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Abstract

Background: Coxiella burnetii, Chlamydia abortus and Leptospira spp. are difficult to grow bacteria that play a role
in bovine abortion, but their diagnosis is hampered by their obligate intracellular lifestyle (C. burnetii, C. abortus) or
their lability (Leptospira spp.). Their importance is based on the contagious spread in food-producing animals, but
also as zoonotic agents. In Switzerland, first-line routine bacteriological diagnostics in cattle abortions is regulated
by national law and includes only basic screening by staining for C. burnetii due to the high costs associated with
extended spectrum analysis. The aim of this study was to assess the true occurrence of these zoonotic pathogens
in 249 cases of bovine abortion in Switzerland by serology (ELISA for anti-C. burnetii and C. abortus antibodies and
microscopic agglutination test for anti-Leptospira spp. antibodies), molecular methods (real-time PCR and
sequencing of PCR products of Chlamydiales-positive cases), Stamp’s modification of the Ziehl-Neelsen (mod-ZN)
stain and, upon availability of material, by histology and immunohistochemistry (IHC).

Results: After seroanalysis the prevalence was 15.9% for C. burnetii, 38.5% for C. abortus and 21.4% for Leptospira
spp. By real-time PCR 12.1% and 16.9% of the cases were positive for C. burnetii and Chlamydiales, respectively,
but only 2.4% were positive for C. burnetii or Chlamydiales by mod-ZN stain. Sequencing of PCR products of
Chlamydiales-positive cases revealed C. abortus in 10% of cases and the presence of a mix of Chlamydiales-related
bacteria in 5.2% of cases. Pathogenic Leptospira spp. were detected in 5.6% of cases. Inflammatory lesions were
present histologically in all available samples which were real-time PCR-positive for Chlamydiales and Leptospira
spp. One of 12 real-time PCR-positive cases for C. burnetii was devoid of histological lesions. None of the pathogens
could be detected by IHC.

Conclusion: Molecular detection by real-time PCR complemented by histopathological analysis is recommended to
improve definitive diagnosis of bovine abortion cases and determine a more accurate prevalence of these zoonotic
pathogens.
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Background
Abortion in dairy cattle is one of the major causes of
economic loss in the livestock industry [1] and three of
the bacterial agents that are implicated in bovine abortion
during mid- to late-gestation are the difficult to grow:
Coxiella burnetii, Chlamydia abortus and pathogenic

Leptospira spp. Their importance is based on not only in
the economic loss in animal production but also in their
zoonotic risk [2–4].
C. abortus and C. burnetii are obligate intracellular

Gram-negative bacteria. C. abortus, the causative agent
of ovine enzootic abortion, may also lead to reproductive
disorders in large ruminants [2, 5] and is known to cause
spontaneous abortion in pregnant women [5, 6]. Other
members of the families Chlamydiaceae, Parachlamy-
diaceae and Waddliaceae have also been found to play a
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possible role in abortion in ruminants as well as in
humans [7–11]. C. burnetii has a wide host range, in-
cluding domestic and wild animals. Infection in most
animals is subclinical or presents with non-specific
clinical signs, whereas ruminants, the main reservoir of
infection, may present with late abortion and stillbirths;
moreover, C. burnetii might be associated with metritis
and infertility in cattle [3, 12–18]. Human infection
with C. burnetii is known as Q fever and can lead to
miscarriage in women [19–21]. Leptospirosis is caused
by Gram-negative, pathogenic spirochetes of the genus
Leptospira that is divided in more than 250 pathogenic
serovars worldwide, which are classified into 25 ser-
ogroups on the basis of their serological phenotype. In
cattle, leptospirosis is mainly associated with reproduct-
ive problems including infertility, low conception rate,
abortion, stillbirths and weak offspring [22–24]. Cattle
are considered to be the maintenance host of serovar
Hardjo resulting in a high degree of subclinical infec-
tions [25]. Human leptospirosis occurs worldwide, is
transmitted via direct or indirect contact with urine
from infected animals and is due mostly to recreational
and occupational activities [26–28]. Numerous out-
breaks of leptospirosis worldwide have been also associ-
ated with heavy rainfall and flooding [29, 30]. Abortion
in women due to leptospirosis may occur if infection
takes place during pregnancy [31, 32].
Given the numerous possible etiologies of abortion

in ruminants and the high cost of definitive diagnosis,
a finance-limited investigation is performed usually,
and the causative agent often remains undetermined
[33]. Of the three cattle abortifacient pathogens
discussed, only investigation of C. burnetii is legally
regulated in Switzerland requiring Stamp’s modifica-
tion of the Ziehl-Neelsen (mod-ZN) stain [34] of tis-
sue smears [Ordinance on Epizootic Diseases (TSV)
SR.916.401; Article 129].
According to the epizootics database of the Swiss

Federal Food Safety and Veterinary Office (InfoSM
www.infosm.blv.admin.ch, consulted on 02/08/2017),
676 cases of coxiellosis in cattle were reported from
2006 to 2016. Although pathogenic Leptospira spp.
and C. abortus are not included in routine bovine
abortion diagnostics and, moreover, Leptospira inter-
rogans serovar Hardjo is exempt from mandatory
notification in cattle, 43 cases of leptospirosis and 23
cases of chlamydiosis in cattle were reported in the
same time frame.
In this study, the recommended mod-ZN method was

complemented with serology, molecular methods, hist-
ology and immunohistochemistry to determine the degree
of underestimation of the three abortifacient pathogens C.
burnetii, C. abortus and pathogenic Leptospira spp. in bo-
vine abortion in Switzerland.

