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Abstract

Background: The United States swine industry was first confronted with porcine epidemic diarrhea virus (PEDV) in
2013. In young pigs, the virus is highly pathogenic and the associated morbidity and mortality has a significant
negative impact on the swine industry. We have applied the IDEA model to better understand the 2014 PEDV
outbreak in Ontario, Canada. Using our simple, 2-parameter IDEA model, we have evaluated the early epidemic
dynamics of PEDV on Ontario swine farms.

Results: We estimated the best-fit Ry and control parameter (d) for the between farm transmission component of
the outbreak by fitting the model to publically available cumulative incidence data. We used maximum likelihood
to compare model fit estimates for different combinations of the Ry and d parameters. Using our initial findings
from the iterative fitting procedure, we projected the time course of the epidemic using only a subset of the early
epidemic data. The IDEA model projections showed excellent agreement with the observed data based on a 7-day
generation time estimate. The best-fit estimate for Ry was 1.87 (95% Cl: 1.52 — 2.34) and for the control parameter
(d) was 0.059 (95% Cl: 0.022 — 0.117). Using data from the first three generations of the outbreak, our iterative fitting
procedure suggests that Ry and d had stabilized sufficiently to project the time course of the outbreak with
reasonable accuracy.

Conclusions: The emergence and spread of PEDV represents an important agricultural emergency. The virus
presents a significant ongoing threat to the Canadian swine industry. Developing an understanding of the
important epidemiological characteristics and disease transmission dynamics of a novel pathogen such as PEDV is
critical for helping to guide the implementation of effective, efficient, and economically feasible disease control and
prevention strategies that are able to help decrease the impact of an outbreak.
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Background

Porcine epidemic diarrhea virus (PEDV) is an alphacoro-
navirus and has circulated in Asian and European swine
since 1971 with documented emergence of the virus into
the Iowa swine industry in May 2013 where it rapidly
spread to many North American locations [1-6]. The
PEDV circulating in North American swineherds is highly
pathogenic especially in non-immune, suckling piglets in
which it causes watery, hemorrhagic diarrhea and some-
times vomiting with up to 100% morbidity creating a sig-
nificant economic impact for the swine industry [6-9]. In
older, weaned pigs, the disease causes similar symptoms
along with anorexia, and lethargy and morbidity remains
high (up to 90%), however mortality is significantly reduced
with between zero and four percent of animals dying as a
result of the infection [6, 9, 10]. It is also thought that the
reproductive performance of PEDV infected animals is re-
duced resulting in smaller litter sizes [11].

Transmission of the virus is primarily via the oral-fecal
route specifically due to shedding of infectious virus par-
ticles in the feces of infected animals [9]. In addition,
transmission can occur via feces contaminated fomites
such as boots, equipment, or transportation [12]. Environ-
mental conditions (specifically cold and wet conditions)
are believed to play an important role in the ability of the
virus to persist within the environment and on fomites
suitable for transmission [13]. In addition, data from some
regions supports the hypothesis that infectious PEDV con-
taminated spray-dried plasma; a component of some
swine feed products has been another route by which
transmission of the virus has occurred [14, 15].

In the province of Ontario, Canada, PEDV emerged in
January 2014 however, planning for the possible emer-
gence of the virus in Canada had already begun due to
the clinical severity of the disease, rapidity with which it
spread widely in the United States in 2013, and the ex-
pected devastating economic and emotional toll that the
emergence of the disease in Canada would take on the
swine industry and Canadian farm families. The dynamics
of the 2014 Ontario outbreak were distinct from those ob-
served in the United States, because direct farm-to-farm
transmission of the pathogen was not believed to be the
route of transmission early in the outbreak [15]. Instead, a
common source exposure linked to PEDV contaminated
swine feed was believed to be the primary driver of the
early outbreak dynamics [15]. Following a voluntary recall
of the potentially contaminated feed products, subsequent
PEDV cases within the province were believed to be the
result of direct transmission between farms/premises.

