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Abstract

Background: A unique clade of the bacterium Mycoplasma gallisepticum (MG), which causes chronic respiratory
disease in poultry, has resulted in annual epidemics of conjunctivitis in North American house finches since the
1990s. Currently, few immunological tools have been validated for this songbird species. Interleukin-1(3 (IL-18) is a
prototypic multifunctional cytokine and can affect almost every cell type during Mycoplasma infection. The overall
goal of this study was to develop and validate a direct ELISA assay for house finch IL-1(3 (HfIL-13) using a cross-
reactive chicken antibody.

Methods: A direct ELISA approach was used to develop this system using two different coating methods,
carbonate and dehydration. In both methods, antigens (recombinant HflL-1b or house finch plasma) were serially
diluted in carbonate-bicarbonate coating buffer and either incubated at 4 °C overnight or at 60 °C on a heating
block for 2 hr. To generate the standard curve, rHflL-1b protein was serially diluted at 0, 3, 6, 9, 12, 15, 18, 21, and
24 ng/mL. Following blocking and washing, anti-chicken IL-1b polyclonal antibody was added, plates were later
incubated with detecting antibodies, and reactions developed with tetramethylbenzidine solution.

Results: A commercially available anti-chicken IL-1(3 (ChIL-1B) polyclonal antibody (pAb) cross-reacted with house
finch plasma IL-13 as well as bacterially expressed recombinant house finch IL-13 (rHfIL-1() in immunoblotting
assays. In a direct ELISA system, rHfIL-13 could not be detected by an anti-ChIL-1 pAb when the antigen was
coated with carbonate-bicarbonate buffer at 4°C overnight. However, rHflL-13 was detected by the anti-ChIL-1(3
pAb when the antigen was coated using a dehydration method by heat (60°C). Using the developed direct ELISA
for HfIL-13 with commercial anti-ChIL-13 pAb, we were able to measure plasma IL-1{3 levels from house finches.

Conclusions: Based on high amino acid sequence homology, we hypothesized and demonstrated cross-reactivity

of anti-ChIL-1B pAb and HfIL-13. Then, we developed and validated a direct ELISA system for HfIL-13 using a
commercial anti-ChIL-13 pAb by measuring plasma HflL-1(3 in house finches.
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Background

A member of the interleukin (IL)-1 family, IL-1beta (IL-1p)
is a pivotal pro-inflammatory cytokine for host-defense re-
sponses to infection and injury [1-3]. It is a major mediator
of innate immunity, as well as adaptive immune responses.
The guardian cells of the innate immune system — macro-
phages and monocytes — are a major source of IL-1f [4, 5],
but many other cell types including epithelial cells [6],
endothelial cells [7], and fibroblasts [8] can also produce
this cytokine. IL-1B is produced as an inactive 31 kDa
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precursor — termed pro-IL-1P, which is proteolytically
processed to its active form by cytosolic caspase-1, followed
by secretion via an unconventional protein secretion path-
way [9]. Activated IL-1p affects diverse major innate im-
mune processes including immune cell recruitment, cell
proliferation, tissue destruction, bone resorption, vascular
smooth muscle cell contraction, blood pressure and central
nervous system cell function [10, 11].

A chicken homolog of mammalian IL-1f was first
identified and characterized with CXCLil (K60)-indu-
cing activity in 1998 [12], and some research has focused
on its biological roles in avian species. Expression of
ChIL-1p typically increases in response to both bacterial
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and viral infections, consistent with its role as a rapidly
induced pro-inflammatory mediator. For example, IL-13
expression in bursal cells increases in chickens infected
with infectious bursal disease virus [13], and IFN-y-
primed heterophils stimulated with Salmonella Enteritidis
show increased IL-1P expression [14]. Infection of chicken
kidney cells (CKCs) with Escherichia coli caused a reduc-
tion of IL-1p compared to non-infected control, but infec-
tion with S. typhimurium or S. dublin led to significantly
increased IL-1f transcripts [15]. Chicken macrophage cell
line (HD11) and CKCs induced significant IL-1 mRNA
expression during stimulation with Campylobacter jejuni
[16]. Finally, a study of Mycoplasma gallisepticumn (MG)
infection in chickens revealed the down-regulation of IL-
1B at 1-day post-inoculation (dpi), and then a three-fold
increase in expression at 4-dpi [17].