Methods
Collection of samples
Samples from 249 cases of bovine abortion from differ-
ent cantons of Switzerland were collected from October
2012 to October 2015 [Bern (n = 213), Vaud (n = 7),
Fribourg (n = 6), Jura (n = 6), Solothurn (n = 6), Aargau
(n = 2), Basel-Land (n = 2), Neuchâtel (n = 2), Valais (n =
2), Zurich (n = 2) and Luzern (n = 1)]. The 249 cases com-
prised 242 placentas, 57 fetal abomasal contents and 182
maternal sera submitted for routine abortion diagnostics.
Placenta from a healthy calf was included as a negative
control.

Stamp’s modification of the Ziehl-Neelsen stain
Smears of placentas, abomasal contents (n = 299) and
the negative control placenta were subjected to mod-
ZN staining [32] and examined by light microscopy.
Chlamydia-positive placental tissue was included as
positive control in every stain. The sample was consid-
ered positive for Chlamydiales and/or C. burnetii when
intracytoplasmic red-stained coccobacilli appeared in
clumps against a blue background. The technique does
not allow a differentiation between Chlamydiales and
C. burnetii.

Serological studies
The 182 maternal sera were tested for antibodies
against C. burnetii and C. abortus using the com-
mercial CHEKIT® Q fever antibody ELISA Test Kit
and CHEKIT® C. abortus Antibody Test Kit (IDEXX,
Liebefeld-Bern, Switzerland) according to the manu-
facturer’s instructions. The results were expressed as
S/P values and derived from the ratio between op-
tical density (OD) of the sample (S) and the OD of posi-
tive control (P) included in the kits. IDEXX state an S/P
≥ 40% is considered positive, an S/P < 30% is considered
negative, and S/P values between these are considered
suspect positive.
The serological detection of antibodies against Leptos-

pira spp. was performed by microscopic agglutination
test (MAT) (Manual of Diagnostic Tests and Vaccines
for Terrestrial Animals of the Ordinance of Epizootic
Diseases [22]). Twelve serovars were included in the test
panel: Australis, Autumnalis, Ballum, Bataviae, Bratislava,
Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae,
Pomona, Sejroe and Tarassovi (Additional file 1: Table
S1). Sera were screened initially for agglutination at a
dilution of 1:100 in sterile 0.85% NaCl. Reactive sera
were titrated in two-fold serial dilutions to determine
the end-point titer defined as the dilution at which at
least 50% agglutination occurs. In every serological
analysis negative and positive control sera were in-
cluded as controls.
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DNA extraction and molecular studies
For the extraction of total genomic DNA 2 g of placenta
or 2 mL of fetal abomasal content were suspended in
5 mL 0.85% NaCl in an IKA® DT-20 tube [35] and homog-
enized twice for 30 s at 6000 rpm, using the IKA ULTRA-
TURRAX® tube drive. Subsequently, 500 μL of the ho-
mogenates were used for DNA extraction using QIAamp
Mini Kit (Qiagen, Hombrechtikon, Switzerland). Fluoro-
metric quantification of DNA was performed by Quantus™
Fluorometer (Promega, Dübendorf, Switzerland).
Real-time PCR targeting the IS1111 of C. burnetii

was performed according to Howe et al. [36]: IS1111-
F801: 5′ AATTTCATCGTTCCCGGCAG 3′; IS1111-
R901: 5′ GCCGCGTTTACTAATCCCCA 3′; probe
IS1111-p822S-MGB: 5′ 6FAM-TGTCGGCGTTTATTGG
–MGBNFQ 3’. PCR was performed in a total volume of
25 μL, 1X final concentration of TaqMan Universal PCR
Master Mix (Applied Biosystems, Foster City, CA, USA),
1 μM of each primer, 80 nM of the probe, 0.5X of internal
positive control (IPC) Template, 0.5X IPC Mix and 2.5 μL
of the template. The following conditions were applied:
94 °C for 2 min, 40 cycles of 94 °C for 15 s and 60 °C
for 30 s. Amplification was performed in duplicate on
the TaqMan 7500 Fast Real-time PCR System (Applied
Biosystems, Zug, Switzerland). As positive and negative
controls C. burnetii DNA and water were used, respect-
ively. Samples were considered positive when showing
an exponential amplification curve up to cycle 39 in
both replicates.
A pan-Chlamydiales real-time PCR targeting the