The prevention and control of PEDV presents signifi-
cant challenges for the swine industry. Pathogenicity ap-
pears to be dependent on a number of important factors
including the age of animals affected, type of production
system, biosecurity measures in place, the time at which

Page 2 of 9

the disease is detected (especially season), the herd size,
the health status of the herd (e.g. presence of other co-
occurring pathogens such as opportunistic bacterial in-
fections), and the overall immune status of the herd
[16-18]. Newborn piglets can be temporarily protected
by maternal antibodies and therefore, the intentional
exposure of sows to the virus especially within farrow
to wean operations is a strategy that is used to quickly
achieve some level of protective immunity for the new-
born piglets [19].

Mathematical models are important tools for under-
standing the dynamics of infectious diseases within pop-
ulations. This understanding contributes to our ability to
identify disease prevention and control measures that
will have the greatest likelihood of success and also allows
for a thorough examination of the uncertainty associated
with many epidemic processes. Many disease transmission
models are mechanistic in nature and have been built for
parsimony in order to present the simplest explanation for
the observed data. Models are a mathematical representa-
tion of the health states considered to be relevant for the
research question and population of interest. Parameter
values describe the proposed way in which individuals
move between the various health states (e.g. susceptible,
infected, recovered). In the case of a mechanistic model, a
significant amount of information related to the natural
history of the disease, incidence within the population of
interest, immune status of the population of interest and
contact patterns between individuals and premises is re-
quired in order to appropriately parameterize such a
model. The Incidence Decay and Exponential Adjustment
(IDEA) model was first described in 2013 [20]. The model
is not mechanistic in nature but rather is a simple, 2-
parameter model that has shown significant promise as a
descriptive tool capable of projecting epidemic processes
within human populations using limited data [21, 22].
Here we apply the IDEA model to a veterinary infectious
disease epidemic, specifically the Ontario PEDV outbreak
in 2014. Our objectives were to assess the models ability
to: 1) capture the documented patterns of PEDV epidemic
growth in Ontario during the 2014 outbreak, 2) provide
insight into the impact of different PEDV control mea-
sures, and 3) “near-cast” the final epidemic size and dur-
ation using only data from early in the outbreak.

Methods

Data source

Farm data were obtained from publically available re-
ports published by the Ontario Ministry of Agriculture,
Food, and Rural Affairs (OMAFRA) documenting all la-
boratory confirmed porcine epidemic diarrhea virus
(PEDV) in the province of Ontario between January
2014 and January 2015 [23]. Ontario disease surveillance
guidelines for PEDV requested that veterinarians visiting
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swine farms where animals showed signs of diarrhea
submit samples to the University of Guelph, Animal
Health Laboratory (AHL) for testing. Veterinarians were
asked to submit a minimum of three pooled fecal sam-
ples (with each pooled sample containing feces from 5
different pigs from different litters or locations). Labora-
tory confirmation was based on a positive test result
from the triplex porcine coronavirus polymerase chain
reaction (PCR) test. Testing of diagnostic samples was
completed at no cost to clients as part of the OMAFRA/
AHL disease surveillance plan. Farms with laboratory
confirmed PEDV were encouraged to undertake en-
hanced biosecurity measures in order minimize the risk
to other farms. In addition, herd closures combined with
feedback measures to rapidly expose the entire herd and
establish herd immunity as quickly as possible were an
important component of the response plans. Truck wash
protocols (involving sanitation, disinfection, drying and
downtime), and manure pumping protocols were put
into place in order to minimize the risk of PEDV spread
between facilities.

Available data include the date of laboratory confirm-
ation, the county in which the confirmed positive farm
was located and the type of swine production (e.g. fin-
isher, nursery, farrow-to-finish, or farrow-to-wean) at the
positive site. Due to the severity of the disease, rapid
transmission within swine herds, and the critical nature
of enhanced biosecurity, a liberal case definition is used
whereby, a farm is defined as a confirmed case if the fa-
cility has had at least one animal sample confirmed as
laboratory positive. The publically available data from
OMAFRA do not include any suspected or probable
cases and therefore, we do not expect the cumulative in-
cidence to decrease between different time points due to
suspect cases being ruled out through laboratory testing
or other means.

