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of two serum ELISAs and one fecal qPCR
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clinically infected young-adult French
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Abstract

Background: The objective was to evaluate the diagnostic accuracy of two serum ELISAs and one quantitative PCR
on feces for the diagnosis of paratuberculosis in sub-clinically infected young-adult sheep. A cross-sectional study
was performed to collect 1197 individual blood and fecal samples from 2- to 3-year-old sub-clinically infected ewes
in 14 closed meat sheep flocks in France. Fecal excretion was determined using qPCR based on IS900 sequence
detection, and serology was performed on serum samples using two commercial ELISAs. Data were analyzed in
a 3-test multiple-population Bayesian latent class model accounting for potential dependence between the three
tests fitted in OpenBUGS. Separate analyses were performed according to whether doubtful ELISA results were
handled as positive or negative and based on two thresholds for fecal qPCR (Ct ≤ 42 or Ct ≤ 40).

Results: The best fit to the data was provided by accounting for a pairwise dependence between the two ELISAs
on sensitivity and pairwise dependence between the three tests on specificity. Under this model, the estimated
ELISA sensitivities were 17.4% (95% PCI: 10.6 – 25.9) and 17.9% (95% PCI 11.4 – 25.6), with estimated specificities
of 94.8% (95% PCI: 93.1 – 96.3) and 94.0% (95% PCI: 92.2 – 95.7). Fecal qPCR demonstrated significantly higher
sensitivity (47.5%; 95% PCI: 29.3 – 69.9) and specificity (99.0%; 95% PCI: 97.9 – 99.9) than the ELISAs. Assumptions
regarding doubtful ELISA results and qPCR thresholds had only a slight impact on test accuracy estimates. Models not
accounting for pairwise dependence between ELISA and fecal qPCR results yielded higher sensitivity and specificity
estimates but always provided a worse fit to the data.

Conclusions: Although the overall sensitivity of serum ELISAs and fecal qPCR remains low, the higher diagnostic
performances of fecal qPCR make it more suitable for paratuberculosis diagnosis in sub-clinically infected sheep.
Our results also illustrate that all dependence structures should be investigated when evaluating diagnostic
test accuracy and selection based on a rigorous statistical approach.
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Background
Surveillance and control of paratuberculosis are largely
hampered by the lack of sensitivity of available diagnostic
tests, especially for the detection of sub-clinically infected
(i.e., clinically healthy) animals. Historically, the evaluation
of diagnostic test accuracy for the diagnosis of paratuber-
culosis has been based on cases confirmed by histopatho-
logical examination, fecal or tissue culture or repeated
fecal culture for the detection of Mycobacterium avium
subsp. paratuberculosis (MAP), the causative agent of
paratuberculosis. However, due to the long and complex
physiopathology of the disease, these cases do not include
all latent cases of infection, generally leading to biased
estimates of sensibility of diagnostic tests [1, 2].
In the last few decades, however, special attention has

been given to the evaluation of diagnostic test accuracy in
sub-clinically infected animals. Because of the unknown
true disease status of the study subjects, due to the ab-
sence of a perfect reference test, latent class models have
been increasingly used. These non-gold standard methods
were first introduced by Hui and Walter (1980) [3] for 2
conditionally independent tests and two populations and
were further extended to take account of conditional de-
pendence between tests [2–6]. Bayesian modeling has
been extensively developed to tackle non-identifiability
issues that might arise in such models by incorporating
prior knowledge of test performances [7, 8].
When erroneously assumed, the assumption of condi-

tional independence between tests can seriously bias par-
ameter estimations [9, 10]. Conditional dependence has
been taken into account in most cases when evaluating
two or more tests based on the same biological process
(i.e., two fecal culture methods or two serological tests)
for the diagnosis of paratuberculosis in cattle or in small
ruminants [11–14]. Conversely, the a priori assumption of
conditional independence between tests based on the
identification of MAP (i.e., fecal culture, Ziehl-Neelsen
stained fecal smear or fecal PCR) and those targeting the
immune response (i.e., serum ELISA or AGID) has often
been made [12, 15] but has been explicitly evaluated in
only a few studies [16, 17].
One other assumption underlying latent class models is

that the accuracy of tests is constant across all populations,
or in other words, that the various infection stages among
different populations are homogeneously distributed [2].
This assumption may, however, be difficult to stick to in
practice, especially when sampling without controlling for
factors that influence test accuracy [18]. For paratubercu-
losis, the increasing test sensitivity with the course of
infection at the individual level would advocate for an age-
specific evaluation of test accuracy [19]. This may lead to
wide confidence or credible intervals of accuracy estimates,
especially when prevalence is low and sample size is lim-
ited, as shown by simulation studies [20] and experience in

field studies [16, 15]. Furthermore, a diagnostic test’s sensi-
tivity may also vary between species, age and possibly
MAP strains [2], while its specificity may be influenced by
the presence of environmental mycobacterial [21].
Fecal quantitative PCR (qPCR) has been widely devel-