The bacterium MG is a common cause of chronic re-
spiratory disease of poultry, but a unique clade of this
pathogen emerged in a common North American back-
yard songbird species, house finch (Haemorhous mexica-
nus), in the mid-1990s [18, 19]. MG causes severe
conjunctivitis in finches and significantly reduces survival
in free-living birds [20, 21]. This pathogen spreads by
either direct contact or short-term indirect contact on
bird feeders, and M@ is now endemic throughout most of
the house finch range in North America [21, 22]. MG in
house finches induces a series of local and systemic in-
flammatory responses, including severe conjunctivitis and
rhinitis [21], local infiltration of lymphocytes and hetero-
phils [23], and systemic responses such as fever, sickness
behaviors, and expression of pro-inflammatory cytokines
[24, 25]. A recent microarray study reported a different
gene expression profile during innate and adaptive im-
mune responses between MG-resistant (Alabama popula-
tion) and MG-susceptible (Arizona population) finches
[26]. MG-susceptible finches exhibited significant down-
regulation of gene expression patterns at 3-dpi (innate
response) and 14-dpi (adaptive response) compared to
MG-resistant finches. These two populations showed dis-
tinct transcriptional responses in the early stages of infec-
tion. Additionally, while gene expression profiles were
similar on 3- and 14-dpi in MG-susceptible finches, MG-
resistant finches had significantly different gene expression
profile between 3-dpi and 14-dpi, suggesting genes associ-
ated with the adaptive immune response are only up-
regulated after population differences in transcription are
first observed [26]. We recently documented population
differences in relative IL-1p mRNA expression early in ex-
perimental MG infection, and these expression differences
correspond to population differences in the severity of
conjunctivitis [25]. However, a full understanding of the
role of IL-1B in MG infection requires tools to measure
and potentially manipulate the IL-1f protein in house
finches.
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Previously, our team identified and characterized
HfIL-1p including successfully expressing rHfIL-1f in
both prokaryotic and eukaryotic systems [27]. Recom-
binant HfIL-1 induced cell proliferation, as well as
nitric oxide production in house finch splenocytes. Add-
itionally, rHfIL-1p resulted in increased mRNA levels of
Th1/Th2 cytokines in splenocytes, as well as an acute
phase protein and an antimicrobial peptide in hepato-
cytes [27]. The goal of this study was to develop and
validate a direct ELISA system for house finch IL-1§
(HfIL-1p) using a commercially available anti-chicken
IL-1P (ChIL-1p). Based on the high amino acid sequence
homology of IL-1p between chicken and house finch,
our previous work demonstrated the cross-reactivity
of anti-ChIL-1p polyclonal antibody (pAb) to recom-
binant HfIL-1f [27]. In this study, we validated the
cross-reactivity of anti-ChIL-1 pAb to nature form
of serum HfIL-1f by immunoblotting. Then, a direct
ELISA system using anti-ChIL-1f pAb was developed
and test-validated with plasma samples collected from
house finches.

Methods

Blood samples

Blood was collected from house finches via wing vein
puncture using heparinized microcapillary blood collec-
tion tubes (approximately 100 pL per bird) and plasma
was separated via centrifugation and frozen at -20°C.
Once thawed, all blood samples were further diluted
with PBS for the immunoblotting and ELISA analyses.
Plasma samples from four captive house finches (non-in-
fected with MG) were randomly selected for assay devel-
opment (Table 1). Plasma samples from four free-living
house finches were used to test whether HfIL-1f levels
are elevated during MG infection: two of these individ-
uals were clinically healthy at capture and were thus
considered non-infected, and the other individuals had
severe clinical signs of mycoplasmal conjunctivitis and
thus were considered MG-infected. All housing and
animal procedures were approved by the Institutional
Animal Care and Use Committee of Virginia Tech.

