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Abstract

Background: In most infectious diseases, among which bovine mastitis, promptness of the recruitment of
inflammatory cells (mainly neutrophils) in inflamed tissues has been shown to be of prime importance in the
resolution of the infection. Although this information should aid in designing efficient control strategies, it has

never been quantified in field studies.

Methods: Here, a system of ordinary differential equations is proposed that describes the dynamic process of the
inflammatory response to mammary pathogens. The system was tested, by principal differential analysis, on 1947

test-day somatic cell counts collected on 756 infected cows, from 50 days before to 50 days after the diagnosis of
clinical mastitis. Cell counts were log-transformed before estimating recruitment rates.

Results: Daily rates of cellular recruitment was estimated at 0.052 (st. err. = 0.005) during health. During disease, an
additional cellular rate of recruitment was estimated at 0.004 (st. err. = 0.001) per day and per bacteria. These
estimates are in agreement with analogous measurements of in vitro neutrophil functions.

Conclusions: Results suggest the method is adequate to estimate one of the components of innate resistance to
mammary pathogens at the individual level and in field studies. Extension of the method to estimate components

of innate tolerance and limits of the study are discussed.

Keywords: Principal differential analysis, Ordinary differential equation, Cell recruitment rate, Bovine mastitis,

Resistance, Tolerance

Background

Mastitis remains a major challenge to the dairy industry.
Mastitis is characterized by the invasion of the udder by
bacteria, their multiplication in the milk-producing
tissues, and the production of inflammatory mediators. In
response to mediators, inflammatory cells (mainly neutro-
phils) are recruited from the circulation into the lumen of
the alveolus, thus increasing somatic cell counts (SCC)
and decreasing the quantity and quality of mastitis milk.
Within the gland, neutrophils will phagocyte and destroy
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invading pathogens. This process is characteristic of the
innate immune response to many infectious pathogens.
One control strategy consists of increasing the resist-
ance (host’s ability to reduce parasite establishment) of
animals to udder pathogens, either therapeutically or by
selection [1]. Mechanisms behind the cow’s ability to resist
to mastitis pathogens include traits that reduce pathogen
transmission (resistance to infection or “direct” resistance)
and pathogen growth rate once infection has occurred
(resistance to disease or “indirect” resistance). Different
methods have already proven their efficacy in increasing
cow’s “direct” resistance, including dry cow antibiotic
therapy [2] and vaccination [3]. A contributor to the level
of “indirect” resistance is the establishment of a “healthy”
immune response in which the infected cow clears the
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infection and returns to pre-infection status [4]. Among
the many components of this healthy immune response,
the promptness of the recruitment of blood inflammatory
cells in mammary tissues and milk has been shown to be
of paramount importance [5-7] but, to the author’s best
knowledge, has never been quantified on cows clinically
infected under natural conditions.

Ordinary differential equations (ODEs) have been
proposed to study the dynamic process of the inflammatory
response, including the cell recruitment [8—11]. However,
estimation of ODE parameters from complex real data can
be difficult, ODEs may not have analytic solutions and
numerically solving ODEs can be computationally expen-
sive. Also, stationary confounder effects may not always be
included in ODEs and this can be a problem in situations
where noise levels are high and the number of data points
is low [12].

Here, principal differential analysis (PDA) is proposed to
estimate ODE parameters. In this methodology, observed
measurements are fitted empirically using spline functions
which are then differentiated with respect to time to obtain
time-derivative curves. Next, these curves are substituted
into the ODEs that can be solved using least-square
methods so estimates of the parameters can be obtained
[13]. This method has the advantages of being conceptually
simpler and more practical than sophisticated numerical
methods for solving ODEs by iterative numerical integra-
tion. Initials conditions and boundary value need not be
known and PDA does not require uniformly sampled data
[13]. Missing data can be handled and parameters of inter-
est may be adjusted for known confounders. However, poor
splines fit can result in misleading time-derivative informa-
tion which can lead to poor parameter estimates.