oped in the last two decades as an alternative to fecal
culture for the detection of animals. It is less time con-
suming, especially for the detection of S-strains (sheep
strains) of MAP that grow slowly in vitro compared to C-
strains (cattle strains) [22]. There is also growing evidence
that fecal qPCR might be at least as sensitive as, or even
more sensitive than, fecal culture [23, 24]. However, its
analytical sensitivity depends on several factors, including
sample quality, DNA extraction methods, DNA target and
qPCR systems [25, 26]. Furthermore, from an epidemio-
logical point of view, Bayesian latent class models have
seldom been applied to evaluate the diagnostic accuracy
of fecal PCR [12], and estimates for sheep are scarce [14].
In this context, it would be unwise to simply extrapo-

late already published estimates of diagnostic test accur-
acy to any situation without utmost caution. In this
study, we used a latent class approach in a Bayesian
framework to estimate the diagnostic accuracy of two
serum ELISAs and one fecal qPCR for the diagnosis of
paratuberculosis in sub-clinically infected young-adult
meat sheep, focusing on a narrow age range. Special
attention was paid to the possibility of conditional
dependence between tests under evaluation.

Methods
Flock and animal selection
Fourteen meat flocks with a size ranging from 290 to 1400
adult ewes (median 610) were selected for the study. They
all belonged to the same breeders’ association located in
the Lot administrative region of France. Inclusions criteria
were (i) Causse du Lot purebred closed flocks with no
introduction of replacement ewes for at least 4 years, (ii)
history of positive serological results and/or of clinical
cases of paratuberculosis, and (iii) no history of vaccination
against paratuberculosis. Sampling was performed from
March 2014 to March 2015, avoiding the month before
and after lambing as well as the month after artificial
insemination or mating. Although it has been shown that
the sensitivity of serological testing may be enhanced in
early and late lactation in cattle [15, 21], this sampling
scheme was applied to fulfill breeders’ requests to reduce
animal stress. Only 2- to 3-year-old ewes were included,
using their eartag as an indicator of their birth cohort.
Individual ages at sampling were calculated based on birth
date available from the French Systeme National d’Infor-
mation Génétique (SNIG) database. Ewes showing obvious
clinical signs of paratuberculosis, if any, were excluded
because the target population was sub-clinically infected
animals. If no feces could be retrieved intra-rectum at the
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time of sampling, animals were excluded and the next one
fulfilling the inclusion criteria was substituted. Depending
on flock size, the target sample size ranged between 60 and
150 ewes per flock.

Sample collection and handling
A handful of feces was sampled from the rectum of selected
animals using single-use gloves without lubricant and was
placed in an individually identified sterile plastic bag for
transportation. In parallel, a five-milliliter blood sample was
also collected from the jugular vein in vacuum tubes with-
out anticoagulant (Vacutainer® System). Feces and blood
samples were frozen at −20 °C prior to analysis. Animal
handling was performed in compliance with the European
Commission Directive 2010/63/EU. All farmers gave writ-
ten consent for their animals to be used in this study.

Laboratory testing
Serological tests
Two commercial ELISA tests were applied to serum
samples using an overnight incubation protocol following
the manufacturer’s instructions: ELISA A (ID Screen
Paratuberculosis Indirect®, batch 602, IDVet, Montpellier,
France) and ELISA B (IDEXX paratuberculosis screening®
kit, batch 5074, IDEXX, Montpellier, France). Negative
and positive controls provided by the manufacturers were
included on each ELISA plate, and manufacturer’s guide-
lines were strictly followed for interpretation of sample to
positive (S/P) ratio results: for ELISA A serum, samples
with S/P values <60%, between 60 and 70%, and ≥70%
were considered negative, doubtful, and positive for MAP
antibodies, respectively. For ELISA B, the negative and
positive thresholds were 45% and 55%, respectively.

Fecal real-time PCR
First, fecal samples underwent a concentration procedure
using the ADIAFILTER system (BioX, Rochefort, Belgium)
following the manufacturer’s instructions. Ten grams of
feces were rehydrated overnight in 70 mL of bidistilled
sterile water. The top 10 mL of the supernatant were then
filtered and centrifuged using the ADIAFILTER® disposal.
Pellets were then resuspended in 500 μL of bi-distilled
water and mixed with 300 mg of 150-250 μm silica beads
(Silibeads, Sigmund Lindner, Warmensteinach, Germany)
for 30 s at 6800 rpm three times in a bead beater
(Precellys 24®, Bertin Technologies, Montigny-le-
Bretonneux, France). A magnetic bead-based DNA extrac-
tion was performed on a Kingfisher Flex® magnetic
particle processor (Thermo Fisher Scientific, Courtaboeuf,
France) following the NucleoMag 96 tissue protocol
(Macherey-Nagel, Hoerdt, France), with addition of an ex-
traction control (ADIAVET™ PARATB REALTIME, BioX,
Rochefort, Belgium) in each plate well. Samples were sub-
jected to qPCR (ADIAVET™ PARATB REAL TIME, BioX,