Chlamydiales 16S rDNA was performed according to
Lienard et al. [37]: panCh16F2: 5’ CCGCCAACACTGG
GACT 3’; panCh16R2: 5’ GGAGTTAGCCGGTGCTTC
TTTAC 3’; probe panCh16S: 5’ 6FAM-CTACGG-
GAGGCTGCAGTCGAGAATC-BHQ1 3’. PCR assays
were performed in 20 μL, with iTaq Supermix with
ROX (Bio-Rad, Reinach, Switzerland), 0.1 μM concen-
trations of each primer (Eurogentec, Seraing, Belgium), a
0.1 μM concentration of probe (Eurogentec), molecular-
biology-grade water (Sigma-Aldrich, Buchs, Switzerland)
and 5 μL of DNA sample. The cycling conditions were
3 min at 95 °C, followed by 50 cycles of 15 s at 95 °C, 15 s
at 67 °C and 15 s at 72 °C. Samples were tested in dupli-
cate using a StepOnePlus™ Real-time PCR System (Ap-
plied Biosystems, Foster City, CA, USA). As positive and
negative controls C. abortus DNA and water were used,
respectively. Samples were considered positive when
showing an exponential amplification curve up to cycle
40 in both replicates. Samples exhibiting a cycle thresh-
old (Ct) of ≤35 cycles were sequenced using specifically
designed internal sequencing primers as described by
Lienard et al. [37]. Obtained sequences were edited
and analyzed by BLAST on the NCBI website (http://
www.ncbi.nlm.nih.gov).

Real-time PCR targeting the lipL32 gene of Leptospira
spp. was performed using primers and probe described
by Villumsen et al. [38]: LipL32-F: 5′ AGAGGTCTT-
TACAGAATTTCTTTCACTACCT 3′; LipL32-R: 5′
TGGGAAAAGCAGACCAACAGA 3′; probe LipL32-P:
5' 6FAM-AAGTGAAAGGATCTTTCGTTGC-MGBN
FQ 3'. PCR was performed in a total volume of 25 μL,
1X final concentration of TaqMan Universal PCR Mas-
ter Mix, 1 μM of each primer, 80 nM of the probe, 0.5X
of IPC Template and 0.5X IPC Mix and 2.5 μL of the
template. The following conditions were applied: 94 °C
for 2 min, 45 cycles of 94 °C for 15 s and 60 °C for 30 s
using the TaqMan 7500 Fast Real-time PCR System.
DNA of Leptospira spp. serovar Icterohaemorrhagiae
strain RGA and water were used as positive and nega-
tive controls, respectively. Samples were considered
positive when showing an exponential amplification
curve up to cycle 40 in both replicates.

Histopathology
To assess the significance of the molecular analysis, all
cases with real-time PCR-positive results were exam-
ined histopathologically and by IHC (n = 32) when the
placental tissue was available and was not severely
autolytic. Selected samples of placenta were fixed in
buffered formalin (10%), processed routinely through
graded alcohols and embedded in paraffin-wax. Sections
(4 μm) were mounted on Thermo Scientific™ SuperFrost
Plus© (Braunschweig, Germany) slides and stained with
hematoxylin and eosin (HE) for histological evaluation.

Antibodies
For immunohistochemistry, mouse monoclonal anti-
Coxiella burnetii antibody (clone 3.13, Squarix GmbH,
Marl, Germany) diluted 1:500 in Tris-buffered saline
(TBS), an anti-Chlamydiaceae-specific antibody directed
against the chlamydial lipopolysaccharide (LPS, Clone
ACI-P, Progen, Heidelberg, Germany) diluted 1:200 in
antibody diluent (Glostrup, Denmark) and a rabbit
polyclonal anti-LipL32 antibody (kindly provided by Dr.
Jarlath Nally) diluted 1:1000 in phosphate-buffered saline
(PBS) for detection of pathogenic Leptospira spp. were
used.

Immunohistochemistry (IHC)
All real-time PCR-positive cases for C. burnetii (n = 13),
Chlamydiales (n = 14) and Leptospira spp. (n = 5) were
subjected to immunohistochemistry when tissue was
available and not autolytic.
Briefly, for all three antibodies 4 μm thick sections

were deparaffinized and rehydrated through graded
alcohols.
For C. burnetii, sections were immersed in 3% H2O2

in methanol (v/v) for 20 min to quench endogenous
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tissue peroxidases. Non-specific antibody binding was
blocked with 25% normal goat serum (NGS, Vector
Laboratories, Peterborough, UK) in TBS for 30 min and
incubated with the primary antibody overnight at 4 °C.
Visualization of the bound anti-C. burnetii primary
antibody was by EnVision Kit (goat anti-mouse horse-
radish peroxidase conjugate, DakoCytomation, Ely, UK)
according to the manufacturer’s instructions followed by
addition of the chromogen 3-amino, 9-ethyl-carbazole
(AEC, Vector Laboratories, Peterborough, United
Kingdom) for 10 min.
Chlamydiaceae immunohistochemistry was performed

as described by Borel et al. [39] using the detection kit
Dako ChemMate (Dako, Glostrup, Denmark).
Immunohistochemistry for pathogenic Leptospira spp.

was performed using the avidin-biotin-peroxidase com-
plex (ABC) method. Sections were treated with 0.5%
H2O2 in methanol (v/v) for 30 min to block endogenous
peroxidase, heated in sodium-citrate buffer for 30 min in
the microwave for antigen retrieval, incubated with 20%
goat serum for 30 min, then incubated with the respect-
ive primary antibody overnight at 4 °C. Biotinylated
goat-anti-rabbit IgG (BA-1000) diluted 1:200 in PBS
(Vector Laboratories, Burlingame, CA, USA) was used
as secondary antibody with incubation time of 60 min.
Colour development was with 3,3′-diaminobenzidine
tetrahydrochloride (DAB) with H2O2 (0.03%, pH 7.2) for
5 min.
Sections immunolabeled with the respective primary

antibodies against Chlamydiaceae, C. burnetii and
pathogenic Leptospira spp. were all counterstained with
hematoxylin prior to mounting in an appropriate
mountant.
Four qPCR-negative cases for all three agents were

included as negative controls. For C. burnetii and
pathogenic Leptospira spp., primary antibodies were
substituted with an isotype matched normal mouse IgG
antibody or normal rabbit IgG (1:3000; R4505; Sigma
Aldrich, Taufkirchen, Germany), respectively, as method
negative control preparations.
Sections of intestinal tissue from gnotobiotic piglets

experimentally infected with porcine Chlamydia suis
strain S45/6, C. burnetii-positive sheep and human
placentas and hamster kidney infected with L.
interrogans serovar Hardjo JB191 were included as
positive controls.

