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Abstract

Background: Cryptorchidism is one of the most common birth disorders of the male reproductive system identified in
dogs and other mammals. This condition is characterised by the absence of one (unilateral) or both (bilateral) gonads
from the scrotum. The peptides orexin A (OxA) and B (OxB) were obtained by post-transcriptional proteolytic cleavage
of a precursor molecule, called prepro-orexin. These substances bind two types of G-coupled receptors called receptor
1 (OX1R) and 2 (OX2R) for orexins. OX1R is specific to OxA while OX2R binds the two peptides with equal affinity.
Orexins modulate a great variety of body functions, such as the reproductive mechanism. The purpose of the present
research was to study the presence of OxA and its receptor 1 and their possible involvement in the canine testis under
healthy and pathological conditions.

Methods: This study was performed using adult male normal dogs and male dogs affected by unilateral cryptorchidism.
Tissue samples were collected from testes and were divided into three groups: normal, contralateral and cryptic. The
samples were used for immunohistochemistry, Western blot and in vitro tests for testosterone evaluation in normal and
pathological conditions.

Results: OxA-immunoreactivity (IR) was described in interstitial Leydig cells of the normal gonad, and Leydig, Sertoli cells
and gonocytes in the cryptic gonad. In the normal testis, OX1R-IR was described in Leydig cells, in pachytene and
second spermatocytes and in immature and mature spermatids throughout the stages of the germ developing
cycle of the male gonad. In the cryptic testis OX1R-IR was distributed in Leydig and Sertoli cells. The presence of
prepro-orexin and OX1R was demonstrated by Western blot analysis. The incubation of fresh testis slices with
OxA caused the stimulation of testosterone synthesis in the normal and cryptic gonad while the steroidogenic
OxA-induced effect was cancelled by adding the selective OX1R antagonist SB-408124.

Conclusions: These results led us to hypothesise that OxA binding OX1R might be involved in the modulation of
spermatogenesis and steroidogenesis in canine testis in healthy and pathological conditions.
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Background
Cryptorchidism is considered a reproductive disease
characterised by the failure of one or both testes to
descend towards the scrotum [1, 2] and is defined a tes-
ticular dysgenesis syndrome together with hypospadias,
germ cell tumour, and subfertility [3–5]. It is commonly
classified as a birth defect of the male genital tract in
mammals, particularly studied in dogs and humans. In
dogs, unilateral cryptorchidism, particularly involving
the right gonad [1] is more frequently detected [1, 6, 7].
In unilateral cryptorchidism, the abdominal testis may
be involved in the risk of neoplasms such as Sertoli cell
tumours and seminomas [8, 9]. The abdominal localisa-
tion of the retained gonad is histologically characterised
by disruption of the germinal epithelium [10].
Orexins A (OxA) and B (OxB) are two peptides of

hypothalamic origin [11, 12]. These peptides derive from
a post-transcriptional proteolytic cutting of a common
precursor called prepro-orexin. Orexins are involved in
regulating many biological functions by binding two
types of G-coupled transmembrane receptors called
receptor 1 (OX1R) and 2 (OX2R) for orexins [11–17].
More recently, scientific thinking has focused on the

role of orexins in the mammalian genital tract under
normal and pathological conditions. In particular, the
presence of OxA, prepro-orexin and OX1R has been
described in the rat [18] and alpaca epididymis [19] and
in the testis of the rat, alpaca and mouse [20–24], in the
urethro-prostatic complex of cattle [25], and in the
normal, hyperplastic and neoplastic prostate of human
beings [26–28]. The expression of OX1R mRNAs has
been detected in the testis of sheep [29], chicken [30], in
primary rat Leydig cells [31] and in the human male
genital tract [32]. The detection of mRNA codifying for
prepro-orexin was found in rat testis [33–35] and
human epididymis and penis [33]. The peptides OxB
and OX2R were detected in the testis of rat [36] and
alpaca (Vicugna pacos) [37] and the OX2R mRNAs were
demonstrated in the human male genital tract [32] and
prostate [38].
To date, there has been no evidence of the orexin