Rochefort, Belgium), following the manufacturer’s instruc-
tions. Each sample was also tested for amplification of the
internal control. Bi-distilled water and synthetic IS900
DNA provided in the amplification kit were used as nega-
tive and positive controls, respectively. Forty-five amplifi-
cation cycles were performed on a LightCycler 480 (Roche
Life Science, Meylan, France), and fluorescent signals were
recorded in two channels, with FAM detecting IS900 and
VIC detecting the extraction control. Due to the overlap-
ping spectra of the two dyes, a color compensation step
was applied. Raw fluorescence data were obtained from
the LightCycler 480 and modeled using the qpcR package
[27] in R software [28]. Cycle thresholds were determined
using second derivative maximum (CpD2). According to
the manufacturer’s recommendations, samples that
reached fluorescence with a cycle count (Ct) below 40
were considered positive. A higher threshold (Ct ≤ 42)
was also considered. Indeed, careful examination of late
fluorescence curves indicated that they were associated
with low but unambiguously positive results up to 42 Ct,
while non-specific amplification results could not be ruled
out beyond this threshold.
All tests were performed blind for other test outcomes.

Target conditions
The purpose of this evaluation was to provide an accur-
ate appraisal of sensitivity and specificity of two ELISAs
and one fecal qPCR for the diagnosis of paratuberculosis
in sub-clinically infected 2- to 3-year-old ewes. The
target condition for this evaluation was MAP-infected
animals that shed enough bacteria in their feces to
potentially test positive on fecal PCR at the time of
sampling, that mounted an antibody response towards
MAP that could be detected by ELISA, or both. Following
the Nielsen and Toft (2008) definition [29], this target
condition included both infected and infectious animals
but probably only few affected ones, as ewes showing
obvious clinical signs of paratuberculosis were excluded
on farms. Note that animals passively shedding MAP in
their feces [30, 31] as a result of heavy environmental con-
tamination were also included in our target conditions.

Statistical analysis
Separate analyses were performed for the four scenarios
according to whether doubtful ELISA results were han-
dled as positive or negative and on the choice of the
positive cut-off for fecal qPCR (Ct ≤ 42 or Ct ≤ 40).
Based on previous serological results, history of paratu-
berculosis clinical cases and judgment of practicing
veterinarians and technicians supervising the flocks,
flocks were grouped into 4 sub-populations according to
the within-flock suspected prevalence of infection: very
low (3 flocks, 287 sampled ewes), low (5 flocks, 299
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sampled ewes), moderate to high (6 flocks, 447 sampled
ewes) and very high (2 flocks, 164 samples ewes).

Model definition
We applied multiple populations Bayesian Latent Class
models [32, 33] to estimate the diagnostic accuracy of
the two ELISAs and the fecal qPCR in the absence of
gold standard.
The models were defined following the approach by

Dendikuri and Joseph (2001) [4] that uses a multinomial
distribution to model the frequency of the 8 observed
combinations of test outcomes. The simplest model
assumes conditional independence between tests (i.e.,
given the true disease state of a sample, the outcome of
one test does not have any influence on the probability
of a positive or negative outcome in a second test).
Under this assumption, the probability of a combination
of test outcomes in a given population only depends on
the true prevalence within this population and the sensi-
tivities and specificities of diagnostic tests, which are
assumed constant across all populations [3]. If Ti + de-
notes the event of a positive outcome for test i, i = 1, …,
3, Sei and Spi denote the sensitivity and specificity of test
i, respectively, and πj, the true prevalence in a given
population j, j = 1…4, then the probability of all three
test being positive on a sample in this population is
given by

P Tþ
1 ;T

þ
2 ;T

þ
3

� � ¼ πjSe1Se2Se3 þ 1−πj
� �

1−Sp1ð Þ
� 1−Sp2ð Þ 1−Sp3ð Þ

The probability of other combinations of test out-
comes can be easily derived analogously. The assump-
tion of conditional independence between tests may,
however, not hold in practice and should be challenged
against models allowing for the conditional dependence
between tests [2]. We considered the approach proposed
by Dendikuri and Joseph (2001) [4], where pairwise de-
pendence of sensitivities and specificities of tests are ex-
plicitly modeled by covariance terms (Covse and Covsp).
In the fully dependent case, the probability of all three
tests being positive on a sample within population j is
then given by

P Tþ
1 ;T

þ
2 ;T

þ
3

� � ¼ πjðSe1Se2Se3 þ Covse23Se1 þ Covse13Se2

þCovse12Se3 þ Covse123Þ þ 1−πj
� �

ð1−Sp1ð Þ 1−Sp2ð Þ 1−Sp3ð Þ þ Covsp23
1−Sp1ð Þ þ Covsp13 1−Sp2ð Þ þ Covsp12
1−Sp3ð Þ−Covsp123Þ

Starting from the fully saturated model below, covari-
ance terms were removed one-by-one following a step-
wise backward selection procedure using the Deviance
Information Criterion (DIC) as the selection criterion

[34]. The DIC evaluates the model fit while penalizing
the number of parameters, and it is generally accepted
that models with smaller DIC are better supported by
the data.