The goal of this study is to test the practicality of PDA
in estimating the rate of recruitment of inflammatory
cells as an indicator of “indirect” resistance in cows with
clinical mastitis.

Methods

To reach this goal, the following procedure was followed
(Fig. 1). In the first step, a system of ODEs was proposed to
represent the theoretical interaction between inflammatory
cells and bacteria during mastitis (model [1]) and to obtain
their “model predictions”. In the second step, these
predictions (= simulated dataset 1) and SCS collected at
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specific points in time in cows clinically infected (= ob-
served dataset 2) were smoothed with cubic spline models
and variable knots (= models [2]). In step 3, time derivatives
of models [2] were computed (= models [3]). Finally, in step
4, rates of recruitment were estimated via a linear regres-
sion (= models [4a, 4b]) on these time derivatives. All
computations were done on SAS 9.1. To achieve normality
of distribution, concentrations in all models were expressed
under the log scale as it is done routinely.

Mathematical simulation of an inflammatory response
during mastitis

The model [1] obeyed key biological characteristics
observed within an infected udder:

dx/dt; =yxo xy (1)
dy/dti = v (yo - y) +Bxy
where x (t;) symbolizes the bacterial and y (t;) the somatic
cell concentrations at a particular point in time (t; = 0, 1,
2, ..., 100 time-units; i = 1, 2, 3, ..., 101). At start, the
concentrations are xo and yo. Across time, the bacterial
concentration is controlled by the multiplication rate (y)
and the rate at which each inflammatory cell kills bacteria
(). This last parameter is a first indicator of the level of
resistance of the cow. If the animal is insufficiently resist-
ant, o is low and its inflammatory cells cannot successfully
kill bacteria. This is observed in animals with inherited
disorders of phagocytic cells [14] and in cows during the
peri-parturient period [15]. During health, the concentra-
tion of inflammatory cells is controlled by the first term of
the second equation where v is the rate at which cells are
recruited and removed in the absence of infection. So,
even in the absence of bacteria, there is a standing stock
of cells ready to attack. During mastitis, an extra-
concentration of activated cells is recruited at a rate f.
This is a second indicator of the level of resistance of the
host and the indicator of interest in this study. Indeed, an
infected host is not very resistant when p is low because
activated somatic cells cannot migrate towards the site of
infection. This is observed in diseases such as the bovine
leukocyte adhesion deficiency syndrome [16].

Initial values were set at xo = 2 and yo = 10, and a range
of values, from 0.001 to 0.50, were set for the different
rates in model [1]. Because it is deterministic, the model
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doesn’t take into account the discreteness of the popula-
tions and their random fluctuations so extinction is not
possible. Indeed, as the number of cells decreased, the
assumption of continuous cell populations is no longer
valid and oscillations may occur [17]. As a solution, a
threshold of 0.01 was introduced below which the
bacterial population is considered extinct, alike in [10].

The system accepts two equilibria, one in the absence
and one in the presence of infection. The linear stability of
these equilibria was determined by evaluating the charac-
teristic equation (s) of the Jacobian. The equilibrium is
stable when all eigenvalues of its Jacobian matrix have
negative real parts; it is unstable if at least one eigenvalue
has positive real part [18].

Simulated and observed datasets

Two datasets were used for the second step of the proced-
ure. The simulated dataset (dataset 1) consisted of the values
of the concentrations of bacteria (x (t;)) and inflammatory
cells (y (t)) obtained with [1]. Simulation steps were
executed for a period of 100 time-units or until the infection
dies out.

The second dataset (dataset 2) came from a survey of 31
commercial dairy farms conducted between January 2008
and December 2011 in the Walloon region of Belgium
(Additional file 1)[19]. Herds were enrolled in the regional
dairy herds recording system from which test-day somatic
cell scores or SCS (i.e., the log-transform of SCC; denoted
s (t;)) were obtained. Farmers recorded 756 mastitis cases
and 1947 SCS values were used in the analyses. Other in-
formation included year of calving, parity, days in milk,
and number of days between successive events. Clinical
mastitis was diagnosed by the breeder when milk from
one or more glands was abnormal in color, viscosity, or
consistency, with or without accompanying heat, pain, or
redness. Only the first mastitis case per parity was consid-
ered. Data were collected from 50 days before up to
50 days after the date of mastitis detection. Lactation must
include at least two months of lactation. No information
was available on bacterial concentrations.