complex and its potential role in the testis of normal
and cryptorchid dogs. The expression of OxA and
OX1R in normal and pathological conditions of the
male gonad and their potential role in the reproduct-
ive system are still debated. The aim of our research
was to characterise OxA and OX1R expressions in
normal and cryptic testis of the dog in order to
investigate their involvement in clinico-pathological
conditions and their possible steroidogenic effect.
Such characterisation could make a new contribution
regarding the complex biochemical (autocrine/para-
crine) mechanisms operating at the level of the male
gonad.
Methods
Antibodies and chemicals
Mouse anti-OxA (MAB763) monoclonal antibody and
its synthetic peptides were obtained from R&D Systems
(Abingdon, UK) and from Tocris Bioscience (Bristol,
UK), respectively; rabbit polyclonal anti-OX1R antibody
(PAB8017) from Abnova (Taipan, Taiwan) and the
synthetic blocking peptide (ab188501) from Abcam
(Cambridge, UK); rabbit polyclonal anti-prepro-orexin
antibody (AB3096), its blocking peptide (AG774) from
Millipore (Temecula, CA, USA); monoclonal anti
b-actin antibody (JLA20 CP01) from Calbiochem, San
Diego, CA, USA; biotinylated goat anti-mouse
(BA-9200) and goat anti-rabbit (BA-1000) secondary
antibodies and avidin–biotin complex (PK-6105) from
Vector Laboratories (Burlingame, CA, USA); horseradish
peroxidase goat anti-rabbit IgG (A-0545) from the Sigma
Chemical Co. (St. Louis, MO, USA); and marker
proteins from Prosieve, Lonza, Rockland, ME, USA. The
peptide OxA (003–30) was purchased from Phoenix
Pharmaceuticals and the selective non-peptide orexin
OX1R antagonist SB-408124 (1963) from Tocris Bio-
science (Bristol, UK); the luteinizing hormone (LH) from
sheep pituitary (L5269); EIA kit for testosterone deter-
mination from Adaltis (Bologna, Italy). The Super Signal
West Pico Chemiluminescent Substrate was obtained
from Thermo Scientific (Pierce, Rockford, IL, USA), and
Kodak Gel Logic 1500 imaging system from Celbio
(Milan, Italy).
Animals and tissue collection
The animals employed in this research were five adult
normal male dogs and five cryptorchid dogs (unilateral
cryptorchidism; in three subjects the testis was retained
in the abdomen and in two in the inguinal canal) aged
between 2 and 8 years. All owners gave verbal consent
to perform surgical procedures, collection of the samples
and animals were not involved in any clinical trials or
treatments. Animal care was guaranteed during the
surgical procedures and the experimental research was
approved by the Ethical Animal Care and Use Commit-
tee of the University of Naples Federico II, Department
of Veterinary Medicine and Animal Production, Naples,
Italy (no. 0005275). The gonads were rapidly collected
and tissue specimens were divided into three groups:
normal testis (testis from normal dogs, N), contralateral
testis (scrotal testis from cryptorchid subjects, CL) and
cryptic testis (retained gonad from cryptorchid subjects,
CR). Part of the tissue specimens was cut into small
samples which were immersed in Bouin’s fluid for
paraplast embedding as described in detail elsewhere
[39] and another part of the tissue specimens was frozen
in liquid nitrogen and stored at − 80 °C until used for
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Western blotting analysis and in vitro tests for testoster-
one evaluation.

Immunohistochemistry
After Paraplast embedding the tissue blocks were cut into
6 μm thick sections. After rehydration, the antigen re-
trieval method was applied to the sections as previously
described by Liguori et al. (2017) [36]. The immunohisto-
chemical method performed for the present research was
the avidin–biotin–peroxidase complex (ABC) and the
protocol used was that previously described by Liguori
et al. (2013) and De Luca et al. (2014) [40, 41]. The sec-
tions were covered with mouse monoclonal anti-OxA and
rabbit polyclonal anti-OX1R primary antibodies, diluted
1:200, applied on sections overnight at 4 °C. The day after,
after three PBS washes the sections were covered with
biotinylated goat anti-mouse IgG or goat anti-rabbit IgG,
both 1:200 diluted, for 30 min at room temperature. Incu-
bation was then performed in ABC reagent for 30 min.
The staining was completed with 3–3′ diaminobenzidine.
Sections were counterstained with haematoxylin in order
to better localise the immunoreactive materials. The speci-
ficity of the experiment was evaluated by omitting and
preabsorbing the two antibodies with an excess (100 μg/
ml) of the relative antigens (data not shown). No immuno-
reactivity was found. The sections were observed by a
Nikon Eclipse E 600 light microscope, and pictures were
taken by a Nikon Coolpix 8400 digital camera.