Immunoblotting
Concentration of the purified recombinant HfIL-1B
(rHfIL-1B) was measured using a BCA Protein Assay Kit

Table 1 Bird identification for blood collection

Bird ID  Infection  Capture Date  Status

380 No 07/13/2012 Had been captive for >1 year, but
412 No 16/01/2012 always control bird (non-infected)
1401 Yes 24/07/2013 Captured in the field without
1410 Ves 26/07/2013 pathology, broke with MG while

housed in captivity prior to time
of sampling
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(Pierce, IL) following the manufacturer’s instructions.
For SDS-PAGE, 1 pg of the purified protein or 1 pL of
plasma samples was mixed with 10 pL of SDS loading
buffer (New England Biolabs, MA) containing DTT. The
samples were then boiled at 97°C on a hot plate for
7 min. The prepared samples were electrophoresed on a
12% SDS-polyacrylamide gel at 90 V for 140 min. Pro-
teins were transferred to PVDF membranes (Millipore,
MA) by the submarine method at 90 V for 1.5 h. The
membranes were incubated with anti-ChIL-1f pAb
(Thermo Scientific, IL; 1:1000) overnight, followed by
incubation with goat anti-rabbit antibody conjugated
with HRP (Santa Cruz Biotechnology, CA, 1:2000) for
45 min. Using the SuperSignal West Pico Chemilumin-
escent Substrate (Pierce, IL), HRP signal was enhanced,
followed by exposure and development on CL-XPosure
film (Thermo Scientific, IL).

Enzyme-linked Immunosorbent assay (ELISA)

To develop the ELISA system for HfIL-1f3, we adopted a
direct ELISA approach using two different coating
methods, carbonate and dehydration, on Nunc MaxiSorp®
flat-bottom 96-well plates (Thermo Scientific, IL). In both
methods, antigens — either rHfIL-1p or plasma — were di-
luted in carbonate-bicarbonate coating buffer (0.05 M;
pH 9.5). For the standard curve, rHfIL-1p protein was
serially diluted with 0.05 M carbonate-bicarbonate buffer
at the following concentrations: 0, 3, 6, 9, 12, 15, 18, 21,
and 24 ng/mL. The plasma samples were diluted with
carbonate-bicarbonate coating buffer (0.05 M; pH 9.5)
using 10-fold dilutions. An aliquot of 100 pL of each
diluted antigen was added to the assigned well of the 96-
well plates. For the carbonate method, the plates were
then incubated at 4°C overnight, while for the dehydration
method, the plates were incubated at 60°C on a heating
block for 2 h for complete dehydration. Then, each plate
was incubated with a blocking buffer (PBS [pH 7.4]
containing 0.05% Tween-20 and 1% BSA) at room
temperature (RT) for 45 min.

The primary (rabbit anti-ChIL-1p pAb) and the
secondary (goat anti-rabbit) antibodies were prepared by
dilution with the blocking buffer at 1:1000 and 1:2000,
respectively. Fifty microliters of anti-ChIL-1p pAb were
added to each assigned well, followed by incubating on a
microplate shaker for 1 h at RT and washing 3 times
(washing buffer as PBS [pH 7.4] containing 0.05%
Tween-20). The plates were then incubated with 50 pL
of the goat anti-rabbit antibody for 1 h at RT with
continuous shaking. To develop HRP signal, a 3.3",5.5"-
tetramethylbenzidine (TMB, Sigma-Aldrich, MO) solu-
tion was prepared in 1 mL DMSO, 9 mL of 0.05 M
phosphate-citrate buffer (pH 5.0) and 2 pL of 30%
hydrogen peroxide (0.03% as final concentration, Sigma-
Aldrich) per 10 mL total volume. One hundred
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microliters of the prepared TMB solution were added to
each well, followed by incubation for 30—45 min at RT.
Colorimetric development was stopped by adding 100
puL of 2 N sulfuric acid (H,SO,) then absorbance was
quantified spectrophotometrically at 450 nm with a mi-
croplate reader. The raw OD values were normalized by
subtracting OD value of buffer. The standard curve was
drawn and calculated with Excel (Microsoft Corp., WA)
and elisaanalysis.com (www.elisaanalysis.com) using a
logarithmic equation (i.e. Y = aln (x) + b), which was ap-
plied to calculate the concentration of HfIL-1p. The data
were analyzed by independent two-sample ¢-test
using program R (https://www.r-project.org/).