Statistical analysis
We calculated the degree of agreement between the
serological and the molecular tests for C. burnetii, C.
abortus and Leptospira spp. carried out in 182 cases
using Cohen’s kappa (κ) coefficient with 95% of CIs with
the online software GraphPad (http://graphpad.com/
quickcalcs/kappa2). Standard cutoffs were used to define

poor (κ < 0.40), fair (κ = 0.41–0.60), good (κ = 0.61–0.80)
and very good agreement (κ ≥ 0.80). The techniques that
do not allow for detection of a specific pathogen or
yielded only negative results were not included in the
comparison.

Results
Stamp’s modification of the Ziehl-Neelsen stain
Of the 299 tissue smears, 10 placental smears and two of
abomasal contents were positive as denoted by the pres-
ence of red intracytoplasmic organisms consistent with
coccobacilli. One of the positive placenta and abomasal
content samples were from the same case (Additional file 2:
Table S2).

Detection by serological analysis
Of the 182 sera tested, 29 (15.9%) were positive for C.
burnetii and two (1.1%) were suspect positive. Chla-
mydial antibodies were detected in 70 (38.5%) of the
182 sera and 23 (12.6%) sera were suspect positive. The
prevalence of antibodies against Leptospira spp. was
39/182 (21.4%), with 21 (11.5%) sera being positive for
at least two serovars. Serovar Hardjo was the most
frequent (31/39) followed by serovar Sejroe (14/39).
Yet, 12 sera were positive for both serovars with 10 sera
showing a higher titer for Hardjo and, hence, indicating
that the latter is the causative serovar. Six cases were
positive for serovar Australis (Table 1).

Detection by molecular analysis
Real-time PCR detection of C. burnetii was positive in
28/242 (11.6%) placenta and 7/57 (12.3%) abomasal
content samples. The pan-Chlamydiales real-time PCR
was positive for 41/242 placenta (16.9%) and 2/57 (3.5%)
abomasal content samples. The results after amplicon
sequencing of positive samples with a Ct ≤ 35 are
summarized in Table 2. C. abortus was detected in 24
placenta samples and in one abomasal content sample.
New Chlamydia-related bacteria were detected in four
placenta samples. All four were distantly related to
known species but all four could be assigned to the
Parachlamydiaceae family since they exhibited >90%
similarity with at least a member of this clade. The
sequencing of the remaining 12 samples was not discrim-
inatory because of superposition of sequences, probably
due to the presence of more than one member of the
Chlamydiales order in the sample. Real-time PCR for the
detection of Leptospira spp. was positive for 14/242 (5.8%)
samples of placenta and 1/57 (1.8%) samples of aboma-
sal contents. For seven of the samples positive by real-
time PCR, serum for analysis by MAT was available
and was positive in five cases (serovar Hardjo, n = 4;
serovar Icterohaemorrhagiae, n = 1) and negative in two
cases. All the results of the molecular analyses are
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Table 1 Positive samples by microscopic agglutination test for the 12 tested serovars of Leptospira spp.

Sample ID Serovar

Har Sej Aus Bal Bra Aut Gri Ict Pom Tar Bat Can

12Ue1157 1:400 1:400

13Ue0703 1:400 1:200

13Ue0920 1:400 1:400

13Ue1137 1:200

13Ue1300 1:1600 1:3200 1:100

13Ue1475 1:3200

13Ue1631 1:400 1:3200 1:3200

13Ue1769 1:3200

14A0004 1:3200

14A0027 1:3200 1:1600

14A0032 1:3200

14A0035 1:3200

14A0051 1:800

14A0057 1:200

14A0078 1:3200

14A0088 1:3200 1:3200

14A0090 1:3200

15A0004 1:1600 1:200

15A0019 1:800

15A0060 1:400

15A0063 1:1600 1:400

15A0082 1:1600 1:400

15A0086 1:1600 1:400

15A0093 1:1600 1:400 1:800

15A0103 1:400

15A0107 1:800 1:100

15A0112 1:1600 1:200

15A0114 1:800 1:200

15A0122 1:400

15A0127 1:400

15A0135 1:400

15A0137 1:800 1:400

15A0146 1:800 1:100

15A0147 1:200

15A0149 1:800 1:400

15A0157 1:400 1:200

15A0162 1:100 1:200

15A0167 1:800

15A0171 1:200 1:800

Total no. 31 14 6 3 3 2 1 1 1 1 0 0

Har Hardjo, Sej Sejroe, Aus Australis, Bal Ballum, Bra Bratislava, Aut Autumnalis, Gri Grippotyphosa, Ict Icterohaemorrhagiae, Pom Pomona, Tar Tarassovi, Bat
Bataviae, Can Canicola
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Table 2 Sequence results of Chlamydiales samples positive by real-time PCR. Not interpretable: presence of multiple peaks