Western blotting analysis
Tissue samples were first broken down mechanically
using an Ultra-Turrax homogenizer in RIPA lysis buffer
(0.1 mM PBS, 1% Nodinet P-40, 0.1% Sodium Dodecyl
Sulphate 0.05% (SDS) deoxycholate, 1 lg/ml leupeptin
and 1 lg/ml phenylmethylsulphonyl fluoride (PMSF) and
then centrifuged at 16000 x g for 20 min at 4 °C. The
proteins of the supernatant were separated using SDS/
polyacrylamide gel electrophoresis (SDS/PAGE) (15%
polyacrylamide) under reducing conditions and then
transferred onto immunoblot nitrocellulose membrane
as described elsewhere [42, 43]. Blocking of non-specific
binding is achieved by placing the membrane in a buffer
(5% BSA and 0.3% Tween 20 in PBS) and then a diluted
solution of specific primary antibodies (anti-prepro-
orexin and anti-OX1R; diluted 1:500) is incubated with
the membrane for 2 h at room temperature under gentle
agitation. After rinsing the membrane to remove un-
bound primary antibodies, the membranes were exposed
to peroxidase-conjugated goat anti-rabbit IgG (diluted
1:2000 in blocking solution) for 1 h at room
temperature. Molecular weight approximations are taken
by comparing the stained bands to that of the Marker
proteins (coloured protein molecular weight markers).
The protein bands were detected by chemiluminescence,
and the image was captured by Kodak Gel Logic 1500
digital imaging equipment. The specificity of the experi-
ment was evaluated by preabsorbing the antibodies with
an excess (100 μg/ml) of the relative antigen. For a
loading control, stripping and re-probing of the blots
with an anti b-actin monoclonal antibody were
performed.

Testosterone evaluation
Tissue incubations
The role played by OxA in regulating steroidogenesis
was evaluated by incubating testicular slices as reported
in a previous paper [21], with minor modifications. The
removed testes of each group were decapsulated and cut
into pieces, each piece weighing 250 ± 7 mg. Testicular
slices (2 slices/well) were incubated with 2 ml Krebs-
Ringer bicarbonate (KRB) buffer (pH 7.4) containing
10 mM glucose, 100 μM bacitracin, 0.1% ascorbic acid,
and 0.1% bovine serum albumin. The fresh slices were
subjected to constant shaking (60 cycles per min) for
60 min in an atmosphere of 95% 02/5% CO2 at 37 °C.
Then the samples were treated with 1 ml of fresh KRB
buffer containing 1 nM of OxA alone and/or OxA with
its antagonist for 24 h. Controls were obtained by adding
to the slices the buffer alone or 1 nM luteinizing
hormone (LH). Testosterone levels were evaluated as
reported below.

Determination of testosterone levels
After separation of the medium, it was subjected to tes-
tosterone determination using an enzyme immunoassay
kit (EIA). The following coefficients of variability of tes-
tosterone determination were identified: sensitivity 6 pg,
intra-assay variability 5.3% and inter-assay variability
7.5%. The process of extraction was first made by mixing
vigorously the medium with ethyl ether (1:10, v/v). After
centrifugation at 3000 g for 10 min, the ether fraction
was obtained and separated. The pooled ether fractions
were then evaporated to dryness and the residue washed
with a 0.5 ml sodium phosphate buffer 0.05 M (pH 7.5),
containing 10 mg/ml BSA. Finally, testosterone
immunoassay was performed, as described previously
[22]. The rate of testosterone recovery obtained from
testis was about 80%. The levels of testosterone were
expressed as normalised values per g incubated tissue.
The in vitro tests were performed in triplicate and data
were expressed as means ± SD.