The IDEA model

We used a previously described, 2-parameter model to
evaluate the early epidemic dynamics of PEDV on Ontario
swine farms. The “incidence decay and exponential adjust-
ment” (IDEA) model was first described in 2013 and has
since been used to examine the epidemic dynamics of the
ongoing Ebola outbreak in West Africa and Middle East
Respiratory Syndrome Coronavirus (MERS-CoV) in Saudi
Arabia [20-22]. The first model parameter is an exponen-
tial growth term. Exponential growth is a function of the
basic reproductive number (Ry) of the pathogen, which is
defined as the (average) number of successful transmis-
sions per infected individual within an entirely susceptible
population, and the average serial interval [24]. In the case
of PEDV and the farm-level nature of the OMAFRA data-
set, we modify the definition slightly to consider the farm
as the unit of observation. In this case, we define R, as the
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(average) number of successful farm-to- farm transmis-
sions per infected farm within an entirely susceptible
population of swine farms in Ontario. The average serial
interval is defined as the time between laboratory confirm-
ation in an index case/farm and laboratory confirmation
in a secondary case/farm. The model also includes sim-
ultaneous exponential decay in the form of a control
parameter (d). This parameter describes the slowing of the
disease transmission process that is expected to occur as a
result of interventions such as behavior change, increased
immunity within the population or enhanced biosecurity.
The model is not mechanistic and therefore is unable to
identify between different prevention and control mea-
sures but rather, as a descriptive tool, permits us to iden-
tify the time point at which the epidemic begins to slow.

Previous exploratory work using the IDEA model has
demonstrated its utility in describing epidemic processes
in circumstances where the reproductive number (R,) is
low or moderate in size [20]. An important benefit of
the model is the ability to fit the model to incidence or
cumulative incidence data which is often the most easily
accessible public data available in the early stages of an
epidemic. In addition, unlike a mechanistic model, the
IDEA model does not require extensive assumptions to
be made regarding items such as the proportion of the
population susceptible to the pathogen yet, appears to
generate both epidemic size and duration projections
that are in line with observations from a number of
high-profile, human infectious disease outbreaks. The
model has been shown to be able to detect abrupt changes
in the epidemic curve due to disease control activities
resulting from interventions. This is done by evaluating
the change in the model control parameter (d) between
each successive generation of the model.

The structure of the simple, 2-parameter model is as
follows:

L = ((Ro/(l +d)Y" (1.0)

Where, I, is the number of incident cases in each model
generation, Ry is the basic reproductive number, d is a
control parameter that allows for the decay of disease in-
cidence over time and t is scaled in terms of the gener-
ation time. In the absence of any disease control
interventions, we would expect the disease to increase
over time with cases growing to the power of t. How-
ever, when control measures or interventions are imple-
mented in the system, we expect that those controls act
on the disease transmission parameter (Rq) by reducing
it over time by a power of t* Best-fit model parameter
values are obtained using maximum likelihood estima-
tion (MLE) by fitting the model to the cumulative inci-
dence data.
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Model analyses

In order to derive an estimate of the generation time for
the outbreak (time interval between successive generations
of PEDV positive farms), we utilized publically available
estimates of the incubation period (approx. 2 days) and
the average infectious period (approx. 10 days) [25-28].
This allowed us to derive a mean generation time of seven
days for PEDV based on the heuristic that the generation
time (T) is the incubation period plus one half of the
infectious period. However, due to the highly variable
estimates for the incubation period and infectious
period combined with a lack of detail regarding the po-
tential connectivity of Ontario swine farms that would
create opportunities for farm-to-farm transmission, we
conducted sensitivity analyses that examined a range of
possible generation times between 7 and 13 days.

Data used for the fitting of the IDEA model included
only a subset of all laboratory confirmed PEDV positive
farms in Ontario. Specifically, we used cumulative inci-
dence data from February 20, 2014 to April 30, 2014.
Twenty cases of PEDV occurred prior to this time period
(between January 22, 2014 and February 19, 2014), how-
ever these cases have been excluded from our analyses, as
it is believed that these initial cases in Ontario were linked
to a point source exposure related to PEDV contaminated
swine feed [15]. The contaminated feed was identified on
February 9, 2014 and subsequently recalled by the manu-
facturer. As a result, we have excluded all cases prior to
February 20", 2014 since direct farm-to-farm transmission
is not thought to have been the primary mechanism of
transmission for this early time period. In addition, we
have excluded five cases that were identified after April
30, 2014 because the time between these cases exceeded
the possible generation times suggesting that these were
sporadic cases and therefore, cases occurring after April
30, 2014 were also excluded from the analyses.