Results

Cross-reactivity of commercial anti-ChIL-1f3 antibody to
HfIL-1B

To validate cross-reactivity of commercially available
anti-ChIL-1p pAb with HfIL-1B, immunoblotting was
performed with rHfIL-1B (Fig. 1); we also included
plasma samples from non-infected and MG-infected
house finches to verify such cross-reactivity. Approxi-
mately 25 kDa of rHfIL-1p was clearly detected by anti-
ChIL-1p pAb. Plasma from non-infected birds showed
only approximately 60 kDa protein band, whereas MG-
infected birds showed 25 kDa and 60 kDa protein bands.
The immunoblot results verified that commercial anti-

1 2 3 4 5 M
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Fig. 1 Cross-reactivity of anti-ChlIL-1(3 antibody wiht HfIL-13. One-
microgram of rHflL-1(3 expressed from E. coli (lane 1), 1 uL of plasma
from non-infected (lanes 2, 3) and MG-infected birds (lanes 4, 5)
were analyzed by immunoblotting using anti-ChiL-1B antibody. M
represents protein molecular weight marker (kDa)
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ChIL-1B pAb can cross-react with both recombinant
and natural forms of HfIL-1p.

Development of direct ELISA assay using anti-ChIL-1f8
antibody

To develop a direct ELISA system for HfIL-1B, we first
tested the carbonate method for antigen coating. However,
there was no signal detected even when coating with
2000 ng/mL rHfIL-1p (data not shown). To improve coat-
ing the antigen on the plate, the dehydration method was
adopted. The ELISA results showed increased optical
density (OD450) in a dose-dependent fashion (Fig. 2). The
negative controls (coating buffer and the goat anti-rabbit
antibody) were only in the 0.034-0.044 range. Using the
dehydration coating method, we were able to detect as
low as 2 ng/mL of rHfIL-1p protein. The standard curve
showed a logarithmic scale (Y = a — b*ln (x + ¢)) with
0.94-0.95 adjusted R-square value.

Validation of the developed ELISA system using house
finch plasma

To validate the developed ELISA system, we measured
HfIL-1p plasma level from randomly selected captive
house finches. The samples were diluted with coating
buffer at 1:10 to 1:160 dilution factors (Fig. 3a), followed
by coating using the dehydration method. Based on the
OD450 values, the plasma samples diluted at 1:20
showed a similar range as the standard curve. Therefore,
we used a 1:20 dilution of plasma samples to measure
circulating HfIL-1f levels in house finches. The standard
curve showed “Y = a - b*ln (x + ¢)” equation with:
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a = 0.08494 (+ 0.01225), b = -0.01948 (+ 0.00456), and
¢ = -2.35041 (+ 0.52948). This translates into 2.92 ng/
mL, 2.77 ng/mL, 2.41 ng/mL and 3.58 ng/mL of plasma
HfIL-1p in each house finch, respectively (Fig. 3b).

We also measured HfIL-1f plasma levels in non-
infected and MG-infected birds with a 1:20 dilution factor
(Fig. 4a), followed by coating onto Nunc MaxSorp® flat-
bottom plates using the dehydration method. Two non-
infected birds revealed 2.54 ng/mL and 3.23 ng/mL
plasma HfIL-1B, whereas MG-infected house finches had
19.20 ng/mL and 8.67 ng/mL HfIL-1( levels (Fig. 4b).