Comparing diagnostic test accuracies
The Bayesian posterior probability of difference (PPD) in
sensitivity and specificity between tests was estimated
using the Boolean step function in OpenBUGS [12, 16].
If PPD <0.05 or >0.95, we concluded that the sensitiv-
ities (or specificities) of two compared tests were signifi-
cantly different.

Serial and parallel testing
The accuracy of serial and parallel testing for the combi-
nations of one ELISA and fecal qPCR was finally evalu-
ated. For two conditionally dependent tests, namely, Test
1 and Test 2, the sensitivity (Seser) and specificity (Spser) of
serial testing are given by

Seser ¼ Se1Se2 þ CovSe12

Spser ¼ 1− 1−Sp1ð Þ 1−Sp2ð Þ þ CovSp12ð Þ;
where CovSe12 and CovSp12 denote the covariance terms
for the pairwise dependence of sensitivities and specific-
ities, respectively.
Sensitivity (Separ) and specificity (Sppar) of parallel testing

were given by

Separ ¼ 1− 1−Se1ð Þ 1−Se2ð Þ þ CovSe12ð Þ
Sppar ¼ Sp1Sp2 þ CovSp12

Prior distributions
Uniform distributions in the range from 0 to 1 were
used as priors for sensitivity and prevalence model
parameters. Based on previous published estimates in
sheep [16, 35–37], the specificity of ELISAs and fecal
qPCR was set at 0.95, with 95% certainty to be greater
than 0.80. The corresponding Beta distribution Beta
(21.20, 2.06) was generated using the epi.betabuster
function embedded in the epiR package in R software
[38] and was used as prior distribution for all specificity
parameters.
Constraints were defined for covariance terms so that

each of the 8 probabilities of combinations of test out-
comes was between 0 and 1 [4], and uniform distributions
between the lower and upper constraint bounds were used
as non-informative priors.

Implementation
Computations were performed with OpenBUGS [39]
embedded in R software using the R2OpenBUGS package
[40]. Posterior estimates for test sensitivity and specificity
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were generated using the Markov Chain Monte Carlo
(MCMC) sampling method and the Gibbs algorithm.
Three simulation chains of 200,000 iterations were run
with different starting values, with the first 10,000 itera-
tions discarded as the burn-in period. The chains were
then thinned, taking every tenth sample to reduce auto-
correlation among the samples. The convergence of the
chains following the initial burn-in period was assessed
visually by examining the traces, histories, Monte Carlo
errors and the Gelman-Rubin diagnostic plots [41, 42].
The posterior distribution of each parameter was summa-
rized using the mean and the 95% posterior credible inter-
val (95% PCI). Analysis and graphing of the MCMC
output were conducted using the coda package in R [43].
The aggregated data sets supporting the results of this

article and the R2OpenBUGS code used are provided as
additional files (Additional files 1 and 2).

Sensitivity analysis and model assumption checking
To assess the influence of prior information on the esti-
mates of model parameters, poorly informative uniform
distributions in the range of 0.5 to 1 were also consid-
ered for specificities. These truncated distributions were
chosen to avoid convergence issues of single MCMC
chains due to label switching [44].
To verify the assumption of constant test accuracy

across all populations, we first excluded each of the 4
populations and subsequently each of the 14 flocks, one
at a time, and re-ran all investigated models.

Results
Complete tests results were available for 1197 animals
fulfilling the inclusion criteria, with a median sample
size per flock of 89 (minimum 59, maximum 147). The
median age at sampling was 2.5 years (lower quartile 2.3,
upper quartile 2.7).

Test results
The cross-tabulated counts of the dichotomous outcome
of the three tests are given in Table 1 for the 1197 sampled
animals when assuming a fecal qPCR positive threshold of
Ct ≤ 42. The proportion of concordant test results was
greater between the two ELISAs (1137/1197 = 95%) than
between fecal qPCR and ELISA A (1047/1137 = 87%) or
ELISA B (1051/1197 = 88%). Both ELISAs yielded fewer
positive test results (n = 85 for ELISA A, n = 93 for ELISA
B) than fecal qPCR (n = 105).
Doubtful results were few for both ELISAs tests and

significantly fewer for ELISA A (n = 8) compared to
ELISA B (n = 23, Fisher’s Exact test p = 0.0109). Setting
the positive cut-off at Ct ≤ 42 for fecal qPCR, rather
than Ct ≤ 40, yielded 32 more positive samples.

Model selection
Doubtful ELISA results and moving the positive cut-off
from 40 to 42 for fecal qPCR had no influence on model
selection. Based on DIC, the best fitting model (model 1)
was the one with a pairwise dependence between ELISA
A and ELISA B on sensitivity and pairwise dependence be-
tween the three tests on specificity (Table 2). This model
always outperformed the one assuming a conditional inde-
pendence between fecal qPCR and both ELISAs on sensi-
tivity and specificity (model 2). The difference in the DIC
of model 1 and model 2 was always greater than 12.5, sug-
gesting that including covariance terms between the fecal
qPCR and both ELISAs provides a better fit to the data,
although this was only significant for specificity. As
expected, the assumption of conditionally independent
ELISAs was not supported by the data, as shown by the
high DIC values of model 3 (Table 2).