Initially, we estimated the best-fit Ry and d parameters
for the farm-to-farm transmission component of the
PEDV outbreak (February 20 — April 30, 2014) by fitting
the previously described IDEA model to cumulative inci-
dence curves using the R statistical computing environ-
ment [29]. The IDEA model is not parameterized in
terms of calendar date but rather generation time (epi-
demic generations) and therefore the observed case data
were aggregated based on an estimated generation time
of seven days. We also fit the IDEA model to the time
series data describing cumulative cases over time in an
iterative fashion. We did this by fitting the model to a
dataset that included progressively more outbreak genera-
tions and comparing model fits using maximum likelihood
estimates (MLE) for different combinations of values for
Ry and d. Lastly, we used the results from the iterative fit-
ting procedure to examine the ability of the IDEA model
to predict the projected time course of the observed
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epidemic using only model based estimates generated
from the analysis of a small number of generations.

Alternate assumptions and sensitivity analyses

We conducted sensitivity analyses to examine alternate
assumptions about the possible impact of a generation
time that was greater than the base case estimate of
seven days (7—13 days). In this case, we refit our model
using 8-, 9-, 10-, 11-, 12-, and 13-day generation times.
For each model fit, we examined the impact of the up-
dated generation time on the estimated R, and d param-
eters. In addition, we considered the possible impact of
under-reporting in the OMAFRA dataset. In our base
case analysis, we assumed no under-reporting of cases.
Given the emerging nature of the disease in Ontario as
well as the clinical and economic severity of the disease
this seemed a reasonable assumption to make. However,
an alternative assumption exists which is that the dataset
represents only the initial/index case within individual
production systems (with some production systems be-
ing comprised of many individual farms or premises).
To address the possibility of under-reporting in the data-
set, we have fit the model examining a range of possible
assumptions related to under-reporting (from 0% to 50%
under-reporting).

Results

Descriptive epidemiology

The OMAFRA dataset describes 58 Ontario swine farms
that were confirmed to have tested positive for PEDV
between January 1%, 2014 and April 30", 2014 (Fig. 1).
The first confirmed case occurred on January 22, 2014
in Middlesex County and the last confirmed case in the
dataset occurred on April 30, 2014 in the same county.
All of the confirmed cases were found in southwestern
Ontario with the exception of one case on February 14,
2014 that was located in eastern Ontario. Thirty-eight
cases occurred during the period of time when transmis-
sion is thought to have been the result of direct trans-
mission between farms (after February 19, 2014) rather
than through a point source exposure (e.g. swine feed).
In the post-recall period, the types of farms represented
in the dataset-exhibited differences compared to the pre-
recall period. During the pre-recall period, none of the
documented cases occurred in finisher herds whereas,
in the post-recall period, 61% of the cases occurred in
finisher herds.

Estimation of the Basic Reproductive Number (Ry) and
control parameter (d)

Using case data from the post-feed recall time period
(after February 19, 2014), the model showed excellent
agreement with the reported outbreak data using all
available generations from February 20 to April 30, 2014
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Fig. 1 Cumulative incidence data for the Ontario PEDV outbreak in
2014. Cases occurring prior to February 20, 2014 (dashed line) are
assumed to be the result of a point source exposure through swine
feed with cases occurring after February 20, 2014 being the result of
direct farm-to-farm transmission

and using a generation time estimate of 7 days (Fig. 2).
The best-fit estimate for R, was 1.87 (95% CI: 1.52 —
2.34). The best-fit model estimate for the control param-
eter (d) was 0.059 (95% CI: 0.022 — 0.117). Together
these results suggest that the direct transmission period
of the outbreak was not highly explosive (Rg<2.5) but
was the focus of intensive and effective control measures
(d > 0.05).