Cubic Spline models

For the second step of the analysis, records from both

datasets were fitted with cubic splines and variable knots:
Ut) = gotgti +t° + gt

+Zihi (ti — 1(1)3 di + e (ti) (2)

fori =1, 2, .... 100. The variables U (t;) are either x (t;)
and y (t) (dataset 1) or s (t;) (dataset 2) measured at
time t; where t; is, for dataset 1, the time since infection
(t = 1, 2,.., 100) and, for dataset 2, the number of days
elapsed between the date of milk recording and the date
of the case occurrence (t; = -50 to +50 days). Parameters
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g0, 81> €2, g3 and h; are regression coefficients. The knots
k; can be any value of t; and the dummy variable d; = 0 if
t; < ki and d; = 1 if t; > k;. Besides effects in [2], the model
for dataset 2 included fixed effects of parity (1, 2, >3), days
in milk (1, 2 ..., 300) and herd-year-season (1, 2 ..., 174)
when the case was observed. These last effects are known
factors affecting test-day milk yield and SCS (e.g., [20]).
Cubic B-splines are the most frequently chosen spline to
fit biological systems because they ally simplicity and bio-
logical signification and estimates tend to have high vari-
ance when the order of the spline gets larger (e.g., [21]).

Statistically significant knots were selected in a stepwise
manner. The final model contained only variables with F-
statistics for entry and staying in the model significant at
the 0.15 level. The selection stopped at a local minimum
of the predicted residual sum of squares (PRESS) criterion.
The e (t;) were assumed normally and independently dis-
tributed with E (e (t;)) = 0 and var. (e (t;)) = o2 Estimated
values of U (t;) (= U (t;)) and of regression coefficients (=
h and &) were obtained by minimizing the squared differ-
ences between U (t;) and U (). Differences between U (t;)
and U (t;) and R? values (called R1 values in the following
text) were used to evaluate the fit of the model.

Estimation of rates of recruitment
For both datasets and after stepwise selection, time
derivatives (step 3) were computed as:

dU (6) /dt, = g, + 2 gt +385t>+3Z, by (6, —ky)* dp

(3)

For U(t) = x(t;), y(t) and s(t;) with i = 1, 2, ...
100; p indexes the significant segments (p = 1, .... <100);
g and h are the ordinary least-squares estimates obtained
for the regression coefficients in [2]. Differences between
dU; (model [1]) and dU; (model [3]) were computed.

Finally (step 4), the derivatives were regressed on each
system of ODE Egs. For dataset 1 (model [4a]),

dx/dti=y x —0 x y
(4a)
dy/dti=v (yo -y) +B x v,
and for dataset 2 (model [4b]),

dZ/dti =
dS/dti =

Yz - zy

v (so -s) +P zs. (4b)

The R? values (called R2 values in the following text)
were computed to assess the fit of the models in estimat-
ing ODE rate parameters. In dataset 2, no information
was available on bacterial concentrations necessary to
solve model [4b]. As an alternative and to prove the con-
cept of the proposed methodology, they were replaced
by z. The values of z were simulated thanks to the first



Detilleux BMC Veterinary Research (2017) 13:167

equation of [4b] (dynamics similar to [4a]) with y = 0.1
and the value of w that gave the highest R2.