Discussion

Unlike mammalian research, few immune reagents includ-
ing specific antibodies are available for immunological
studies in wild birds. Although the infection of house
finches by the bacterial pathogen MG is among the best-
studied wildlife disease systems [22], there is still limited
knowledge of the host’s immune response especially with
respect to cytokine levels. Recently, our lab identified and
characterized HfIL-1p, which modulates the expression of
Th1/Th2 cytokines as well as enhances the expression of
acute phase protein by activated immune cells [27]. We
also reported increased plasma levels of HfIL-1p in MG-
infected house finches using the immunoblotting method
[27], which could not quantify circulating HfIL-1f3 levels.
In this study, we developed and validated a direct ELISA
system using commercially available anti-ChIL-1f antibody
to quantify plasma levels of HfIL-1B. The immunoblotting
assays validated the cross-reactivity of commercial anti-
ChIL-1p pAb with the recombinant form and plasma HfIL-

~
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Fig. 2 A standard curve with rHfIL-13 by dehydration coating method. To establish an ELISA system for HfIL-1B, first a standard curve

1‘2 1I5 15 2'1 2'4
Con. of rHfIL-1B (ng/mL)

was established with rHfIL-13 using the dehydration coating method. The purified rHflL-13 was diluted with the coating buffer with the
following final concentrations: 0, 3, 6, 9, 12, 15, 15, 18, 21, and 24 ng/mL. Fifty-microliter of serially diluted rHfIL-13 were added to each
well of Nunc MaxiSorp® flat-bottom 96-well plate, followed by incubation at 60°C for 2 h. Then, the plate was sequentially incubated with
anti-ChIL-13 pAb (1:1000) and goat anti-rabbit antibody (1: 2000). The HRP signal was developed with TMB solution for 30 min. The
coating buffer itself was used as negative control. Values represent the mean of three independent experiments. Error bars represent
standard error of the mean. The dashed line indicates the threshold line, representing the value of negative control and limitation of the
developed ELISA system (OD450 = 0.038)
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Fig. 3 Quantification of HfIL-1B in the plasma of non-infected house finches using the developed ELISA system. House finch plasma from
randomly-selected non-infected birds were serially diluted with PBS as follows: 1:10, 1:20, 1:40, 1:80, and 1:160 (a). The diluted samples were
coated with the dehydration method (60°C for 2 h), followed by sequential incubation with anti-ChlL-1(3 antibody (1:1000) as the primary
antibody and the secondary antibody goat anti-rabbit antibody (1:2000). The HRP signal was developed with TMB solution for 45 min. The
concentration of HfIL-13 plasma levels was calculated using Excel (Microsoft Corp) (b). The values represent the mean of triplicate wells with
standard deviation bars. The dashed line indicates the threshold line, representing the value of negative control and limitation of the developed
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1B. Similar to previously reported (27), MG-infected house
finches showed two prominent bands observed at approxi-
mately 25 kDa and 60 kDa, whereas non-infected birds
showed very weak 60 kDa protein band [27], implying the
25 kDa may be the more active secreted form of HfIL-1.
Coating, which is the process where a suitably diluted
antigen or antibody is incubated until adsorbed to the
surface of the well, is the first step in any ELISA. Ad-
sorption occurs passively as the result of hydrophobic
interactions between the amino acid side chains on the
antibody or antigen used for coating, and the plastic sur-
face. It is dependent upon time, temperature and the pH