Estimated accuracy of diagnostic tests
The posterior distributions for sensitivity and specificity
of the three tests and prevalence are summarized in

Table 1 Cross-classified positive (+) and negative (−) results of two serum ELISAs and one fecal PCR in sub-populations 1 to 4 for
sub-clinically infected 2- to 3-year-old French Causse du Lot sheep

ELISA
A

ELISA
B

Fecal
qPCR

Subpop.
1

Subpop.
2

Subpop.
3

Subpop.
4

Total

+ + + 0 2 5(4) 8 (5) 15 (11)

+ + − 9 (7) 11 (7) 14 (14) 10 (6) 44 (34)

+ − + 0 1 2 2 5 (5)

+ − − 6 (7) 5 (8) 9 (6) 1 (6) 21 (27)

− + + 1 3 6 (4) 1 11 (9)

− + − 9 (5) 6 (4) 7 (6) 1 23 (16)

− − + 0 4(3) 37 (17) 33 (28) 74 (48)

− − − 262 (267) 267 (271) 367 (394) 108 (115) 1004 (1047)

Total 287 299 447 164 1197

Doubtful ELISA and fecal qPCR Ct ≤ 42 results were treated as positive. When doubtful ELISA and fecal qPCR 40 ≤ Ct ≤ 42 results were treated as negative, counts
are shown in brackets
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Table 3 in form-of-point estimates (mean) and 95%
Bayesian posterior density credible intervals (95% PCI).
For comparison purposes, the results from model 2 and
model 3 are also shown. The estimated sensitivity and
specificity were similar for ELISA A and ELISA B
(Se ≈ 17%, PPD = 0.121; Sp ≈ 95%, PPD = 0.401) (Table 3,
model 1). The fecal qPCR was found to be more sensitive
(47.5%) and specific (99.0%) than ELISA tests, with
PPD > 0.999 and posterior 95% credible interval excluding
zero. Under the assumption of complete independence
between the fecal qPCR and both ELISA tests (model 2),
higher estimated sensitivities were obtained, especially for

fecal qPCR (56.3%), without substantial changes for esti-
mated specificities. The fully conditional independent
model (model 3) yielded unrealistic significantly higher es-
timated sensitivity and specificity for ELISA A (Se = 70.0%,
Sp = 98.7%) and ELISA B (Se = 80.0%, Sp = 98.9%) than
for fecal qPCR (Se = 31.3%, Sp = 93.2%).
From model 1, ELISA A and ELISA B appeared posi-

tively correlated for sensitivity and specificity (Covse me-
dian of 0.108 and 95% PCI between 0.068 and 0.153;
Covsp median 0.029 and 95% PCI between 0.018 and
0.033). No evidence of correlation was found between
ELISAs and fecal qPCR for sensitivity. In model 1, co-
variance terms for specificity between the fecal qPCR
and ELISA A (Covsp median 0.001 and 95% PCI be-
tween 0.0009 and 0.00529) and ELISA B (Covsp median
0.00472 and 95% PCI between 0.00029 and 0.01179)
were very small, although significantly different from 0.
No substantial differences in estimated sensitivity and

specificity were observed when analyzing the three other
datasets (Table 4). Treating doubtful ELISA results as
negative mostly induced a slightly lower estimated sensi-
tivity of ELISA B (14.7%), which was expected from the
larger number of doubtful results obtained with this test
compared to ELISA A. Similarly, changing the positive
cut-off for fecal qPCR from Ct ≤ 42 to Ct ≤ 40 yielded a
slightly lower estimated sensitivity for fecal qPCR

Table 2 Bayesian Deviance Information Criterion (DIC) for model
1 to 3 under different scenarios

Deviance Information Criterion

Doubtful
ELISA results

Fecal qPCR
positive cut-off

Model 1a Model 2b Model 3c

Positive Ct ≤ 42 120.4 134.2 227.9

Positive Ct ≤ 40 114.3 130.1 197.5

Negative Ct ≤ 42 115.6 128.2 222.1

Negative Ct ≤ 40 114.3 127.5 194.5
aModels with pairwise dependence between ELISA A and ELISA B for sensitivity
and pairwise dependence between the three tests for specificity
bModels with pairwise dependence between ELISA A and ELISA B for sensitivity
and specificity and assuming conditional independence of fecal qPCR
cModels assuming fully conditional independence between the three tests

Table 3 Mean and 95% posterior credible intervals (PCI) for the sensitivity (Se) and specificity (Sp) of two serum ELISAs and on fecal
qPCR and true prevalence (Ps) of MAP in sub-populations 1 to 4

Mean (95% PCI)

Model 1a Model 2b Model 3c

DIC 120.4 134.2 227.9

ELISA A Se 17.9 (11.4; 25.6) 19.7 (13.1; 27.3) 70.0 (56.0; 85.6)

Sp 94.8 (93.1; 96.3) 95.0 (93.4; 96.5) 98.7 (97.4; 99.9)

ELISA B Se 17.4 (10.6; 25.9) 23.2 (15.8; 31.5) 80.0 (63.7; 95.3)