Sample ID Organ Related microorganism GenBank accession no. Similarity %

12Ue0622 Placenta Not interpretable – –

12Ue1119 Placenta Chlamydia abortus Z49871 100

12Ue1503 Placenta Uncultured Chlamydiales bacterium
clone HE210023biof

JX083111 99.3

12Ue1510 Placenta Chlamydia abortus NR_036834 100

13Ue0490 Placenta Chlamydia abortus Z49871 94.7

13Ue0499 Placenta Not interpretable – –

13Ue0815 Placenta Chlamydiales bacterium cvE71 JF706724 96

13Ue0857 Placenta Chlamydia abortus Z49871 100

13Ue1009 Placenta Chlamydia abortus Z49871 99.3

13Ue1293 Placenta Chlamydia abortus Z49871 100

13Ue1359 Placenta Chlamydia abortus Z49871 100

14A0078 Placenta Chlamydia abortus Z49871 98.5

15A0068 Placenta Chlamydia abortus Z49871 90.8

15A0076 Placenta Not interpretable – –

15A0078 Placenta Chlamydia abortus Z49871 99.5

15A0079 Placenta Chlamydia abortus Z49871 99.8

15A0080 Placenta Chlamydia abortus Z49871 99.5

15A0082 Placenta Chlamydia abortus Z49871 96.2

15A0087 Placenta Uncultured Chlamydiales bacterium
clone P-9

AF364575 97

15A0091 Placenta Chlamydia abortus Z49871 92

15A0092 Placenta Chlamydia abortus Z49871 100

15A0093 Placenta Chlamydia abortus Z49871 90.8

15A0096 Placenta Chlamydia abortus Z49871 99.5

15A0096 Abomasal content Chlamydia abortus Z49871 99.5

15A0099 Placenta Not interpretable – –

15A0104 Placenta Chlamydia abortus Z49871 100

15A0107 Placenta Not interpretable – –

15A0111 Placenta Chlamydia abortus Z49871 99.5

15A0113 Placenta Chlamydia abortus Z49871 100

15A0114 Placenta Chlamydia abortus Z49871 99.5

15A0117 Placenta Not interpretable – –

15A0118 Placenta Chlamydia abortus Z49871 96.8

15A0121 Placenta Chlamydia abortus Z49871 98.1

15A0122 Placenta Chlamydia abortus Z49871 97.6

15A0126 Abomasal content Not interpretable – –

15A0129 Placenta Not interpretable – –

15A0137 Placenta Not interpretable – –

15A0148 Placenta Not interpretable – –

15A0155 Placenta Parachlamydia acanthamoebae strain Bn9 NR_026357 90.3

15A0160 Placenta Not interpretable – –

15A0172 Placenta Not interpretable – –
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included in Additional file 2: Table S2 and the percent-
age of positive placenta and abomasal content samples
is summarized in Fig. 1.
To compare serological and molecular techniques we

analyzed 182 cases that were processed by ELISA, MAT
and PCR (Fig. 2). All three pathogens had more positive
results in the serological analyses than in the molecular
analysis, with C. abortus having the highest seropositiv-
ity. Results from samples that were positive by real-time
PCR for more than one pathogen are summarized in
Table 3.

Histopathology and IHC
The severity of the placentitis, necrosis, inflammatory
cell infiltrate and vasculitis in all real-time PCR-positive
cases of C. burnetii, Chlamydiales and Leptospira spp.
that were evaluated histologically (when tissue was avail-
able and not autolytic) varied greatly and the histological
findings are summarized in Table 4.
Regardless of the etiological agent, if necrosis was

present in the cotyledon it was multifocal, randomly dis-
tributed and affected the chorioallantoic stroma and the
villi including the trophoblasts.
Placentitis was present in 12 of 13 samples that were

positive for C. burnetii by real-time PCR. Necrosis was
present in 11 of 13 cases. Mixed inflammatory infiltrates
characterized by neutrophils, macrophages and lympho-
cytes were present in nine of 13 cases and only three cases
were designated as suppurative placentitis. Vasculitis was
present in five of 13 cases and characterized by infiltration
of neutrophils, macrophages and lymphocytes primarily in
the tunicae media and adventitia resulting in mild fibrin-
oid necrosis only (Fig. 3a). All cases positive for Chlamy-
diales by real-time PCR had placentitis and necrosis.
Mixed inflammatory cell infiltrates were present in 12 of

14 cases, only one was designated suppurative and one
case was infiltrated by macrophages and lymphocytes
(mononuclear) only. Vasculitis was present in seven of
the 14 cases (Fig. 3b). Similarly, all cases of Leptospira
spp. positive by real-time PCR had placentitis and
necrosis (Fig. 3c). Mixed inflammatory cell infiltrates
were present in three of five cases, while in two cases
the inflammation was comprised of mononuclear
leukocytes only. For cases positive for Leptospira spp.
by real-time PCR no suppurative placentitis was found
and only one case had vasculitis.
Immunohistochemical analysis failed to visualize C.

burnetii, Chlamydiales and Leptospira spp. in all sections
evaluated (Table 4).