Results

Mathematical simulation of an inflammatory response
during mastitis

The ODE equations (model [1]) reproduced qualitatively
outcomes that can be realistically observed during a healthy
response to infection (ie., scenario @’ in Fig. 2). Such a
response is characterized by the following steps. Firstly,
bacteria multiply (i.e., x (t;) increases) which is followed by
an increase in the concentration of inflammatory cells (ie.,
y (t) increases). Next, bacteria are killed and their concen-
trations decrease. At the end of the infection episode, both
cell concentrations return to pre-infection values. In scenar-
ios ‘b’ and ‘c; the increase in x (t;) is depressed when com-
pared to scenario ‘@’ because recruitment rates are different
(They were set at 0.01, 0.025, and 0.05 cells/time units in
scenario a, b, and c, respectively). Peaks for y (t;) were at
the 24, 19 and 12 time units since infection in scenario ‘a}'b’
and ‘c; respectively. That is, peaks in cell concentrations
occurred faster for higher recruitment rates. Values for the
other parameters were unchanged in all three scenarios
(ie., @ =0.01, y =0.3, v =0.05).

The system accepts two equilibria. The first one occurs
in the absence of infection for (x; y;) = (0; yo), i.e. no bac-
teria and concentration of resident phagocytic cells (yo).
The equilibrium is stable if » yo > y and all eigenvalues of
the Jacobian matrix are negative. When o y, > v, the rate
at which resident cells kill bacteria is greater than their
multiplication rate (y) so bacterial concentration decreases
immediately after invasion. When o y, < y, it is the
reverse: Bacteria multiply and colonize the udder. In the
presence of infection, a second equilibrium may occur for
(xv) = /B (1 - (wyoly)); Y/w). At this equilibrium, one of
the eigenvalue of the Jacobian matrix is zero and one can’t
tell whether the equilibrium point is stable or not.
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Principal differential analysis

In Table 1, one can find some parameter values used to
simulate records of dataset 1. Whatever the chosen par-
ameter values, fits of the cubic splines to data (model [2]),
and fits of the linear regressions to time derivatives (model
[4a]), were excellent. Indeed, R1 and R2 values were above
95% and estimates were close to their corresponding par-
ameter values (see Table 1 for different simulations).

Regarding observed SCS in dataset 2, SCS data were
from cows in parity 1 (33%), parity 2 (23%) and parity 3
(44%). Mastitis cases were reported all along the lactation
period, with the highest frequencies in the second
(11.77%) and third (12.30%) month in lactation. Parity,
days in milk and herd-year-season affected significantly
SCS. The SCS means were highest in parity >3 and in the
third month in milk, they decreased across calendar year
and were the lowest in winter as compared to summer.
Means of observed (s (ti)) and estimated (s(t;)) values and
cubic splines are depicted in Fig. 3. The cubic splines are
s(t;) values adjusted for the effects of parity, days in milk
and herd-year-season. Standard errors varied from 0.19 to
0.52 for s (ti) and from 0.16 to 0.41 for s(t;). The R1 value
was 58.23%. Location of the three knots in the cubic spline
was at 14 days before, 12 days after and 27 days after diag-
nosis of clinical mastitis.

In eq. [(4b)], the value of ® = 0.007 gave the best R2
(39.03%). Estimate of s is 3.84 (st. err. = 0.70), estimate
of v is 0.0522 (st. err. = 0.50 107) and estimate of Bis
0.0039 (st. err. = 0.112 10~%). All are significantly differ-
ent from null (p < 0.05).

Discussion

Once a cow is infected with mammary pathogens, its im-
mune system mounts a response to them. This response is
orchestrated by a hierarchically organized set of molecular,
cellular and organismal networks, including the massive
influx of inflammatory cells and the killing of bacteria.
Although simple, equations in model [1] were able to
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Table 1 Model parameters values (E), their estimates (F) and standard errors (in parentheses) for 10 different simulations