Statistical analysis
The results obtained were compared by analysis of vari-
ance by using the multiple comparison Duncan’s test
and group comparison Student’s t-test. Descriptive data
were expressed as mean and standard deviation (SD).
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The data obtained were considered statistically signifi-
cant at p < 0.01 and p < 0.05.
Results
Immunohistochemical evaluation of OxA and OX1R in
normal and cryptorchid testes of dogs
The immunohistochemical results are summarised in
Table 1. OxA (Fig. 1a)- and OX1R (Fig. 1b)- immunore-
activity (IR) was found in Leydig cells in the N group of
canine testes. The reactive material showed a granular
aspect and cytoplasmic localisation in both cases. Leydig
cells (Fig. 1a) were numerous and often organised in
small groups composed by differently stained and nega-
tive cells. Additionally, OX1R stained positive in the
following cells in N group of the canine testes: pachy-
tene (Fig. 1c) and secondary (Fig. 1d) spermatocytes as
well as young (round) (Fig. 1e) and mature (elongated)
(Fig. 1f ) spermatids. In pachytene (Fig. 1c) and second-
ary (Fig. 1d) spermatocytes, positive immunolabelling for
OX1R was granular and perinuclear. During spermatid
maturation the positive material changed its appearance
following the morphological transformation of the cell
which is known to be round in the young elements,
becoming progressively elongated in the older ones. In
particular, in round spermatids (Fig. 1e), the positive
immunolabelling for OX1R seemed to be localised in the
acrosome body with a semilunar and/or perinuclear as-
pect. In elongated spermatids (Fig. 1f ) the positive signal
was granular and cytoplasmic. OxA- and OX1R-IR in
the CL group was similar to that described above for
that of N (data not shown).
OX1R-IR-containing cell types were found at all stages

of the seminiferous epithelium cycle of the N group
(Fig. 2) according to the cycle described by Soares and
co-workers (2009) [44]. Positive round spermatids were
intensely stained from stages I to V of the cycle; immu-
noreactive pachytene spermatocytes and developing
spermatids were typical of the stage VI of the cycle;
elongated spermatids were described in stages VII and
Table 1 Distribution of OxA- and OX1R-immunolabellihng in the no

Leydig
cells

Sertoli
cells

Early germ
cells

Pach
sperm

1a. OxA-immunolabelling

N group + – – –

CL group + – – –

CR group + + + –

1b. OX1R-immunolabelling

N group + – – +

CL group + – – +

CR group + + – –

+: presence of immunolabelling, −: absence of immunolabelling
VIII of the cycle; and especially in stage VIII positive
secondary spermatocytes were described.
OxA (Fig. 3a-c)- and OX1R (Fig. 3d-f )-IR were also

seen in the CR group of canine testes. The expression of
both peptides was seen in: Leydig cells (Fig. 3a,d), Sertoli
cells (Fig. 3b, e, f ) and in early germ cells (Fig. 3c), the
latter being positive only to OxA. Groups of Leydig cells
were intensely stained (Fig. 3a, d). In particular, semin-
iferous tubules of the CR group were composed mostly
by Sertoli cells and early germ cells. In Sertoli cells a
perinuclear expression of OxA was observed (Fig. 3b, e,
f ). In early germ cells (Fig. 3c) OxA-IR assumed the
appearance of roundish granules which were localised in
a perinuclear position.

Expression of prepro-orexin and OX1R in tissue extracts
The results of Western blot analysis are shown in Fig. 4.
Tissue extracts of the N, CL and CR testes of the dog
reacted with the anti-prepro-rexin and anti–OX1R
antibodies. Testicular extracts reacted with the anti-
prepro-rexin and recognized a major protein band of
approximately 16 kDa from tissue homogenates (Fig. 4).
Furthermore, the anti-OX1R antibody recognized a major
protein band measuring approximately 50 kDa (Fig. 4).
These findings suggest that canine testes express prepro-
orexin and OX1R supporting the immunohistochemical
results.

