle University for recruit-
ment, exclusion and data collection processes. The sam-
ple contained breeds and crossbreeds of: Cocker Spaniel,
Welsh Corgi, Doberman, Irish Wolfhound, Jack Russel
Terrier, Labrador (n =2), Lurcher (n = 3), Poodle, Rho-
desdian Ridgeback and Springer Spaniel. All sections of
this report adhere to the ARRIVE Guidelines for report-
ing animal research [30]. A completed ARRIVE guide-
lines checklist is included is Checklist S1.

Experiment- step counting

Each dog was walked around a set route of approxi-
mately 400 m (measured on Google Earth software v7.1)
along a flat mix of tarmac and grass (see Fig. 1). Walks
were videoed using a smart phone at 60 frames-per-
second (iPhone 7, Apple Inc, USA) to enable subsequent
manual counting of steps. At the start of each walk the
dog was fitted with and habituated to a soft-weave,
nylon, flat collar fitted with an accelerometer (VetSens,
UK). The accelerometer was attached (as in Fig. 2) to
the outside of the collar using a single layer of Gorilla
Tape (Gorilla Glue Company, USA). The accelerometer
was set to log at each axis continuously at 100 Hz with a
sensitivity of +8 g. The collar with the sensors attached
was worn in addition to the dogs normal collar and
tightened such that two fingers could be placed in-
between the material and the neck (as recommended in
[21]). Prior to fitting to collars the accelerometer was
clapped against a hand in view of the video camera to
place a distinctive signal in the data that would enable
subsequent synchronisation between the accelerometer
signal and the video. For the duration of each walk, all
dogs were kept on lead and walked by the same handler
to ensure route adherence and appropriate position for

filming. Walking speed of the experimenter was approxi-
mately constant (~ 6.4kph) and continuous. As dogs
were of different sizes the step frequency did vary be-
tween dogs. No attempt was made to control the gait of
the dog, the side of the handler it walked on, or position
relative to the handler (in front or behind). At the end of
the walk, the instrumented collar was removed and the
data was extracted for processing.

Algorithm- step counting

The algorithm begins by re-orientating the tri-axial ac-
celerometer data to remove any effects of collar rota-
tions (Step 1 in Fig. 3). This step is achieved through a
method derived from mathematical principles laid out in
Whaba'’s problem. First, rotation matrix is derived such
that when applied to the source signal, approximates the
gravitational vector optimally in the Dorso-Ventral axis;
the target sensor position. The approach starts by filter-
ing any low frequency movements via a 4th order, zero-
phase, low-pass Butterworth filter with @, at 0.1 Hz.
The resulting signal is then projected out of Cartesian
space onto unit (1 g) sphere in polar coordinates. Signal
components falling within a threshold of 0.2 g of the
sphere surface are segmented out and labelled as candi-
dates for rotation correction. To preserve signals that
might arise from natural movements such as posture
transitions, a sliding window of length 10 s is passed
over the data. Any orientation transitions occurring
within the window are excluded from the list of candi-
date collar shifts. The remaining elements in the signal
are subjected to a cost function (eq. (1)) that aims to
place gravity maximally in the Dorso-Ventral axis; ortho-
normal to gravity.



Ladha et al. BMC Veterinary Research (2018) 14:107 Page 4 of 10

avy REE\ AR b\ S ERISto o r

Fig. 1 Image of the course used for walking the dogs during step counting experiment. (Image reproduced with permission Google ©2017)
A\

1 target reference frame and R is the rotation matrix be-

J(R) 252 | wi—Rvi || * (1) tween the present and target reference frames. When

k=1 evaluating eq. (1), only rotations about the sagittal plane

are considered; we do not consider the case the collar

twists on its self. In this way, the resulting rotation

Where o is the k™ 3-axis sample in the rotated refer-  matrix can be input to transform matrix (eq. (2)) to find
ence frame, vy is the k™ sample 3-axis sample in the the new corrected collar position.

a) b)