Statistical analysis
The Cohen’s kappa coefficient is summarized in Table 5.
The degree of agreement between the serological and the
molecular diagnostic techniques for C. burnetii, C. abortus
and Leptospira spp. was poor with κ = 0.103 ± 0.086, κ =
−0.006 ± 0.067 and κ = 0.163 ± 0.074, respectively.

Discussion
This study investigated, concomitantly, the prevalence
of C. burnetii, C. abortus and pathogenic Leptospira
spp. DNA in bovine abortion material and seroconver-
sion in affected dams and highlights the underestima-
tion associated with using a single staining technique.
Although detection of any of these pathogens does not
equate invariably to causality with respect to bovine
abortion, their presence does invariably represent a
high zoonotic risk and a possible reservoir of infection
for other animals.
The frequency of antibodies specific for C. burnetii in

dams was 15.9%, comparable to the reported seropreva-
lence of 16.7% in aborting cows in Switzerland by Hässig

Fig. 1 Incidence of placenta and abomasal content samples that
were positive by real-time PCR for Coxiella burnetii, Chlamydiales
and/or pathogenic Leptospira spp.

Fig. 2 Incidence of seropositive cases and their corresponding
samples that were positive by real-time PCR for Coxiella burnetii,
Chlamydiales and/or pathogenic Leptospira spp.
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and Lubsen [40]. However, previous studies reported
similar seropositivity for C. burnetii antibodies but in
healthy cows and in different European countries
(Bulgaria 20.8%; France 15%; Germany 19.3% and the
Netherlands 21%) [41] suggesting serological results are
not reliable for diagnostic purposes. With 38.4% positive
and 13.0% suspect positive reactions the seropositivity to
anti-C. abortus antibodies was the highest of the three
abortifacient pathogens investigated in this study. This
result was in agreement with studies in other countries
which also reported a high prevalence of anti-chlamydial
antibodies in cattle, with seropositivity ranging from
45% to 100% [42]. However, such high seropositivity
rates have to be interpreted with caution. Firstly, a single
seropositive result is not necessarily related to the eti-
ology of the abortion and might be due to a previous ex-
posure [43]. Secondly, serological tests may not be C.
abortus specific and positive titers can arise from cross-
reactivity to C. pecorum, a common intestinal opportun-
istic chlamydial species found in ruminants [44]. The
frequency of Leptospira spp. antibodies was 21.4% and
primarily due to serovar Hardjo (seroprevalence of
17.0%). The implication of a positive titer to serovar
Hardjo on fetal loss remains controversial as many stud-
ies failed to show a causal association between seroposi-
tivity and abortion [22, 45–48], while others described
Hardjo as a cause of abortions [49, 50]. The interpret-
ation of the serological results for Leptospira spp. should
be done carefully since there is cross-reactivity between
serovars of the same serogroup; nevertheless, the infect-
ing serovar is more likely to show the higher titer [22,
51]. Although Sejroe was the second most prevalent ser-
ovar (14 cases), 12 cases were positive for serovars
Hardjo and Sejroe, belonging to the same serogroup.
Yet, Hardjo presented the higher titer in 10 cases mak-
ing Australis (six cases) the second most frequent sero-
var. Abortion in cattle due to serovar Hardjo is a
chronic event with a variable serological response at the

time of abortion [22] and confirmation of infection by
MAT is difficult because maternal antibody production
mostly occurs prior to fetal death [52].
Molecular detection of DNA of abortifacient agents has

been shown to be highly sensitive and specific [37, 53–55].
By real-time PCR we detected C. burnetii in 12.1% of
cases, similar to findings in Italy (11.3%) obtained by
nested PCR [56] but lower than results by classical PCR
from Portugal (17.2%) [57] and by real-time PCR from
Hungary (25.9%) [58]. These findings, although ob-
tained with different techniques, may reflect different
endemicity. Furthermore, we showed the capacity of C.
burnetii of spreading via the amniotic-oral route [59, 60]
with the 7/57 samples of abomasal content being positive.
Of the 21 real-time PCR positive cases of C. burnetii, 15
were seronegative suggesting early stages of infection
when antibodies are not yet present, or environmental
contamination of samples or failure of the dam to
seroconvert occurred. In contrast, 23 cases with positive
sera were negative by real-time PCR suggesting previous
exposure to C. burnetii is not uncommon. The statistical
analysis showed a poor agreement (κ = 0.103 ± 0.086)
between the serological and the molecular technique
indicating that there is a poor relationship between the
seropositivity of the dam for antibodies to C. burnetii and
an abortion event as reported previously [61–64]. It is
important to keep in mind that real-time PCR is highly
sensitive and thus able to detect low levels of C. burnetii.
Yet, different strains harbor a very variable number of the
target IS1111 (between 7 and 110) making quantification
inaccurate for this bacterium [65]. For the final interpret-
ation at herd-level it is recommended to include comple-
mentary techniques and consider the case history [18, 66].
Of 43 real-time PCR-positive samples for Chlamydiales

(placenta, n = 41; abomasal content, n = 2) C. abortus
could be identified by sequencing in 9.6% of the cases,
although the prevalence could be higher because in 12
samples a single species could not be assigned due to

Table 3 Results of six cases of bovine abortion which were positive for more than one pathogen

Lab ID Cox-ELISA Cab-ELISA Lep MAT Lep Serovar Organ mod-ZN Cox-Chl Cox-qPCR Chl-qPCR Lep-qPCR