Testosterone evaluation in OxA treated testis slices
Assessment of LH, OxA alone and combined with its
antagonist effects on steroidogenesis in vitro was carried
out in testis of adult male dogs. Fig. 5 shows the results
from an in vitro experiment in which 1 nM concentra-
tion of LH, or OxA alone and/or of OxA with its antag-
onist was added to a medium containing each group of
dog testicular slices. It is evident that LH stimulated sig-
nificantly the basal steroidogenesis in the normal gonad.
Specifically, after 24 h testosterone production was
higher than that of the control (from 70 ± 2 to 113.8 ±
3 ng/g tissue, p < 0.01 versus control). Similarly, after
rmal and cryptorchid dog

ytene
atocytes

Secondary
spermatocytes

Round
spermatids

Elongated
spermatids

– – –

– – –

– – –

+ + +

+ + +

– – –



Fig. 1 OxA- and OX1R-IR in cytotypes of N testes of dogs. a, b: a cluster of Leydig cells containing different quantities of positive granules for
both the peptides scattered in their cytoplasm in the N group of canine testis. c, d: OX1R-IR, as a single, intensely stained, granular structure
roundish in shape, is contained in the perinuclear cytoplasm of some pachytene (c) and secondary (d) spermatocytes. e, f: round (e) and elongated
(f) spermatids intensely stained by the anti-OX1R antibody. Avidin–biotin immunohistochemical technique. Bars: 20 μm

Fig. 2 OX1R containing cytotypes along the seminiferous epithelium cycle of dog testis. An accurate examination of haematoxylin-counterstained sec-
tions revealed that positive cytotypes were present in all stages of the seminiferous epithelium cycle ranging from Stage I to VIII. Avidin–biotin
immunohistochemical technique. Bars: 20 μm
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Fig. 3 OxA- and OX1R-IR in cytotypes of the CR group of dog testis. a, d: Leydig cells showing OX1R and OxA containing condensed granular
material were intensely stained. b, e, f: intensely stained secretory granules condensed in the perinuclear portion of the cytoplasm of Sertoli cells.
c: rare early germ cells immunoreactive to weakly stained OxA in the tubular compartment of the CR group. Avidin–biotin immunohistochemical
technique. Bars: 20 μm
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24 h incubation with OxA, the testosterone increase was
significantly higher than that of the control (from 70 ± 2
to 89 ± 4 ng/g tissue, p < 0.01 versus control). On the
contrary, incubations with 1 nM concentration of OxA
with its antagonist caused a decrease in testosterone
level (from 89 ± 4 to 72 ± 6 ng/g tissue, p < 0.05 versus
OxA). The subsequent results showed an in vitro experi-
ment in which 1 nM concentration of LH, or OxA alone
and/or OxA with its antagonist was added to a medium
containing the CR group of canine testicular slices. The
first evidence was that the testosterone levels were lower
in all medium in accordance with the tissue
Fig. 4 Expression of prepro-orexin and OX1R in tissue homogenates.
Prepro-orexin (16 kDa) was detected in N, CL and CR testes. OX1R
(50 kDa) was detected in N, CL and CR testes. Beta-actin was used as
a loading control. Molecular weight standards are expressed in KDa
degeneration observed in histology tests as well. How-
ever, LH proved able to stimulate basal testosterone se-
cretion significantly. Specifically, after 24 h testosterone
synthesis was higher than that of the control (from 11.7
± 2 to 18.8 ± 3 ng/g tissue, p < 0.05 versus control). After
24 h of incubation with OxA, there was also a significant
testosterone increase over that of the control (from 11.7
± 2 to 16.6 ± 1 ng/g tissue, p < 0.05 versus control). This
increase was annulled by the presence of the antagonist
(from 16.6 ± 1 to 12.2 ± 2 ng/g tissue).
The results of the in vitro experiment in which 1 nM

concentration of LH, or of OxA alone and/or OxA with
its antagonist was added to a medium containing the CL
group of canine testicular slices were very similar to
those shown in normal tissue. LH proved able to stimu-
late basal testosterone secretion significantly. Neverthe-
less, after 24 h testosterone synthesis was higher than
that of the control (from 79.7 ± 3 to 129.8 ± 7 ng/g tis-
sue, p < 0.01 versus control). Incubation with OxA also
caused a significant testosterone increase compared to
that of the control (from 79.7 ± 3 to 91.6 ± 4 ng/g tissue,
p < 0.05 versus control). The presence of the antagonist
annulled this increase (from 91.6 ± 4 to 72.2 ± 8 ng/g
tissue p < 0.05 versus OxA).

