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Abstract

Background: Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology
remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation,
and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic
diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing
in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal.

Results: Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between
hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal
spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542,
mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma.

Conclusions: Findings of this study confirm the hypothesis that miRNA expression profiles are different between
canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially
expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular
disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints.
The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is
a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a
potential player in the pathogenesis of canine splenic hemangiosarcoma.
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Background
Splenic masses are common in older dogs and may
be malignant, benign, or non-neoplastic; yet diagnosis
preceding splenectomy and histopathology remains
elusive. Several studies have reported approximately
70% of dogs with non-traumatic hemoperitoneum
had hemangiosarcoma [1–3]. Hemoperitoneum is

reported in 63–80% of dogs with hemangiosarcoma,
compared with only 30% of dogs with benign splenic
masses [4, 5]. This has led to the ‘double 2/3 rule,’
which is currently used to give owners a prediction
of the odds of each of the possibilities [6]. According
to this rule, approximately 2/3 of splenic masses are
malignant, and of those that are malignant, 2/3 are
hemangiosarcoma. Other malignant splenic masses
include various sarcomas, lymphoma, and histiocytic
sarcoma [1, 7]. Benign and non-malignant splenic
conditions include hemangioma, nodular hyperplasia,
formerly classified as a subset of fibrohistiocytic nod-
ules, and hematoma [1, 8].
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Many studies have attempted to identify repeatable
measures or other techniques that might distinguish
malignant from benign masses [5, 9–14]. For instance,
mass-to-splenic volume ratio and splenic weight as a
percentage of body weight have been used to differenti-
ate malignant from benign splenic lesions, with heman-
giosarcoma masses being smaller in both categories [5].
However, these values can only be calculated after splen-
ectomy, and splenic size can change due to contraction
or engorgement in response to medications or hemoper-
itoneum. Diagnostic imaging has been evaluated for its
ability to differentiate malignant from benign lesions
with contrast harmonic ultrasound, CT, and MRI show-
ing promise [9–11]. Such modalities may differentiate
malignant from benign lesions but do not diagnose a
specific disease process. Prognosis and survival times
between various malignancies can be quite varied and
availability of these treatment modalities is limited and
may be cost prohibitive [1, 12, 15]. While splenic aspi-
rates may be beneficial for certain neoplasms such as
lymphosarcoma, they usually fail to aid in the diagnosis
of many splenic tumors due to blood contamination and
poor exfoliation. Also, some clinicians recommend not
aspirating the spleen in suspected cases of hemangiosar-
coma due to risk of tumor rupture and seeding of the
tumor into the abdomen [5, 6]. Testing of blood with
multi-parameter flow cytometry and measuring levels of
vascular endothelial growth factor and thymidine kinase
have been evaluated, but have not been found to be
definitive diagnostic tools [12–14]. It is clear that add-
itional work needs to be done to develop a minimally in-
vasive pre-surgical diagnostic test to differentiate
hemangiosarcoma from other splenic masses.
Hemangiosarcoma, a tumor of vascular endothelial

origin, is the most common splenic tumor, and the prog-
nosis is poor: dogs that undergo surgery alone as a treat-
ment for splenic hemangiosarcoma have a median
survival time of three months; this extends to six
months if chemotherapy is used in conjunction with sur-
gery [6]. The decision to proceed with surgery can be
difficult for owners because although there are rare
long-term survivors, median survival times are typically
short, and currently there is no ability to give a definitive
diagnosis prior to surgery and histopathology.
MicroRNAs (miRNAs) are 18–25 nucleotide, single

stranded, non-coding RNAs that play a role in post-
transcriptional regulation [16–18]. MicroRNAs inhibit
expression of target genes by binding to the 3’ untrans-
lated region of certain messenger RNAs (mRNAs) [16,
17]. MicroRNAs have a role in cell growth, cell differen-
tiation, apoptosis, and oncogenesis [17]. Expression pro-
files give information on the identities and quantities of
particular miRNAs within a given tissue; such profiles
are consistent between like-tissue samples [19].