12Ue0622 NA NA NA AC – + – –

PL – + + –

13Ue1009 + S – PL – + + –

14A0078 – – + Har PL – + + –

15A0087 – S – PL – + + –

15A0092 – S – PL – – + +

15A0099 – – – PL – + + –

15A0107 + – + Har/Ser PL – + + +

Cox Coxiella burnetii, Cab Chlamydia abortus, Lep pathogenic Leptospira spp., MAT Microscopic Agglutination Test, PL placenta, AC abomasal content, mod-ZN
Stamp’s modification of the Ziehl-Neelsen stain, Chl Chlamydiales, NA not available, +: positive result, −: negative result, S suspect positive, Har Hardjo, Sej Sejroe,
Aus Australis, Bal Ballum, Bra Bratislava, Aut Autumnalis, Gri Grippotyphosa, Ict Icterohaemorrhagiae, Pom Pomona, Tar Tarassovi. The serovars are in descending
order regarding the titer
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multiple peaks. In Eastern Switzerland, C. abortus was
considered not to play an important role in bovine abor-
tion in studies by end-point PCR [39] and real-time PCR
[67]. However, Blumer et al. [9] confirmed the presence of
C. abortus in 14.8% of studied cases of abortion from East-
ern Switzerland. We could detect members of the Para-
chlamydiaceae family in four samples confirming that
Chlamydia-related bacteria could be involved in bovine
abortion as reported previously [9, 39, 67] and could cause

mixed infection [68]. It is noteworthy that some sam-
ples with Chlamydia-related bacteria, including P.
acanthamoebae, were positive by C. abortus ELISA
also. This result might be due to the production of
antibodies that could cross-react with other chlamydial-
species due to a genus-specific epitope of the lipopolysac-
charide [44, 69–71]. This might also be the underlying
reason for the poor agreement (κ = −0.006 ± 0.067) be-
tween the serological and the molecular technique.

Table 4 Histological lesions in placentas from Coxiella burnetii, Chlamydiales and Leptospira spp. positive cases by real-time PCR

Sample ID Placentitis Necrosis Type of infiltrate Vasculitis Presence of ICBa Presence of ECBb IHC

pos C. burnetii (n = 13)

12Ue0622 Moderate Moderate Mixed Yes Yes No Neg

13Ue0536 Moderate Mild Mixed No No No Neg

13Ue0858 Mild Moderate Mixed No Yes No Neg

13Ue1008 Moderate Moderate Mixed Yes No No Neg

13Ue1009 Moderate Moderate Mixed Yes No No Neg

13Ue1414 Mild Mild Neutrophilic No Yes Yes Neg

13Ue1488 Mild Moderate Neutrophilic No Yes Yes Neg

13Ue1524 Mild Mild Mixed Yes Yes Yes Neg

13Ue1644 No No No No No No Neg

14A0076 Mild No Neutrophilic No No Yes Neg

15A0086 Mild Moderate Mixed No Yes Yes Neg

15A0101 Moderate Moderate Mixed No No Yes Neg

15A0107 Severe Severe Mixed Yes Yes No Neg

pos Chlamydiales (n = 14)

12Ue0622 Moderate Moderate Mixed Yes Yes No Neg

12Ue1503 Mild Mild Mixed No No Yes Neg

13Ue1009 Moderate Moderate Mixed Yes No No Neg

15A0076 Moderate Moderate Mixed Yes Yes Yes Neg

15A0078 Severe Moderate Mixed No No Yes Neg

15A0080 Moderate Moderate Mixed No No Yes Neg

15A0082 Severe Mild Mixed No No Yes Neg

15A0093 Mild Moderate Mixed No No Yes Neg

15A0104 Moderate Mild Mixed Yes No Yes Neg

15A0107 Severe Severe Mixed Yes Yes No Neg

15A0121 Mild Mild Mononuclear No No Yes Neg

15A0122 Mild Moderate Neutrophilic No No Yes Neg

15A0137 Severe Moderate Mixed Yes Yes Yes Neg

15A0148 Moderate Moderate Mixed Yes No Yes Neg

pos Leptospira spp. (n = 5)

12Ue1016 Severe Mild Mixed No No Yes Neg

12Ue1185 Severe Mild Mixed No Yes Yes Neg

15A0011 Mild Mild Mononuclear No No Yes Neg

15A0107 Severe Severe Mixed Yes Yes No Neg

15A0127 Mild Mild Mononuclear No No Yes Neg
aPresence of intracytoplasmic bacteria (ICB). bPresence of extracellular bacteria (ECB)
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In six cases of coxiellosis we found evidence of coinfec-
tion with C. abortus and Chlamydiales-related bacteria.
Although C. burnetii and Chlamydiales belong to phylo-
genetically unrelated species [72], they have some similar-
ities in their interaction with the host and mechanisms of
pathogenicity [73]. Thus, the diagnosis of either agent is
usually established by microscopic examination of stained
placenta smears in veterinary diagnostic laboratories but
this cannot discriminate between the different organisms.
Pritchard et al. [74] stated that the mod-ZN stain is insuf-
ficiently sensitive in cattle cotyledons. Our findings agree
with this and confirm that the mod-ZN stain is not very
sensitive for the detection of either C. burnetii or Chlamy-
diales infection in bovine abortion material and that it
should be replaced by specific real-time PCRs.
Pathogenic Leptospira spp. had a prevalence of 5.6%