Discussion
In this research, the localisation of OxA and OX1R was
found in many testicular cytotypes of the N, CL and CR
testes of dogs by means of immunohistochemistry. OxA-
and OX1R-IR were described in the interstitial Leydig



Fig. 5 Testosterone evaluation by incubation of dog testis slices with LH, OxA and OxA with antagonist. Tissues from N, CR and CL groups were
incubated and testosterone level in the media was monitored after 24 h. Tissue alone was used as control of the experiment. Values are normalised
per gram of incubated tissue. Data expressed as mean ± SEM,*P < 0.05, **P < 0.01 vs. corresponding controls (ANOVA followed by Student’s t test)
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cells and in the tubular compartment of all examined
groups. Western blotting analysis was performed to
demonstrate the presence of both the peptides in all
tissue homogenates.
The effect of OxA on Leydig cell steroidogenesis was

previously described in rat, alpaca and mouse testis by
different research groups [21, 22, 24, 31, 34, 35]. OxA
evoked the increase of testosterone synthesis, antagonis-
ing the steroidolitic effect of Müllerian Inhibiting
Substance (MIS), which was secreted from Sertoli cells.
The two substances counteracted their reciprocal effects.
This mechanism represented the main molecular event
of OxA-steroidogenic action in mammalian testis. In
vitro experiments were carried out in this research, incu-
bating slices from N, CL and CR testes with OxA which
enhanced testosterone synthesis in all testicular groups.
OX1R seems to have a pivotal role in this mechanism:
the incubation of testicular slices with its antagonist
SB-408124 made the OxA-induced steroidogenic effect
disappear. These findings definitively confirmed the
effect of OxA in stimulating testosterone synthesis. This
steroidogenic action in the CR group is less than that
described for N and CL testes. Testosterone synthesis in
Leydig cells is mainly regulated by the pituitary hormone
LH, which acts on target cells by binding its receptors
(LHR) [45]. In cryptorchidism LH-induced testosterone
production is lower in the cells of retained gonads than
scrotal ones [46–48]. The decreased testosterone con-
centration in the undescended testes has been ascribed
to reduced LHR expression in rats [49, 50], rams [51]
and men [52]. Another substance involved in regulating
steroidogenesis is aromatase, which promotes the con-
version of androgens to oestrogens [53]. In cryptorchid
stallions, mice and dogs an increased aromatase immu-
noexpression and higher oestradiol levels were demon-
strated [54–56]. Therefore, the decrease in testosterone
levels might be caused not only by a reduction in LHR
expression but also by the increased conversion of an-
drogens into oestrogens. Several studies were previously
performed regarding the relationship between orexins/
LH and orexin/aromatase while no data are available on
OxA and LHR. Orexins show a stimulatory effect on the
secretory activity of the GnRH/LH axis in rats and men
[57, 58] and decrease the amplitudes of LH pulses in
castrated camels deprived of the negative feedback of
testosterone [59]. Moreover, the central injection of
orexin significantly decreased aromatase mRNA levels in
the hypothalamus of androgenised female rats [60] and
increased aromatase mRNA levels and oestradiol
concentrations in the hypothalamus of wild-type male
rats [61]. Taking these findings together, we could
hypothesise that the stimulation of OxA-evoked testos-
terone secretion in cryptorchid testis might be due to: 1.
upregulation of LHR expression on OxA-induced Leydig
cells and/or 2. downregulation of aromatase expression,
which converts testosterone and androstenedione into
oestrogens. That said, these are only hypotheses that
need to be further investigated. In CL testes the low in-
crease in steroidogenesis production compared to those
of N might be due to a vicarious action of the CL gonad
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to make up for the reduced testosterone production of
that of CR.
In the tubular compartment OxA- and OX1R- IR were