Fig. 2 Photo of the accelerometer (a) and GPS sensor (b) alongside the collar used for collecting data
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STEP 1 Fix collar rotations
Dynamic threshold
STEP 2 on filtered DV axis
Falling flank detection
STEP 3 against thresholds
STEP 4 Reject candldaFes based
on step time
STEP 5 Reject candl_dat‘e_s based
on periodicity
STEP 6 Calculate distance of
each step
Fig. 3 Flow diagram highlighting individual process stages of the algorithm for step counting
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The next part of the algorithm seeks potential
step candidates. In this step the principles laid out
in [27] are followed. Firstly, the Dorso-Ventral axis
is filtered with a 4th order Butterworth low-pass
filter of . at 0.2 Hz. With the resulting signal, a
window of 20 s (inspired from [31]) is used to de-
rive a zero-threshold (Step 2 Fig. 3); with zero-line
half way between maximal-peak and minimal-nadir.
Each time the zero-line is crossed by the falling-
flank, the crossing times are stored (Step 3 Fig. 3)
as step candidates for further comparison against
rejection criteria.

The algorithm next establishes the time between
each step-candidate is in a range prototypical of a

head movement (Step 4 Fig. 3). As [31] describes, in
quadruped locomotion, each stride (initial-contact to
initial-contact on the same leg) will result in a dual-
peak movement (Fig. 4). This can be modelled as
simple harmonic motion around the scapulohumeral
joint [32]. For the algorithm, this translates that each
falling flank can be associated to a footfall (there is
not necessarily alignment between the zero-crossing
and initial-contact of the foot; see Fig. 4). The valid
step frequency range was derived using eq. (3) as de-
scribed in [33]. The heaviest and lightest animals in
our cohort (64Kg Irish Wolf hound and 11.3Kg mixed
breed), led to a step frequency range of 2.50-3.19 Hz.
As a generalising step to accommodate dogs outside
our cohort weight band, as well as ones that walk
outside the ideal gait pattern, a margin was added
and the valid step frequency range used for experi-
ments was 2.25-3.75 Hz.
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Fig. 4 lllustration of approach used to find falling flank zero crossings and estimate step distance. Points marked are i) A, the peak acceleration
observed in the dorsal-ventral axis; i) (Amax - Amin) /2, the mean acceleration observed in the dorsal-ventral axis; iii) Ayn, the minimum acceleration
observed in the dorsal-ventral axis; iv) collar mounted accelerometer; v) falling flank zero-crossing; vi) “bounce” calculated as Anax-Amin; Vii)
accelerometer signal aligned with ventral axis of dog (after re-orientation, filtering and smoothing). The figure shows the half angle of the step (¢) can
be estimated from the trigonometry based around the bounce between steps. Aq,.x and Anin can be used in eq. (4) for calculating step distance

stridefreq( min') = 269W %1% (3)

The next part of the algorithm (Step 5 Fig. 3) is a slid-
ing window containing 10 steps-candidates was used to
filter out shuffling or non-periodic movements. Candi-
dates that did not fall within £, within each other were
marked. Any window containing more than 3 marked
candidates (<70% of the window total) were rejected
and did not contribute towards the final step count.

Analysis- step counting

Videos were annotated by two observers using ELAN
software (Max Planck Institute, Netherlands). The defin-
ition of one step was taken to be final-contact to initial
contact for each thoracic limb. If the limb was not in full
view of the camera, the step was not annotated. Steps
were annotated wherever possible and no exclusions
were made for cornering or for dog head posture. The
claps inserted into the accelerometer and video were
identified using manual inspection and time-offsets that
allowed for synchronisation were calculated. Inter-
observer reliability on manual step counts was tested
with Cohen’s Kappa. The accuracy of the step counter

was estimated as the percentage of steps correctly identi-
fied against annotations and the positive predictive value
was calculated. True positive (TP) predictions were
regarded as when the predicted step lay between the
final and initial contact of an annotated step (swing
phase). False positives (FP) were counted when a predic-
tion was made but no aligning annotation was present.
From TP and FP, Positive Predictive Value (PPV) was es-
timated. Pearson’s correlations and Bland Altman statis-
tics were calculated for comparison of predicted steps
against video annotations using MatLab R2016b.