of the coating buffer, as well as the concentration of the
coating agent. Bicarbonate buffer (pH 9.6) is the most
common coating buffer, and typical coating condition
involves 50—-100 pL of coating buffer containing 1-10
pg/mL of either antigen or antibody incubated over-
night at 4°C or for 1-3 h at 37°C. However, optimal
coating conditions should be tested during the devel-
opment of a new ELISA system. In this study, the typ-
ical coating condition of incubation at 4°C overnight
did not work in detecting HfIL-1p in plasma samples.
To increase adsorption to the plate, we applied a de-
hydration method for antigen coating, although we
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Fig. 4 Quantification of plasma HfIL-1B in non-infected and MG-infected house finches using the developed ELISA system. Plasma samples were
collected from two individual birds from non-infected and MG-infected groups. Then, plasma samples were serially diluted with PBS as follows:
1:10, 1:20, 1:40, 1:80, and 1:160 (a). The diluted samples were coated with the dehydration method (60°C for 2 h), followed by sequential
incubation with anti-ChlIL-1(3 antibody (1:1000) as the primary antibody and the secondary antibody goat anti-rabbit antibody (1:2000). The HRP
signal was developed with TMB solution for 30 min. The concentration of HfIL-13 plasma level was calculated using Excel (Microsoft Corp) (b).
The values represent the mean of triplicate wells with standard deviation bars. The dashed line indicates the threshold line, representing the value
of negative control and limitation of the developed ELISA system (OD450 = 0.042)

were concerned with the background level of spectro-
metric readings. To eliminate such background, we
used the coating buffer itself as a negative control. We
also incubated rHfIL-1p and random plasma samples
with goat anti-rabbit antibody alone. In both cases, the
absorbance at 450 nm was in the 0.034—0.044 range,
which was significantly low compared to the 2 ng/mL
rHfIL-1P, the minimum concentration that the estab-
lished ELISA system can detect. It is currently unclear
why the dehydration method rather than a typical

coating method is superior for detecting HfIL-1p in
house finch plasma. One potential explanation is the
denaturation of HfIL-1p during the heat-based dehy-
dration, resulting in the increased binding affinity be-
tween HfIL-1p and rabbit anti-ChIL-1p, as well as
adsorption to the plate.

Unlike commercial systems, which mostly use a sand-
wich ELISA with capture and detection antibodies, we
developed a direct ELISA by coating the antigens on the
plate using dehydration. Therefore, the sensitivity of the
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developed HfIL-1p ELISA system is low, and the assay
can only detect a limited concentration range (2—-20 ng/
mL). In our trials with random plasma samples and
non-infected and MG-infected plasma samples, a 1:20
dilution with PBS fell within the measurable standard
curve range. However, it is necessary to serially dilute
plasma samples for every ELISA assay to obtain the best
fit within the standard curve range. For the standard
curve with rHfIL-1p, first we attempted to use a simple
logarithmic equation (i.e. Y = a*ln (x) + c); however, the
adjusted R-square value was 0.89, resulting in high vari-
ation among samples. Thus, we modified the logarithmic
equation to “Y = a — b*ln (x + ¢)”, which yielded an
adjusted R-square value of 0.94—0.95.

The ELISA results showed the non-infected house
finches had an average of 2.89 ng/mL of plasma HfIL-
1B, while the MG-infected birds had on average
13.93 ng/mL of plasma HfIL-1p. Two-sample ¢-test
showed no statistical significance between non-infected
and MG-infected birds (P = 0.28), likely due to the low
sample size tested. However, the MG-infected birds
showed average plasma HfIL-13 levels almost 5-fold
higher than those of non-infected birds. Further studies
should use a larger number of birds to examine how
plasma levels of HfIL-1p change during MG infection.

Conclusions

We validated the cross-reactivity of anti-ChIL-13 pAb
with HfIL-1B using immunoblotting. Then, a direct
ELISA system was developed using anti-ChIL-1f anti-
body to quantify HfIL-1p plasma levels using the dehy-
dration coating method. The developed ELISA system
can quantify HfIL-1p in plasma of test birds including
non-infected and MG-infected house finches. This de-
veloped direct ELISA system using commercially avail-
able chicken antibody will provide valuable research and
diagnostic tools for house finch research.
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