Using increasing numbers of successive outbreak gen-
erations, we found that there was a significant drop in
the control parameter estimate (from 0.051 to 0.0150) in
generation 4 (between March 6 and March 13, 2014)
and then a return to intensive and effective control in
subsequent generations (Fig. 3).
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Fig. 2 Concordance between model fit (curve) and cumulative
incidence data for the 2014 Ontario PED outbreak using a mean
generation time estimate of 7 days using data from the post-recall
time period (after February 19, 2014)
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Fig. 3 Best fit values for the control parameter (d) at each epidemic
generation assuming a 7-day generation time. Values greater than zero
are indicative of epidemic slowing. Although the control parameter
values were greater than zero from generation three onwards, the
magnitude of the value changed over time. The control parameter
dropped between generation 3 and 4 indicating epidemic acceleration
followed by deceleration of the epidemic growth from generation

4 onwards

Short-term outbreak projection

Model-based estimates for Ry and the control parameter
(d) had stabilized sufficiently by generation three for the
IDEA model to be able to project the future course of
the outbreak with significant accuracy (Fig. 4). Using
only the data available after three generations (March 6,
2014), the model projected that the peak of the outbreak
would be reached by generation 12 (May 15, 2014), and
that the expected number of cumulative cases would be
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Fig. 4 Modeled cumulative incidence based on fitting the IDEA
model to three or six epidemic generations assuming a seven day
generation time. Squares represent the observed cumulative
incidence by generation. The solid line represents the model fit to
the entire time series. The dashed lines represent the model fit to
only three or six outbreak generations (prior to the outbreak peak).
Curves generated from data early in the outbreak are strongly
representative of those resulting from fitting to the entire time series )
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41. This is an excellent approximation of the actual ob-
served number of cumulative cases on April 30, 2014
(N =37) predicting the overall final epidemic size within
four cases and estimating the end of the outbreak within
15 days. Using six generations worth of data did not sig-
nificantly improve the predictive ability of the model
compared to the estimates available at generation three
(Fig. 4).

Sensitivity analyses and alternate assumptions

Sensitivity analyses were conducted to examine the im-
pact of underestimating the potential generation time
for the PEDV outbreak in Ontario. Compared to our
base case scenario with a generation time of seven days,
increasing the possible generation time (to 10 and
13 days) aggregated the available data into fewer total
epidemic generations for the period of time being inves-
tigated. As a result, best-fit model parameters for both
Ry and d were found to increase with increasing gener-
ation time (Table 1) representing more explosive epi-
demic growth but also most intensive intervention and
control. However, changing our assumption about the
possible generation time resulted in less accuracy when
using a small number of epidemic generations to predict
final outbreak size and timing (Fig. 5). Using a gener-
ation time of 10 days, IDEA model projections of final
outbreak size (48 cases) and timing (generation nine,
May 21, 2014) when using only data from the first three
epidemic generations, overestimated the epidemic by 11
cases and approximately 21 days (Fig. 5). In comparison,
using a generation time of 13 days, projections of final
outbreak size (29 cases) and timing (generation five,
April 26, 2014) when only using data from the first three
epidemic generations, underestimated the epidemic tra-
jectory by 8 cases and 4 days (Fig. 5). Suggesting that
our initial estimate of 7 days provides the most predict-
ive fit available using minimal, publically available data
inputs.

We also investigated the potential impact of PEDV
underreporting as the epidemic progressed (Table 1). In
the case of potential under-reporting, our analyses demon-
strate that 25% under-reporting results in an increased R,

Table 1 Sensitivity of IDEA model estimates to alternate
assumptions regarding the PEDV generation time and degree
of under-reporting of cases

Alternate assumption Ro (95% Cl) d (95% Cl)
1.87 (152 - 2.34) 0.06 (0.02 - 0.12)
334 (228 - 447) 0.19 (0.09 - 0.40)

(
(
492 (307 -601) 030 (0.13 - 0.66)
(
(

Base case

10-day generation time
13-day generation time
Outbreak 25% under-reported 221 (1.78 = 2.81) 0.16 (0.11 - 0.27)

Outbreak 50% under-reported 2.8 (2.21 - 3.65) 0.12 (0.06 - 0.19)

Cl confidence interval
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Fig. 5 Modeled cumulative incidence based on fitting the IDEA
model to three epidemic generations assuming a longer generation
time than the base case scenario (10 or 13 days). Squares represent
the observed cumulative incidence by generation assuming a 10-day
generation time and circles represent a 13-day generation time. Solid
lines represent the model fit to the entire time series (black = 10 days,
and gray = 13 days). The dashed lines represent the model fit based on
only three outbreak generations (prior to the outbreak peak). In
this case, curves generated from data early in the outbreak are less

representative of those resulting from fitting to the entire time series

estimate of 2.21 (95% CI=1.78 — 2.81) and d estimate of
0.16 (95% CI=0.11 — 0.27). Increasing the level of under-
reporting from 25% to 50% further increased the esti-
mated Ry to 2.8 (95% CI=2.21 — 3.65) and reduced d to
0.12 (95% CI =0.06 — 0.19).