Subjects - distance travelled

For the distance experiments, data was gathered from 10
dogs diagnosed with osteoarthritis in at least one limb
by their general veterinary practitioner. These dogs were
a convenience sample from a larger group of dogs with
osteoarthritis involved in another study. Breeds included:
Mixed-breed, Collie, Labrador, Rottweiler, Springer
Spaniel and Toy Poodle, aged 8—13 years (see Table 2).

Experiment- distance travelled

Owners of these dogs were asked to keep to their nor-
mal routine for one week (which could commence on
any day of the week or weekend and could include

Table 2 Details of subjects, Quantity (Qty) of usable walks, distance estimated using GPS and Distance estimated using an algorithm
applied to an accelerometer signal. Each walk length is listed separated by a semicolon

D qty Walks Weight (kg) Breed Sex? dist GPS (m) dist Algorithm (m)
D11 2 NA Mixed MN 2590; 2430 3307,3355
D12 3 NA Mixed MN 732; 878; 699 953,957,974
D13 1 NA Mixed FN 577 712

D14 2 NA Mixed MN 815;568 847,579
D15 2 20 Labrador FN 852;1310 609,812
D16 1 13 Toy Poodle MN 921 1446

D17 1 17 Springer Spaniel FN 1830 2853

D18 1 34 Rottweiler FN 776 851

D19 1 15 Collie MN 1330 1240

D1.10 1 17 Collie Cross MN 650 688

eFor sex F Female, M Male, N neutered
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exercise of any type). Each dog was fitted with a soft
weave nylon flat collar instrumented with a G-Paws GPS
(G-Paws Limited, UK) and accelerometer (VetSens UK).
This instrumented collar was worn in addition to the
dog’s normal collar and tightened such that two fingers
could be placed in between the collar and the neck. The
accelerometer was attached to the outside of the collar
using a single layer of Gorilla Tape and the G-Paws was
attached using the provided housing. The accelerometer
was set to record continuously for a period of seven days
with a sampling frequency of 100 Hz at +8 g sensitivity.
Owners were requested to use the G-Paws only during
walks and to keep the devices plugged in to be charged
when not in use. Owners were also asked to keep a diary
of walk times and locations.

Algorithm- distance travelled

Estimating distance from step counts can be done in the
most basic way by first estimating stride length (directly
from weight as suggested in [33]) and then multiplying
by the number of strides. This simplistic approach has
been shown to falsely estimate distance in field-based
experiments [34], as stride length changes with gait, ter-
rain and incline. A more sophisticated approach is to es-
timate stride length dynamically by means of a gait
model. For this, the dog’s walking gait (which makes up
the majority or transportive-locomotion according to
[1]) was split as two independent sets of legs; pelvic and
thoracic [32]. Each pair is then modelled as an inverted-
pendulum with the thoracic centred on the scapulohum-
eral joint and pelvic centred on the coxofemoral joint.
Over the course of a stride, each set works by transfer-
ring the centre of mass (COM) on to the other pair. The
accelerometer mounted ventrally on the neck is sensitive
to the undulating movement of the COM through the
stride and schematically depicted in Fig. 4.

Using trigonometry, % is can be derived as eq. (4)

h=x Amax_Amin (4')

where A,,,. and A,,;, are the maximum and minimum
values of ventral acceleration (in m/s%) observed around
the zero-crossing). For distance estimation, each step is
considered independently and stride distance is approxi-
mated as the sum of two consecutive steps.