by real-time PCR (placenta, n = 14; abomasal content,
n = 1). The detection of leptospires in internal organs of
aborted or stillborn fetuses reflects chronic leptospir-
osis of the mother and indicates an active infection of
the fetus, but PCR-based diagnosis of leptospirosis
alone cannot identify the infecting serovar; moreover,
contamination with faeces or autolysis in clinical sam-
ples is known to lead to false-negative results [22].
Hence, the combination of both, molecular and sero-
logical techniques is of epidemiological value, even
though no satisfactory agreement between techniques
(κ = 0.163 ± 0.074) was achieved. Unfortunately, in only

seven cases material was available for both analysis, and
four sera of these were positive for serovar Hardjo and
one for serovar Icterohaemorrhagiae. Two of the sam-
ples positive by real-time PCR for Leptospira spp. DNA
were negative in MAT indicating an early stage of the
infection or failure to detect seroconversion. In one
case, pathogenic Leptospira spp., presumably identified
as serovar Hardjo by serology, were detected together
with C. burnetii and Chlamydiales and in another case
we found possible coinfection between pathogenic
Leptospira spp. and C. abortus.
Histological investigation and confirmation of the

cellular inflammatory process indicative of infectious
agents is important to unambiguously confirm the im-
plication of a specific etiological agent especially if it
could also be present in the commensal and the envir-
onmental microbiota [43]. However, as the cotyledon-
ary lesions are not pathognomonic for any of the three
pathogens investigated [39, 75], a definitive diagnosis
based on histopathology only is not possible. Accordingly,
in real-time PCR-positive cases of C. burnetii and
Chlamydiales we found similar placental lesions varying
only in the degree and severity of the inflammatory infil-
trate. Although, vasculitis in the placenta of abortion cases
is described as a prominent feature of C. abortus
infections [39], it is not invariably present. Furthermore,
vasculitis in the placenta is present frequently in cases of
C. burnetii abortion [75, 76] as was observed in this study.

Fig. 3 Histopathology of representative placental samples from bovine abortions positive by real-time PCR for: Coxiella burnetii (a), Chlamydia
abortus (b) and pathogenic Leptospira spp. (c). Infection with either C. burnetii (a) or C. abortus (b) was characterized by variable degrees of vascu-
litis (arrow) and necrosis (arrowhead). Cases positive for pathogenic Leptospira spp. by real-time PCR (c) showed variable severities of necrosis
(arrowhead) and lacked vasculitis. HE, bar 100 μm

Table 5 Cohen’s kappa (κ) coefficient with 95% of CIs to assess the degree of agreement between molecular and serological
techniques for the diagnosis of C. burnetii, C. abortus and Leptospira spp.

C. burnetii C. abortus Leptospira spp.

Number of observed agreements 145 (79.67% of the observations) 103 (56.59% of the observations) 146 (80.22% of the observations)

Number of agreements expected by chance 140.7 (77.33% of the observations) 103.5 (56.85% of the observations) 139.0 (6.37% of the observations)

Kappa (κ) 0.103 ± 0.086 −0.006 ± 0.067 0.163 ± 0.074

95% CIs −0.065 to 0.272 −0.137 to 0.126 0.018 to 0.308

Strength of agreement Poor Poor Poor
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Additionally, we found that not all Chlamydiales real-time
PCR-positive cases displayed vasculitis, similar to previous
reports [9, 39]. All Leptospira spp. real-time PCR-positive
cases showed necrotizing placentitis with three and two
displaying mixed and mononuclear inflammatory infil-
trates, respectively. Vasculitis was not observed in any
sample except one case which was real-time PCR-positive
for C. burnetii and Chlamydiales also. Placental lesions
caused by Leptospira spp. in bovine abortion are not well
characterized but, based on our limited observations, vas-
culitis is not a prominent feature.
Lesion-associated pathogen detection is usually consid-

ered vital for definitive diagnosis to prove causality. How-
ever, we were not able to identify lesion-associated C.
burnetii, Chlamydiales or Leptospira spp. by IHC in any
of the analyzed slides. IHC is known to have lower sensi-
tivity than real-time PCR [77, 78], especially when there is
some degree of autolysis in the samples as is often the case
for abortion material.
Limited first-line diagnostics (mod-ZN staining) could

only detect possible abortifacient agents in 11 cases (4.4%)
while real-time PCR detected a possible abortifacient
agent in 78 cases (31.2%). The fact that (i) C. burnetii,
Chlamydiales and Leptospira spp. are all difficult to
culture, (ii) serology cannot exclude a past infection or
confirm an ongoing infection and (iii) IHC apparently fails
to demonstrate the presence of the agents, makes the
molecular approach the method of choice.

Conclusions
In conclusion, we recommend an extended workflow in-
cluding molecular analysis for routine abortion diagnostics
to avoid the underestimation of the discussed agents and
histological analysis to avoid misinterpretation of real-
time PCR positive results. It would be prudent to use mo-
lecular methods initially and then subject positive cases to
histological screening. For further epidemiological investi-
gations complementary serological analyses should be
considered. However, the real value of this work was de-
termining the inherent public health risk with respect to
these zoonotic pathogens and their prevalence in bovine
abortion material as important source of infection.
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