MicroRNAs in tumor samples have been used to diag-
nose tumors, provide prognostic information, and aid in
targeted treatments in human medicine [18–22]. Many
tumor types have been evaluated for differential miRNA
expression, including ovarian carcinomas, breast cancer,
cervical cancer, non-small cell lung cancer, leukemias,
colorectal tumors, squamous cell carcinoma, and hepa-
tocellular carcinoma [21–28]. Use of miRNAs in support
of other diagnostic methods is currently in its infancy,
with miRNA signatures having been developed in people
to distinguish melanoma and metastatic breast cancer
from healthy controls and higher risk groups in breast
cancer and prostate cancer [29–32]. There are few
reports of miRNA involvement in cancer of veterinary
patients, but interest in this area will likely increase
with the rapid growth of this topic in human medi-
cine [33–35].
MicroRNAs have excellent stability in serum, and

miRNAs representative of cancer tissue have been iden-
tified in the circulation of patients with cancer [20].
Such identification allows for the potential to develop a
noninvasive diagnostic test to diagnose cancers, without
having to obtain a tissue sample of the tumor of interest.
The objective of this study was to identify and compare
expression profiles of miRNAs from canine splenic
hemangiosarcoma, splenic nodular hyperplasia, and nor-
mal splenic tissues using RNA-sequencing. We hypothe-
sized that there would be differences in miRNA
expression among the three groups. This work is the
first step in determining altered miRNA expression in
canine splenic masses. Once altered miRNA expression
has been identified in the tissues, future studies can be
performed to evaluate these same altered miRNAs in the
serum of patients with splenic masses. The end goal of
this research is to develop a blood-based diagnostic test
to determine the nature of canine splenic masses. Ultim-
ately, this work may also provide insight into pathways
that are dysregulated in hemangiosarcoma, allowing a
better understanding of both tumorigenesis and poten-
tial therapies.

Methods
Sample collection
Splenic mass samples: Samples were collected from
spleens removed from client-owned animals undergoing
splenectomy for a splenic mass. After removal of the
spleen, the mass was trimmed to obtain two samples:
one for the study and an adjacent piece of tissue for
histopathologic evaluation to confirm a diagnosis and
ensure that representative tissue was present in the sam-
ple. Samples to be used for the study were flash frozen
with liquid nitrogen within 30 min of splenectomy and
stored in a −80 °C freezer until further use. Only masses
confirmed to contain tissue from hemangiosarcoma or
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nodular hyperplasia were used for the study. Five sam-
ples in each category (hemangiosarcoma and nodular
hyperplasia) were collected.
Normal spleen samples: Archived fresh frozen tissue

samples were utilized to analyze normal splenic tissue.
Samples were collected within 30 min of splenectomy,
flash frozen in liquid nitrogen, and stored in a −80 °C
freezer. Histopathology of adjacent tissue performed at
the time of sample collection confirmed these five
spleens to be normal.

Histopathology
Tissues (splenic masses and normal spleens) were
trimmed and fixed in 10% neutral-buffered formalin for
24–72 h prior to processing by paraffin impregnation.
Sections approximately 4–5 microns thick were prepared
by microtomy, mounted on glass slides, deparaffinized,
and stained with hematoxylin and eosin prior to apply-
ing glass coverslips. Each slide was evaluated by light mi-
croscopy for diagnosis by a board-certified (ACVP)
pathologist. Cases of hemangiosarcoma were confirmed
by demonstration of CD31 by immunohistochemistry
(Dako, Denmark). Sections were mounted onto slides,
deparaffinized, heat-treated for antigen retrieval, and
labeled with CD31 using FLEX monoclonal mouse anti-
human CD31 clone JC70A visualized by peroxidase-
mediated oxidation of diaminobenzidine (EnVision FLEX
+ Mouse High pH Link system, Dako, Denmark). Slides
were coverslipped, counterstained with hematoxylin, and
examined by light microscopy.

RNA isolation
The Qiagen miRNeasy kit (Qiagen Inc., Valencia, CA,
USA) was utilized to extract RNA from the frozen tissue
sections. Extraction was performed according to manu-
facturer protocol using the Bullet Blender (Next
Advance Inc., Averill Park, NY, USA) for homogenization,
and one modification to the protocol, where the Buffer
RWT step was repeated for a second time. The NanoDrop
(ThermoScientific, Wilmington, DE, USA) was used to
confirm an appropriate 260/280 and 260/230 ratio for the
sample (>1.8 in each case).