Discussion

The emergence and subsequent spread of PEDV within
the province of Ontario in 2014 represents an important
agricultural emergency and the disease remains a threat
to the swine industry, and the Canadian economy [15, 30].
Developing an understanding of the important epidemio-
logical characteristics and disease transmission dynamics
of a novel pathogen such as PEDV is critical for helping to
guide the implementation of effective, efficient, and eco-
nomically feasible disease control and prevention strat-
egies that are able to help decrease the impact of an
outbreak. The ability to obtain short-term projections of
epidemic growth and contraction using simple, case-count
time series data represents an important capacity that has
not been readily available prior to the development of the
Incidence Decay and Exponential Adjustment (IDEA)
model [20].

Using publically available data from the Ontario Min-
istry of Agriculture and Rural Affairs (OMAFRA) on the
occurrence of PEDV in Ontario in winter 2014 and our
previously described IDEA model [20], we have estimated
the direct, farm-to-farm, basic reproductive number (Ry)
for the 2014 PEDV outbreak in Ontario. Our estimate of
1.87 (95% CI: 1.52 — 2.34), indicates that the introduction
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of PEDV into Ontario had the potential to cause an
epidemic.

The second parameter of the IDEA model is the
control parameter (d). We found that the best-fit con-
trol parameter value was 0.06 (95% CI: 0.02 — 0.12).
Control parameter values greater than zero indicate
that effective control measures were occurring within
the province to help slow epidemic growth during the
course of the outbreak. In a descriptive sense, an in-
creasing control parameter indicates that the epidemic
growth dynamic is slowing [20-22]. There are a var-
iety of possible mechanistic explanations for slowing
epidemic growth within the context of the PEDV out-
break including decreased rate of contact between
farms (e.g. decreased truck movements), greater farm-
level biosecurity, depletion of susceptible farms/prem-
ises within the province, environmental conditions
which are less favorable for the persistence of the
pathogen on vectors of transmission such as trucks
and equipment, or any other factor which could act
to reduce the force of infection. Despite this limita-
tion, the model does permit the user to identify accel-
eration or deceleration of the epidemic dynamic
based on the available data, including early in the
course of an outbreak.

An interesting observation found during the course
of this study was that a significant drop in the con-
trol parameter (d) was observed in generation four
and then the control parameter appeared to rebound
in subsequent generations. There is no obvious ex-
planation for this observation however; this period of
decreased “control” (and therefore a short period of
epidemic acceleration between generation three and
four) could be the result of environmental conditions.
PEDV is a cold tolerant virus and it is believed that
in Ontario, one way that the virus was spread be-
tween farms was on PEDV contaminated trucks [12,
13, 31]. Although Ontario implemented rigorous dis-
infection protocols for vehicles moving between
farms, disinfection protocols are less effective in very
cold temperatures as it is difficult to properly clean
and dry trucks in freezing conditions allowing a cold
tolerant virus to persist in the truck environment for
longer periods of time and facilitating possible spread
between premises [7, 12].

There is significant variability in the documented incu-
bation period and infectious period for PEDV within the
published literature [7, 23, 25]. It is thought that some
proportion of animals can continue to shed the virus for
up to 20-30 days after infection [25]. In this case, the
expected generation time would be longer than the
seven days that we have used in this study. However, we
expect that the highest risk of direct farm-to-farm transmis-
sion likely occurs during the initial infection period for a

Page 7 of 9

farm/herd when infection rates are still low, clinical symp-
toms have not yet become widespread, a veterinarian has
not yet submitted samples to the laboratory, and therefore
enhanced biosecurity measures are not yet in place. This
likely describes the first seven days of a farm level outbreak
and therefore, this is how we justify our lower limit gener-
ation time of seven days. We would expect that as the out-
break becomes more obvious within a specific herd even
though shedding may continue to occur for long periods of
time, between farm transmission risk is decreased due to
enhanced biosecurity.