previously described in numerous cytotypes of rat [20, 21,
35], alpaca [22] and mouse [24] testes. In the canine testes
of groups N and CL, OxA-IR was only detected in the
Leydig cells, while OX1R-IR in pachytene and secondary
spermatocytes and spermatids from immature to mature
forms. The positive cytotypes were described in the whole
seminiferous epithelium cycle of the dog testis (from
stages I to VIII). These data suggest that the seminiferous
tubules of mammalian testis are characterised by different
cytotypes able to produce and/or internalise OxA.
Moreover, OxA might be involved in spermatogenesis
regulation, via OX1R, in the normal male gonads.
Our research also detected OxA and OX1R containing

cytotypes in the tubular compartment of the CR group,
in early germ cells and Sertoli cells. Early germ cells may
be arrested gonocytes. Cryptorchidism has detrimental
effects on spermatogenesis [62] and usually might cause
clinical infertility associated with a serious decrease in
spermatozoa production. Germ cell apoptosis seemed to
play a pivotal role in regulating N and CR testes
[63–65]. Previous studies have demonstrated that crypt-
orchidism induced elevation of testicular temperature
which in turn affected the morphology and function of
Sertoli cells with a high grade of hyperplasia of this
cytotype [66] and in the testis of monkey and rat regain
undifferentiated features like immature state via activa-
tion of the extracellular signal-regulated kinases 1/2
(ERK 1/2) mitogen-activated protein kinases (MAPK)
pathway [67]. This condition allows some early germ
cells to persist which might be histologically similar to
neonatal testis. Joshi and Singh (2016) [23] described the
presence of OxA and OX1R in neonatal testis of mice
and showed that the expression of OxA and OX1R de-
creased after OX1R antagonist treatment. The inhibition
of this binding may interfere with the downstream sig-
nalling pathway leading to the down-regulation of the
stem cell factor (SCF). The SCF/c-kit system has been
proved to stimulate DNA synthesis and cell growth, act-
ing as anti-apoptotic factor on primordial germ cells and
spermatogonia and preparing germ cells to enter meiosis
[68]. In analogy with the findings described above in
neonatal testis by Joshi and Singh (2016) [23], OxA, via
OX1R, may not inhibit SCF secretion by the undifferen-
tiated Sertoli cells of the cryptic gonad, with a conse-
quent anti-apoptotic effect on early germ cells. The
failure to eliminate abnormal early germ cells by using
an anti-apoptotic mechanism could lead to retention of
defective cells involved in the formation of human
testicular germ cell tumours such as seminoma [69].
The role of orexins as a pro-apoptotic or anti-apoptotic

factor is still debated. In particular, orexins have a pro-
apoptotic role in colon cancer cell lines including HT-29
[70, 71], the human neuroblastoma SK-N-MC cells [70],
rat C6 glioma cells [72], the rat pancreatic cancer cell line
AR42J [73] and in prostate cancer [26]. The signal trans-
duction orexins-induced pathway may be involved in regu-
lating cell survival. OxA promoted proliferation and
viability in human gastric cancer cells SGC-7901 with
activation of the ERK1/2-MAPK pathway [74], human
adrenocortical adenomas [75], in immortalised primary
embryonic rat hypothalamic R7 cells [76], 3 T3-L1 preadi-
pocytes [77] and in rat hepatocytes [78]. The peptide OxA
and its receptor 1 appear to share some similarities in N
and CR testis of the dog with other peptides such as uro-
cortins, which might play a role in spermatogenesis and
steroidogenesis regulation also in the male gonad of the
dog [79]. The blockage of OxA binding OX1R by its own
antagonist might be a new therapeutic target involved in
inhibiting the abnormal germ cell growth OxA-induced in
cryptorchidism.

Conclusions
In conclusion, these results led us to demonstrate that
OxA and its receptor 1 are expressed in the normal and
cryptic testis of the dog. In particular, in the interstitial
compartment a steroidogenic OxA effect, via OX1R, by
means of an autocrine/paracrine mechanism may be
hypothesised. Moreover, in the tubular compartment the
peptide is involved in spermatogenesis regulation in nor-
mal testis and a proliferative action in the cryptic gonad.
The latter mechanism might acquire great importance in
the neoplastic transformation of the retained male
gonad. Although the molecular mechanisms of the
OX1R-mediated anti-apoptotic effect of OxA remain to
be elucidated, these may have important implications in
targeting new therapies for reproductive diseases in
animals and humans.
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