RNA Sequencing and smRNA library prep protocol
RNA samples were sent to the Genomic Services
Laboratory at the HudsonAlpha Institute for Biotechnol-
ogy for miRNA-sequencing analysis. NEBNext® Small
RNA Library Prep Set for Illumina® (New England Bio-
Labs Inc., Ipswich, MA, USA) was utilized. Three prime
adapters were ligated to total input RNA followed by
hybridization of multiplex SR RT primers and ligation of
multiplex 5` SR adapters. Reverse Transcription (RT)
was done using SuperScript III RT (Life Technologies,
Grand Island, NY, USA) for 1 h at 50 °C. Immediately

after RT reaction, indexed primers were added to
uniquely barcode each sample and PCR amplification
was done for 12 cycles using LongAmp Taq 2X master
mix. Post PCR material was then purified using QIA-
quick PCR purification kit (Qiagen Inc., Valencia, CA,
USA). Post PCR yield and concentration of the prepared
libraries was assessed using Qubit® 2.0 Fluorometer and
DNA 1000 chip on Agilent 2100 Bioanalyzer.
Size selection of small RNA libraries with a target size

range of 140 base pairs was done on a 3% agarose gel
using Pipin prep instrument (Sage Science, Boston, MA,
USA). Accurate quantification for sequencing applica-
tions was performed using the qPCR-based KAPA
Biosystems Library Quantification kit. Each library was
diluted to a final concentration of 12.5 nM and pooled
equimolar prior to clustering. Cluster generation was
carried out on a cBot v1.4.36.0 using Illumina's Truseq
Single Read (SR) Cluster Kit v3.0. Single End (SE)
sequencing was performed on an Illumina HiSeq2000,
running HiSeq Control Software (HCS) v1.5.15.1, using
a 50 cycle TruSeq SBS HS v3 reagent kit. The clustered
flowcells were sequenced for 56 cycles, consisting of a
50 cycle read, followed by a 6 cycle index read. Image
analysis and base calling was performed using the stand-
ard Illumina Pipeline consisting of Real Time Analysis
(RTA) version v1.13 and demultiplexed using bcl2fastq
converter with default settings.

Analysis
Post-processing of the sequencing reads from miRNA-
sequencing experiments from each sample was performed
as per unique in-house pipelines. Briefly, quality control
checks on raw sequence data from each sample was per-
formed using FastQC (Babraham Bioinformatics, London,
UK). Raw reads were imported on a commercial data ana-
lysis platform CLCbio (Qiagen Inc., Valencia, CA, USA).
Adapter trimming (GTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCT) was done to remove ligated adapters
from the 3' end of the sequenced reads with only one mis-
match allowed; poorly aligned 3' ends were also trimmed.
Sequences shorter than 15 nucleotides length were ex-
cluded from further analysis. Trimmed reads with low
qualities (base quality score less than 30, alignment score
less than 95, mapping quality less than 40) were removed.
Filtered reads were used to extract and count the small
RNA that were annotated with miRNAs from the miR-
Base release 20 database [36, 37].
The quantification operation carried out measurement

at both the gene level and at the active region level.
Active region quantification considered only reads
whose 5' end matched the 5' end of the mature miRNA
annotation. Samples were grouped as patient and control
identifiers, and differential expression of miRNA was
calculated on the basis of their fold change observed
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between individual patients and averaged control
samples. The p-value of differentially expressed miRNAs
was estimated by implementing t-tests with Benjamini
Hochberg false discovery rate corrections of 0.05 [38].

Results
Principal component analysis was performed compiling
the miRNA data from all five samples within each group.
This revealed hemangiosarcoma samples grouped inde-
pendently from nodular hyperplasia and normal spleen,
indicating hemangiosarcoma samples were distinctly
different than the other two categories (Fig. 1). When
hemangiosarcoma samples were removed from the ana-
lysis, nodular hyperplasia and normal spleen samples
also showed differential expression, indicating that it
may be possible to distinguish between these two condi-
tions with further analyses (Fig. 2). Volcano plots were
created of the comparison groups highlighting miRNAs
that were significantly over or underexpressed between
the groups. Significant over and underexpression of vari-
ous miRNAs was found for each of the three groups:
hemangiosarcoma compared to normal spleen (Fig. 3),
hemangiosarcoma compared to nodular hyperplasia
(Fig. 4), and nodular hyperplasia compared to normal
spleen (Fig. 5).