Sp 94.0 (92.2; 95.7) 94.8 (93.2; 96.4) 98.9 (97.5; 99.9)

Fecal qPCR Se 47.5 (29.3; 69.9) 56.3 (36.9; 77.3) 31.3 (21.8; 41.9)

Sp 99.0 (97.9; 99.7) 99.4 (98.4; 99.9) 93.2 (91.6; 94.7)

Sub-pop. 1 P1 0.01 (0.0; 0.03) 1.2 (0.1; 3.8) 6.6 (3.1; 11.0)

Sub-pop. 2 P2 5.4 (1.6; 11.5) 6.2 (2.5; 11.9) 8.1 (4.7; 12.3)

Sub-pop. 3 P3 21.7 (13.1; 34.5) 19.2 (12.1; 29.4) 8.4 (5.2; 12.3)

Sub-pop. 4 P4 57.3 (35.4; 88.8) 47.2 (31.0; 70.4) 15.5 (9.7; 22.6)

ΔELISA A – ELISA B Se 0.5 (−5.6; 5.9) −3.5 (−9.9; 2.5) −10.0 (−28.8; 9.3)

Sp 0.8 (−0.8; 2.4) 0.2 (−1.2; 1.5) −0.2 (−1.9; 1.5)

ΔFecal PCR – ELISA A Se 29.6 (13.7; 50.9) 36.7 (18.6; 57.9) −38.8 (−56.4; −22.4)

Sp 4.2 (2.5; 6.0) 4.4 (2.6; 6.2) −5.5 (−7.4; −3.7)

Δ Fecal PCR – ELISA B Se 30.1 (14.5; 50.8) 33.1 (16.0; 53.4) −48.8 (−66.4; −30.8)

Sp 5.0 (3.4; 6.7) 4.6 (2.8; 6.4) −5.7 (−7.7; −3.8)

Doubtful ELISA and fecal qPCR Ct ≤ 42 results were treated as positive
aModels with pairwise dependence between ELISA A and ELISA B for sensitivity and pairwise dependence between the three tests for specificity
bModels with pairwise dependence between ELISA A and ELISA B for sensitivity and specificity and assuming conditional independence of fecal qPCR
cModels assuming fully conditional independence between the three tests
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(40.7%) and slightly higher estimated sensitivity for
ELISA A (21.0%) and ELISA B (20.0%). In any case, the
estimated specificity of the three tests remained mostly
unchanged.

Serial and parallel testing
Serial and parallel testing were evaluated for model 1
(Table 5). For both ELISA and fecal qPCR combinations,
serial testing was associated with a slight increase in
specificity but a strong drop in sensitivity to below 9%.
The use of ELISA and fecal qPCR in parallel testing led
to an increased estimated sensitivity compared to fecal
qPCR alone, though at the price of a loss of specificity.

Sensitivity analysis and model assumption checking
The use of poorly informative prior distributions for
specificities and resampling subpopulations or flocks did
not yield any substantial change of the parameter estimates.
This suggests a very weak influence of prior distributions
on estimation and that the assumption of constant sensitiv-
ities and specificities was not unreasonable. Furthermore,
model selection based on DIC remained unchanged,
strengthening our findings regarding the conditional de-
pendence between test results.

Discussion
We used a Bayesian latent class approach to estimate
the diagnostic accuracy of two serum ELISAs and one
fecal qPCR for the detection of 2- to 3-year-old sub-
clinically infected sheep. This evaluation follows the
standards for the reporting of diagnosis accuracy for
paratuberculosis [1] that were recently extended to
Bayesian latent class models [2].
Latent class models are highly sensitive to assumptions

made regarding the conditional dependence between tests
[10]. We found that treating all three tests as conditionally
independent (model 3) led to biased results, with strongly
overestimated sensitivities for both ELISAs. This finding is
supported by the high DIC value obtained for this model
and was already emphasized by simulation studies [20]. In
the same way, we found that the assumption of condi-
tional independence between fecal qPCR and ELISAs
(model 2) was not supported by the data. Although the
conditional independence between fecal culture and
ELISA may hold [16, 17], to our knowledge, there is no
available study evaluating the conditional dependence be-
tween fecal qPCR and ELISA. Indeed, the a priori assump-
tion of conditional independence is made in most cases
but not formally tested [12, 15]. In our study, covariance
terms between fecal qPCR and ELISAs were only signifi-
cant in the specificity part of the model and were consid-
erably less than the one found between the two ELISAs.
However, based on DIC values, models that accounted for
this dependence were unambiguously favored and led to
estimates that were moderately lower than those obtained
under the conditional independence assumption. These
findings may or may not apply to evaluations of other
commercial ELISAs and PCRs, depending on the antigens
used and gene targets, respectively. In some instances,
moreover, the dependence between tests may be of
minimal importance, especially if the individual estimates
(i.e., specificity) are close to one [2]. However, our results
suggest that, when possible, models accounting for all
dependence of sensitivities and specificities should be
evaluated first and possibly simplified based on a rigorous
selection process. Complete saturated models may, how-
ever, not be identifiable (i.e., with the number of parame-
ters greater than the degrees of freedom permitted by the
data), allowing only restrained covariance structures to be
evaluated [44].
One other assumption underlying latent class models

is that the various infection stages among the different
populations are homogeneously distributed [2]. Our
study was based on animals belonging to a narrow age
range (2 to 3 years), which, to our point of view, offers
several advantages. First, it might have lessened the se-
lection biases related to a non-homogenous sampling
across the different infection stages among populations,
since an age representative sample of animals might be