The to approximate the epidemic final size, epidemic
trajectory, and time at which the final size would be
reached using only 3 generations worth of simple case
count data assuming a generation time of seven days
(Fig. 4). For veterinary epidemiologists and others tasked
with providing situational awareness and updates to in-
dustry during an infectious disease outbreak, the ability
to reasonably project forward in time an estimate of the
total number of cases expected and the time at which
the epidemic is expected to peak would be an incredibly
useful application. In this instance, the ability to “near-
cast” with some certainty would better allow emergency
operations personnel to budget the physical and human
resources that would be required to see an outbreak
through to completion. Given the uncertainty around
the possible generation time estimates, we also examined
two alternative scenarios whereby we assumed a longer
generation time of 10 or 13 days. In both cases, we
found that the model was less accurate at projecting the
expected course of the PEDV outbreak using three gen-
erations of data assuming a generation time of 10 or
13 days than in the base case that assumed a generation
time of seven days (Figs. 4 and 5). This suggests that
even without accounting for the possibility of a pro-
longed duration of viral shedding within some swine, the
lower generation time estimate is sufficient to capture
the dynamics of the outbreak.

Lastly, it has been proposed that the publically re-
ported data available through OMAFRA may in fact be
under-reported by virtue of the fact that for some pro-
ducers, the laboratory confirmed status documented in
the dataset represents only the initial or index farm case
within individual production systems (with some produc-
tion systems being comprised of many individual farms or
premises). For instance, a farrow-to-wean farm may test
positive for PEDV and some of those infected pigs may
move to other farms within the production system causing
downstream infections at receiving facilities (e.g. finisher
herds etc.). These subsequent downstream farms that be-
come infected may not appear in the OMAFRA dataset as
the movement of pigs and subsequent clinical disease in
other farms within the same production system occur
within a system that is already aware of the PEDV status
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of the index farm within the production system. The treat-
ment of downstream pigs and enhanced biosecurity would
likely be addressed without the submission of additional
samples to the laboratory. To address the possibility of
under-reporting in the dataset, we examined the potential
impact of 25% and 50% under-reporting and found that
even if the data represent only a subset of infected farms
within Ontario, the model parameter estimates for R, and
d remain relatively stable (Table 1) suggesting that the
model is not overly sensitive to mild to moderate levels of
under-reporting.

As is the case with all epidemiological and mathematical
modeling studies, this work has certain limitations, which
include the quality of the available data, the specific as-
sumptions that have been made regarding generation time
estimates and assumptions related to under-reporting.
However, we feel that our findings have demonstrated
consistency even when confronted with alternative as-
sumptions and scenarios. It is possible that generation
times may differ depending on the type of farm (e.g.
farrow-to-weaning vs. farrow-to-finisher). However, for
our analysis, the two dominant herd types were finisher
herds (61%) and farrow-to-finish herds (21%) suggesting
that there was consistency in the type of herds throughout
the time period considered which likely minimizes the po-
tential impact of this variability. While it may in fact be
the case that the publically reported data available online
through the OMAFRA website may underrepresent the
true number of PEDV positive farms in Ontario during
this time period, the use of publically available data has a
clear advantage of allowing for rapid and transparent ana-
lysis which would likely not be possible during times of
emergency if obtaining data directly from the swine indus-
try was the only way to conduct such analyses.

Conclusions

Using a simple mathematical model that considers only
two parameters, we have demonstrated that the epidemic
growth of the 2014 swine PEDV outbreak in Ontario,
Canada was to be expected with a reproductive number
that exceeded one. However, our analyses also demon-
strated that the outbreak began to quickly decelerate (d > 0)
as a result of enhanced disease control efforts relatively
quickly. Our successful application of the IDEA model to a
case study of livestock infectious disease outbreak data is
encouraging and suggests that despite some critical differ-
ences in the interpretation of the key model parameters
and in the individual unit of study (farms/herds/premises
vs. individuals), the model can provide useful information
for decision-makers in the early stages of an infectious dis-
ease outbreak. We encourage the veterinary epidemiology
community to continue to assess the usefulness of this
simple model in the context of other emerging diseases of
veterinary importance. In the case of real-time application

Page 8 of 9

and use of the model within an emergency management
context, it is our hope that the model may be able to allow
for the rapid identification of whether or not interventions
are working to control the epidemic spread of the disease.
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