Individual microRNA results were evaluated, signifi-
cance was set at p < 0.05, and data were limited to
microRNAs with a fold change ≥ ± 2. With these criteria,
51 unique miRNAs were found to be differentially
expressed across the three groups (Fig. 6), with 4 miR-
NAs being potential candidates specific to hemangiosar-
coma (Table 1) and 18 being differentially expressed
between hemangiosarcoma and normal spleen only
(Table 2). No miRNAs were significantly differentially
expressed between all of the three possible pairings.

Hemangiosarcoma compared to both normal spleen and
nodular hyperplasia
Four miRNAs were significantly different between
hemangiosarcoma samples and both normal spleens and
spleens with nodular hyperplasia, indicating these miR-
NAs may be markers specific for hemangiosarcoma
(Table 1). Of these miRNAs, two were significantly over-
expressed (mir-126, mir-452) and two significantly
underexpressed (mir-150, mir-203) in hemangiosarcoma
samples compared to both normal spleens and spleens
with nodular hyperplasia.

Hemangiosarcoma compared to normal spleen
Eighteen miRNAs were differentially expressed between
hemangiosarcoma and normal spleen only (without also

Fig. 1 Principal component analysis of hemangiosarcoma, nodular hyperplasia, and normal spleen samples. The hemangiosarcoma samples
(red) showed differential expression from both nodular hyperplasia (blue) and normal spleen (green) samples. The axes correspond to principal component
1 (x-axis) and principal component 2 (y-axis)
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Fig. 2 Principal component analysis of nodular hyperplasia and normal spleen samples. The nodular hyperplasia samples (blue) showed
differential expression from normal spleen samples (green). The axes correspond to principal component 1 (x-axis) and principal component
2 (y-axis)

Fig. 3 Volcano plot showing significantly overexpressed (red) and significantly underexpressed (green) miRNAs between hemangiosarcoma and
normal spleen. The axes correspond to log2 (fold change) (x-axis) and -log10 (p-value) (y-axis)
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Fig. 4 Volcano plot showing significantly overexpressed (red) and significantly underexpressed (green) miRNAs between hemangiosarcoma and
nodular hyperplasia. The axes correspond to log2 (fold change) (x-axis) and -log10 (p-value) (y-axis)

Fig. 5 Volcano plot showing significantly overexpressed (red) and significantly underexpressed (green) miRNAs between nodular hyperplasia and
normal spleen. The axes correspond to log2 (fold change) (x-axis) and -log10 (p-value) (y-axis)
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playing a role in nodular hyperplasia samples), with 15
being significantly overexpressed in hemangiosarcoma
samples and three being underexpressed (Table 2).

Discussion
The results of this study confirm the hypothesis that
miRNAs are differentially expressed in the tissues of

canines with splenic hemangiosarcoma, splenic nodular
hyperplasia, and normal spleens.
Four miRNAs were identified as potential markers of