Table 4 Mean and 95% posterior credible intervals (PCI) for the
sensitivity (Se) and specificity (Sp) of two serum ELISAs and one
fecal qPCR, depending on different scenarios

Dataset Mean (95% PCI)

Se Sp

Doubtful ELISA results
as negative, fecal qPCR
cut-off Ct ≤ 42

ELISA A 17.3 (11.0; 24.8) 95.3 (93.7; 96.7)

ELISA B 14.7 (8.5; 22.4) 95.6 (94.0; 97.0)

Fecal qPCR 50.9 (31.3; 73.3) 99.2 (98.2; 99.8)

Doubtful ELISA results
as positive, fecal qPCR
cut-off Ct ≤ 40

ELISA A 21.0 (12.8; 30.8) 94.8 (93.1; 96.3)

ELISA B 20.0 (11.9; 30.2) 94.0 (92.2; 95.6)

Fecal qPCR 40.7 (23.5; 63.2) 99.0 (98.0; 99.7)

Doubtful ELISA results
as negative, fecal qPCR
cut-off Ct ≤ 40

ELISA A 21.2 (12.9; 31.0) 95.3 (93.7; 96.7)

ELISA B 17.4 (9.5; 27.5) 95.5 (94.0; 96.9)

Fecal qPCR 45.8 (26.2; 69.3) 99.2 (98.2; 99.8)

Estimates were obtained with model 1

Table 5 Mean and 95% posterior credible intervals (PCI) for the
sensitivity (Se) and specificity (Sp) of serial and parallel testing
using one serum ELISA and the fecal PCR

Mean (95% PCI)

ELISA A – Fecal qPCR ELISA B – Fecal qPCR

Serial testing Seser 8.7 (3.8; 15.8) 8.5 (3.5; 16.0)

Spser 99.8 (99.3 – 100.0) 99.3 (98.5; 99.9)

Parallel testing Separ 56.6 (38.8;76.1) 55.8 (37.4; 75.9)

Sppar 93.8 (91.8; 95.6) 93.1 (90.7; 95.1)

Estimates were obtained with model 1, with doubtful ELISA results and fecal
qPCR Ct ≤ 42 treated as positive
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difficult to achieve in practice. In large herds/flocks
where only partial sampling is often applied due to cost
constraints, focusing on specific age cohorts may also
allow for an easier and more robust comparison of
prevalence estimates between herds/flocks. Finally, at
the herd/flock level, a narrow age range may facilitate
year-over-year comparison of results. The drawback of
such an approach is that our results may be strongly
linked to our study population and should be carefully
extrapolated to other situations.
As both ELISA and fecal qPCR provide a continuous

range of result values, the classification of samples as
positive or negative results in a loss of information [45]
and in inconclusive test results (in our case, doubtful
ELISA results and characteristic amplification curves
with Ct > 40 for fecal qPCR according to the manufac-
turer’s recommended positive threshold). As they may
have a strong influence on accuracy estimates [46], in-
conclusive results were classified either as positive or
negative in separate analyses following standards for
reporting of diagnosis accuracy studies. However, be-
cause there were only a few, doubtful ELISA results did
not cause any considerable differences in the summaries
of test performances. In the same way, choosing a Ct ≤ 42
rather than Ct ≤ 40 threshold for the fecal qPCR did not
lead to a dramatic change in sensitivity estimates. These
changes were of the order of magnitude as those ob-
served between statistical models 1 and 2.
Point estimates of both ELISA sensitivities obtained in

our study (14 - 21%) are similar to or slightly lower than
those obtained in other studies for the detection of sub-
clinically infected sheep reviewed in Nielsen and Toft
(2008) [29]. ELISA B was recently applied on serum and
milk in Greek dairy sheep and yielded higher sensitivity
estimates (46-49%) [47]. The reasons for these discrep-
ancies are not known but could be related to the age
structure of study samples, breed differences or possibly
regional MAP strain variations. Conversely, our specifi-
city estimates (94-96%) were in concordance with those
found in already mentioned studies in sheep [16, 35–37]
and support the idea that ELISA is far from being
perfectly specific.
Fecal qPCR has the potential to be a rapid and sensi-

tive method of MAP diagnosis, especially in sheep in
which fecal cultures performed poorly. We found that
fecal qPCR had higher diagnostic accuracy than ELISA,
with sensitivity estimates close to those obtained by
Baumann et al. [14] in sheep when using the Ct ≤ 40
cut-off for positive results. Moving the cut-off up to
Ct ≤ 42 was associated with slightly enhanced sensitivity
estimates with almost no change in specificity estimates.
While the specificity of fecal qPCR was very high, it was
not absolute at the Ct ≤ 42 or Ct ≤ 40 cut-off. An even
more conservative value (i.e., Ct ≤ 38) was also evaluated