Analysis- distance travelled

The raw files recorded on the G-Paws sensors were ma-
nipulated using Google Earth software v7.1. This soft-
ware facilitates walks to be manually segmented
according to a rule-base described in [35] which suggests
maximal and minimal traveling velocities. For each walk,
the total distance travelled was calculated and walks of
less than 100 m were rejected. Owner diaries were used
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to confirm the segmented walks occurred on the correct
day and time, had a legitimate duration, and walk loca-
tion corroborated the GPS data. Using the start and end
times directly from the GPS data segments, time-aligned
accelerometer data was extracted using a custom Matlab
script. The distance estimation mean similarity was esti-
mated by calculating the mean of 1- the percentage dif-
ference between GPS and algorithm estimated distance
for each walk. Pearson’s correlations and Bland Altman
statistics were calculated for comparison against the
GPS distance estimate using Matlab R2016b.

Results

Step counting

All the dogs recruited for this part of the experiment
(n=13) were healthy adult dogs. The cohort had a
mean age of 5.7 years and were made up of 99 and
43. Details for each dog are included in Table 1.
Each dog tolerated the accelerometers well and com-
pleted the walk successfully and in total 4695 steps
were annotated from the video (mean of 361 per dog
with stdev of 75.8). The pedometer algorithm was
able to detect 91.0% of these with a PPV of 0.98. The
predicted and annotated step counts were highly cor-
related (r=0.99, p =6.072e-10) and Bland Altman sta-
tistics revealed a mean difference of 3.96 steps and a
critical difference of 25 steps, with all but one dog
within the critical difference. Distributions of steps
for each dog were relatively equal (Table 1, Fig. 5a).

Distance travelled

All dogs for this part of the study (n = 10) had been pre-
viously diagnosed with osteoarthritis (see Table 2 for
subject details). The cohort was made of 49 and 6.
Over the course of the week, all dogs recorded GPS data
from at least 1 walk, with 3 dogs completing 2 walks
and 1 dog completing 3. The GPS based walk distance
ranged from 0.57-2.59 km (mean 1.1 km). All dogs tol-
erated the equipment well and in total, the GPS
equipped collars logged 20,184 m meters over 15 indi-
vidual walks. This distance was made up of a roughly
equal distribution of on and off-lead time (based on
owner self-reports). The mean similarity between GPS
and algorithm estimated distances was 79% with stdev of
16 (see Table 2, Fig. 5b). The predicted and GPS mea-
sured distances were highly correlated (r=0.98, p<
0.001) and Bland Altman statistics revealed a mean dif-
ference of -211 m and a critical difference of 699 m, with
all but one walk within the critical difference.

Discussion

Here we present two algorithms which show good promise
in being able to detect steps and estimate distance travelled
by a dog, based on data extracted from a collar-mounted
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accelerometer. Due to the distance estimates being derived
from accelerometer signals, rather than GPS, they are sup-
portive of indoor based measurements (where GPS cover-
age is unfeasible), as well as long-term, continuous
operation (not possible with GPS technologies due to high
power consumption). The algorithm described is a first step
in an accurate tailored system for measuring dog walking
out of laboratory conditions. It not specific to any hardware
design and with minimal modification (perhaps just axis ro-
tation), could be used on data arising from either existing

research grade hardware or raw tri-axial data available from
consumer grade devices. Furthermore, unlike [28, 36], we
did not find any observable differences between accuracy of
distance estimates and dog size, although the sample in the
current study was relatively small. In [28, 36] pedometers
were used which were designed for human gait and unlike
the approach used here were not tailored for the canine
gait. Further research is needed to establish whether accur-
acy of pedometer devices is influenced by weight and not
just size as has been found in humans [37]. This is
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important because it could affect research findings. For ex-
ample, the association observed between body condition
score and steps walked in [28, 36] may have been influ-
enced by a relationship between pedometer accuracy and
body weight. The ability to calculate the number of steps
taken in time and the distance travelled for steps have two
clinically relevant potential uses. Firstly, temporal and
spatial measurements of ambulatory behaviour, which can
be measured with accelerometers and the algorithms out-
lined in this paper, alter with movement disorders or other
diseases which effect the motor system. The methods pre-
sented here therefore offer the first step towards automatic
diagnostics and monitoring for veterinarians, owners or re-
searchers interested in disease prediction. Secondly, the
number of steps taken per day or distance travelled are sim-
ple metrics which are familiar to the general public (e.g.
public health schemes promoting 10,000 steps a day). Thus,
measuring number of steps or distance travelled could be
used to support promotions of healthy lifestyles for dogs, or
for weight loss interventions.