Simulation Multiplication rate (o) Killing rate (o) Migration rate Extra-migration rate
during health (o) during infection (o)
1 E 0.10 0.01 0.05 0.10
£ 0.10 001 0.05 0.10
(319107 (244107 (9.66 1074 (0.001)
2 E 0.01 0.01 001 001
£ 001 001 001 001
(821107) (821 107) (821 107) (821 107)
3 E 0.10 0.10 0.10 0.10
£ 0.10 0.10 0.10 0.10
(195 107 (195 107% (195 107% (195 107%
4 E 0.15 0.15 0.15 0.15
3 0.15 0.15 0.15 0.15
(0.0014) (0.0014) (0.0014) (0.0014)
5 E 0.10 0.10 0.10 0.0
£ 0.10 0.10 0.10 0.10
(108 107 (1.08 107% (1.08 107% (1.08 107%
6 E 0.50 0.50 0.50 0.50
£ 038 038 038 038
(0.026) (0.026) (0.026) (0.026)
7 E 0.10 0.10 0.10 0.10
£ 0.101 0.101 0.101 0.101
(292 107% (292 107% (292 107% (292 107%
8 E 0.15 0.15 0.15 0.15
£ 0.14 0.14 0.14 0.14
(0.0039) (0.0039) (0.0039) (0.0039)
9 E 0.15 0.15 0.15 0.15
£ 0.1467 0.1467 0.1467 0.1467
(0.0014) (0.0014) (0.0014) (0.0014)
10 E 0.15 0.15 0.15 0.15
£ 0.149 0.149 0.149 0.149
(544 107 (544 107% (544 107% (544 107%
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produce realistic outcomes after intramammary infection
[9, 10], as shown in Fig. 2. Using data simulated with
model [1], it was verified that PDA (models [2] to [4])
were adequate to estimate parameters of model [1]. In-
deed, it fits data almost perfectly as shown in Table 1. This
motivates the application of the method to data collected
on clinically infected cows (i.e., observed dataset 2). There,
the fit was poorer (R1 = 58.23%; R2 = 39.03%). One ex-
planation for this lower fit is that SCS modelled in dataset
2 are only a substitute of the concentrations of phagocytic
cells modelled in dataset 1. This last information is often
lacking in field studies although, during mastitis, over 90%
of the somatic cells are blood neutrophils migrating into
the milk [7].

Another explanation is linked to the fact that bacterial
concentrations were not observed but simulated using a
fixed bacterial growth rate (y = 0.1). Such information is
also often lacking in field studies. Estimates in model
[4b] were also not adjusted for the differences that exist
between immune responses caused by different bacterial
species and strains [22]. Note however that all mastitis
cases were suspected to be due to major pathogens,
mainly E. coli (discussed below). Also, ranking may still
be legitimate if we accept that higher killing rates against
bacteria that multiply at a rate of 0.1 will also be higher
against bacteria that multiply at higher rates.

A third explanation for the poorer fit in observed than
simulated data is that ODEs are a simplified version of
reality based on various assumptions. For example, it
was assumed that a constant proportion of bacterial load
was killed by cells at a rate o, the time needed to process
bacteria was negligible and phagocytic cells did not be-
come “satiated”. Another assumption was that concen-
tration of newly migrating cells increased monotonically
with concentrations of somatic cells and of bacteria
already present in the gland. We may partially accept
these assumptions. For example, it was observed in the
in vitro study by Li et al. (2004) that rate of bacterial
killing of human neutrophils mixed with S. epidermidis
was only dependent upon the concentration of neutro-
phils (constant w). It was also reported that neutrophilic
recruitment during mastitis is initiated by inflammatory
mediators released from tissue-resident leukocytes when
they come into contact with pathogens [6, 23]. This
means that a minimum concentration of somatic cells is
necessary to initiate the response, which is assumed in
the model. A last explanation for the poorer fit in ob-
served than simulated data lies in the cubic spline itself
that guarantees continuity and smoothness at the knots
at the expense of closeness to data points.

Number and location of knots were estimated from
dataset 2: Concentration of somatic cells started to in-
creased 14 days before diagnosis up to the 12 days after
diagnosis and returned to values pre-infection values
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27 days after diagnosis (Fig. 3). This is characteristic of
acute infections with short peaks in SCS, as observed in
clinical cases associated with E. coli under non-
experimental conditions (e. g., [24]). This was also de-
scribed in quarters experimentally infected with E. coli:
SCS returned to pre-infection values after a period of 21
to 28 days [25, 26]. An additional argument is that high-
est SCS were between 6.5 and 7.5 (Fig. 3). Indeed, SCS
are regularly higher than 6.4 in infections by major path-
ogens (as reviewed by [27]).