without improvement of specificity estimates (results not
shown). Although the specificity of the IS900 target for
the detection of MAP is of concern, as other mycobac-
teria with IS900-like sequences have been described [48],
considerable improvements have been made in PCR
probe and primer designs in recent years [49, 50], and
this hypothesis is currently unlikely. However, other tar-
gets exclusive to MAP, such as the hspx gene [51], have
shown non-perfect specificity for the detection of infec-
tious animals when evaluated in Bayesian latent class
models [14]. Rather, this might reflect the potential of
pass through of orally ingested organisms by uninfected
animals [30, 31] or the small yet existent possibility of
cross-contamination of samples during collection or
laboratory processing. The multi-copy presence of the
IS900 target in the MAP genome (14-18 copies) might
conversely provide higher analytical sensitivity compared
to some specific alternative targets (f57, ISMAP02, hspx)
that are only present in six or fewer copies [52, 53].
Moreover, 10.0 g of feces were processed for the qPCR
detection, lowering the possibility of missing MAP
aggregates [54]. Nevertheless, as stated in our results,
the epidemiological sensitivity of fecal qPCR, even based
on the IS900 target, remains low in 2- to 3-year-old sub-
clinically infected sheep (40-50%). This might reflect the
low number of infected animals that shed MAP in their
feces within this age cohort, or that intermittent shed-
ding prevented their detection at the time of sampling,
or both.
Our specificity estimates for ELISAs and qPCR are

based on data collected in flocks suspected or known to
be infected by MAP. Therefore, they may not reflect those
that would have been obtained in truly paratuberculosis-
free flocks, in which they could be expected to be higher
[55]. However, the large-scale application of an imperfectly
specific test (even with specificity as high as 99.5%) is
questionable for detection purposes, as it would lead to
numerous false positive results in paratuberculosis-free
flocks that would require further investigation. Con-
versely, this lack of specificity may have fewer adverse im-
pacts on infected flock monitoring programs, as the
positive predictive value of tests will be higher, and no
confirmatory testing will generally be requested [56].
Finally, the estimated sensitivity of fecal qPCR had wide

credible intervals. In latent class model analysis, reasons
responsible for such findings are low true values of diag-
nostic test accuracy, low true prevalence, small sample size,
small difference in prevalence between sub-populations,
lack of global identifiability of the model, or parameter esti-
mates close to 0.5 [20, 44, 57]. Although a large number of
sheep were sampled, the estimated true prevalence was
rather low in two out of four sub-populations (0.8% and
5.4%, respectively), and therefore, the sensitivity estimates
were based on a limited number of positive results. This is
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also illustrated by the very narrow intervals for fecal qPCR
sensitivity estimates provided by multiplying the original
data by ten (11,970 animals) (results not shown).
The serial use of fecal qPCR for the confirmation of

ELISA-positive individuals allows for an almost perfect
specificity, especially for ELISA A (99.8%). Serial testing
was, however, associated with a very low global sensitivity,
meaning that the true infectious status of an ELISA-
positive individual that would be subsequently tested as
qPCR-negative in feces would remain uncertain. The
interferon-gamma release assay provides a positive re-
sponse earlier in the course of the disease than fecal cul-
ture [58] and would therefore be advised in such cases.
However, this assay also requires careful interpretation, as
it cannot distinguish between infected and exposed ani-
mals [59]. As shown in Table 5, the diagnostic accuracy at
the individual level could be enhanced by the use of serum
ELISA and fecal qPCR in parallel testing. This reflects the
fact that fecal shedding of MAP and the humoral response
are poorly correlated and that parallel testing might target
different individuals. This is also stated by the non-
significant covariance terms for sensitivity between fecal
qPCR and serum ELISAs in our Bayesian latent class
model and is in accordance with experimental infection
results indicating that some persistently shedding sheep
may develop clinical disease in the absence of an antibody
response [60]. The use of tests in combination, however,
substantially adds to the cost of control, which may or may
not be acceptable to sheep owners. Moreover, the higher
cost of individual fecal qPCR (approximately 35 euros or
39 USD) compared to serum ELISA (approximately 6
euros or 7 USD) limits its use at a large scale in France.

Conclusions
An accurate appraisal of diagnostic test accuracy is of
critical importance for a better evaluation of paratuberculo-
sis control programs. In this study, we showed that the as-
sumption of conditional independence between fecal qPCR
and serum ELISA was not supported by the data and that
accounting for this dependence provided slightly different
accuracy estimates. Fecal qPCR demonstrated a higher sen-
sitivity and specificity than serum ELISA, but the overall
sensitivity of both diagnostic approaches remains low in 2-
to 3-year-old sub-clinically infected animals. These findings
advocate for more frequent testing of animals in a longitu-
dinal follow-up scenario. Studies are in progress to evaluate
the consequence of these estimated diagnostic test accuracy
for surveillance programs at the flock level.
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