The number of steps estimated was highly accurate,
but there were a small number of occasions where it
was less accurate. By manually reviewing video footage
of when accuracy was lower, we found these mostly oc-
curred when a dog was excessively pulling on the leash
(such that the leash was taking the majority of the dog’s
weight). The other occurrence observed when the algo-
rithm failed to perform well, was when dogs walked in
tight circles, such to manoeuvre onto a preferred side of
the dog walker. If such a movement was classified as a
non-step it was rejected. As the algorithm uses a win-
dowing approach, there is the possibility a complete win-
dow of steps is rejected due to it containing a single
poor candidate step. This could be one reason for the
approach consistently underestimating step counts. Des-
pite the algorithm not being able to detect left from
right steps, it performed without bias in their delinea-
tion. It is anticipated that addition of gyroscope data to
the accelerometer data could yield left-right detection; as
it has done in human studies [38].

In this study accelerometers and GPS collars were fit-
ted to a second collar, if the dog already wore one as
standard. This was to prevent changes in rotation of the
collar or other forces caused directly by an attached
leash. No owners reported any concerns with their dog
wearing two collars, even when asked directly and dogs
showed no visible signs of discomfort. All dogs in our
sample were walked on a leash rather than a harness,
however, we foresee no reason why the combination of
an instrumented collar and harness would influence the
algorithms proposed.

The subjects of this study were biased towards the
medium to large breed range. Despite this, it did contain a
mixture of healthy and arthritic dogs as well as one
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chondrodysplastic breed (Welsh Corgi). This dog did not
appear as an outlier in the dataset. However, to thoroughly
characterise the role of morphology, body condition score
(obesity) and size, a subsequent study is required. Further-
more, theoretically the inverted pendulum model used to
estimate step distance should not be affected by disease
such as osteoarthritis, a further study of distance measure-
ments on healthy dogs would confirm this.

During both step count and distance experiments, no
effort was made to standardise the gait of the dog. The
study design used here meant it was not possible to pre-
cisely determine the effect of gait on detection perform-
ance or mitigate it through design. Conversely, the data
set could be considered naturalistic and thus the results
presented are representative of performance in a real de-
ployment. Furthermore, in the distance experiment, the
owner determined the dog pace, duration and distance
of the walk and put on the collar. In the GPS based data
there was an obvious outlier in one walk. While it is not
possible to precisely pinpoint the cause of the outlier,
the authors suspicion is that this related to collar attach-
ment. This highlights the need for clear instructions for
collar placement or that instrumentation is carried out
by trained clinicians to ensure proper attachment; high-
light by [21] as important.

Conclusions

The experimental results show promise that the ap-
proach is suitable for accurately discerning steps and as-
sociated distance from a collar mounted accelerometer.
The use of accelerometers and these algorithms may be
preferable to alternative devices such as GPS, due to
their suitability for extended durations and in both in-
door and outdoor environments. The approaches pre-
sented are also preferable to those designed for humans
or from dog specific commercially available devices. The
reason for this is because humans have a lower cadence
than dogs and are obviously bipedal as opposed to quad-
rupedal; devices designed for humans are not ideally
suitable for dogs. Furthermore, commercial devices for
pets which may be specialised for dogs have used closed
source approaches. Publishing these approaches allows
for comparison between devices, without continuous re-
validation for each new model of a device. Knowing the
rate and number of steps or the distance travelled of a
dog could be useful clinically for monitoring disease, or
for weight loss monitoring programmes.
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