Even though no information was found in the literature,
estimated rates in the absence and presence of bacterial
infection (v and P, respectively) were realistic. The cred-
ibility of v can be discussed in relation to s, that repre-
sents SCS in the absence of infection. It was estimated
here at 3.84 which is close to the value of 3.91 observed
by [28] in cows that were repeatedly and consistently cul-
tured negative. It was slightly below values reported by
[29] for bacteriologically negative quarters (between 4.22
and 5.23). The rate of extra-recruitment of cells during in-
fection is represented by P. Its estimate was significantly
different from null which is necessary for the resolution of
mammary infections [30]. The value of p can be discussed
in relation to chemotactic indexes (CI) obtained in in vitro
experiments. Indeed, a CI is the number of neutrophils
that migrated towards a chemo-attractant to the number
of neutrophils that migrated towards a control medium.
Similarly, the ratio (Bx; + v)/v represents SCS that mi-
grated towards mammary gland infected with x; bacteria
to SCS that migrated towards uninfected mammary gland.
Its value was estimated at 1.3 for x; = 4. It is close to the
CI value found by [31] who observed CI of neutrophils
from mammary glands inoculated with ~10* CFU/ml of E.
coli (i. e, x; = 4 on the log scale) was 1.2 times the pre-
infection CI value. Similarly, [32] observed the CI of
neutrophils from glands infected with S. aureus was 1.2
times the CI of non-mastitic (<7.5 10> SCC/ml) mammary
secretions. In Fig. 2, bacterial concentration increased as
values of B decreased. Correspondingly, [33] observed a
delayed chemotactic response in cows with high vs mod-
erate bacterial concentrations during the first 120 h after
experimental infection with the same amount of E.coli.

Standard errors for v and B were high and this suggests
recruitment rates varied among cows. If confirmed, such
finding suggests that recruitment rates could be consid-
ered in breeding programs to improve the level of resist-
ance of the population because individual variability is a
prerequisite to such programs. Of course, it remains to
determine whether this variability is of genetic origin.

As shown in model [1], estimates of direct and indirect
resistance levels are w and o [, respectively. Estimates of
direct and indirect tolerance levels could also be estimated
by adding a third equation to model [1]: dm;/dt = & (mg -
m;) - (N x; + € Yy).



Detilleux BMC Veterinary Research (2017) 13:167

Where my; is the milk quantity produced by mammary
secretory cells at a particular point in time i. The first term
includes the natural rate (8) at which secretory cells prolif-
erate and die as a result of apoptosis [34]. Parameter 1) is
an indicator of the ability of the cow to tolerate negative
effects on milk-secreting tissues (and other components of
the mammary gland) of bacterial multiplication and
production of toxins, i.e., the ability of the cow to directly
tolerate the infection. Parameter € is an indicator of the
ability of the cow to tolerate negative effects of the
immune response triggered by the infection and more
particularly, milk loss mediated by the increase in the con-
centration of phagocytic cells, i.e., the ability of the cow to
indirectly tolerate the infection. If n = € = 0, the animal is
completely tolerant and produces at the level observed
during health. If not, milk drops due to the infection. In
this equation, all other effects, such as resource intake,
management, month in milk or age, are assumed fixed. It
is also assumed that each secretory cell produces the same
quality of milk so that m; are directly related to the con-
centration of secretory cells.

Conclusions

Results suggest PDA is valuable to estimate, at the individ-
ual level and in field studies, rates of neutrophilic recruit-
ment and killing, both of which are components of innate
resistance to infectious pathogens. Given the economic
and health implications of infectious diseases, a more
frequent evaluation of these components in commercial
populations could lead to more efficient strategies of
disease control and treatments and a better description of
host—pathogen interactions.

Additional file

Additional file 1: No title. Data set used for the statistical analyses with
information on the animal identity, parity, month in milk, herd-year-
season, somatic cell score and time interval. (XLSX 77 kb)
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