hemangiosarcoma, as they were differentially expressed
in hemangiosarcoma samples compared to both normal
spleen and nodular hyperplasia samples: mir-126, mir-
150, mir-203, and mir-452. Mir-126 and mir-452 were
significantly overexpressed in hemangiosarcoma sam-
ples, while mir-150 and mir-203 were significantly
underexpressed in hemangiosarcoma samples compared
to normal spleen and nodular hyperplasia samples.
Three of these miRNAs, mir-126, mir-150, and mir-203
have previously been found to have roles in angiogenesis
[39–47]. Previous reviews have confirmed that mir-126
is expressed in higher numbers in vascular tissues such
as heart, liver, and lung and also in endothelial cell
lineage cells [39, 43, 48]. Additional work has shown
that mir-126 levels are increased in endothelial precur-
sor cells, which are the cells of origin of hemangiosar-
coma, explaining their upregulation in this particular
tumor type [12, 40–43]. Mir-126 can behave in both
pro- and anti-angiogenic ways, but is pro-angiogenic in
endothelial precursor cells and actively proliferating and
migrating endothelial cells [41]. Mir-126 enhances
angiogenesis by increasing VEGF expression through
its targeting of the PI3K regulatory subunit 2 (p85β)
[39, 40, 43, 49]. Dogs with hemangiosarcoma have
higher plasma VEGF levels than healthy controls,
which correlates with the findings of increased mir-
126 expression in hemangiosarcoma samples [13].
The PI3K pathway has been previously implicated in
canine hemangiosarcoma as well, with mutations in
PTEN leading to increased phosphorylated Akt [50].
Mir-126 may be acting in concert with other media-
tors to influence this pathway, leading to increased
VEGF production and a pro-survival state. Mir-126
also targets regulator of G-protein signaling (RGS16)
which inhibits CXCR4, an important protein in angio-
genesis [41, 51]. When CXCR4 is activated, both
circulating hematopoietic stem cells and prostate can-
cer cells have increased endothelial cell adhesion and
transendothelial migration, indicating this pathway
may direct metastasis [52, 53]. Mir-150 also plays a
role in regulation of CXCR4, with decreased

Fig. 6 Venn diagram demonstrating miRNAs differentially expressed
between hemangiosarcoma, nodular hyperplasia, and normal spleen
(fold change≥ ± 2, significance set a p < 0.05). Eighteen miRNAs
were differentially expressed solely between hemangiosarcoma
and normal spleen samples. Fourteen miRNAs were differentially
expressed solely between nodular hyperplasia and normal spleen
samples. Three miRNAs were differentially expressed solely between
hemangiosarcoma and nodular hyperplasia samples. Four miRNAs
were determined to be potential markers of hemangiosarcoma as
they were differentially expressed between hemangiosarcoma and
nodular hyperplasia samples and also hemangiosarcoma and normal
spleen samples. Four miRNAs were determined to be potential
markers of nodular hyperplasia as they were differentially expressed
between hemangiosarcoma and nodular hyperplasia samples and
also nodular hyperplasia and normal spleen samples. Eight miRNAs
were determined to be potential markers of normal splenic tissue as
they were differentially expressed between hemangiosarcoma and
normal spleen samples and also nodular hyperplasia and normal
spleen samples

Table 1 MiRNAs significantly differentially expressed between hemangiosarcoma and both nodular hyperplasia and normal spleena

MicroRNA Fold Change
(HSA vs. NS)

p-value
(HSA vs. NS)

Fold Change
(HSA vs. NH)

p-value
(HSA vs. NH)

HSA
(Means)

NH
(Means)

NS
(Means)

mir-126 3.382336 0.038943 5.614515 0.023733 40134.8 7148.4 11866

mir-150 −2.84562 0.006069 −9.05708 0.040751 3097.6 28055.2 8814.6

mir-203 −2.56436 0.01982 −2.29043 0.043515 60.6 138.8 155.4

mir-452 13.06709 0.042741 13.54305 0.042579 818 60.4 62.6
a fold change ≥ ± 2 and significance set a p < 0.05
HSA hemangiosarcoma, NS normal spleen, NH nodular hyperplasia
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expression of mir-150 (as was seen in the hemangio-
sarcoma samples) leading to increased expression of
CXCR4 protein [45, 46]. VEGF has also been con-
firmed to be a direct target of mir-150, and downreg-
ulation of mir-150 led to increased VEGF expression
in brain microvascular endothelial cells, leading to in-
creased proliferation and migration of these cells [44].
Mir-203, which was downregulated in the hemangio-
sarcoma samples, has been shown to be a tumor sup-
pressor that targets VEGFA, with increased expression
of mir-203 leading to suppression of VEGFA in cer-
vical cancer [47]. Although mir-452 has not been pre-
viously associated with angiogenic-specific pathways,
it has been shown to target cyclin-dependent kinase
inhibitor 1B, an inhibitor of the cell cycle checkpoint
from G1 to S [54]. Hepatocellular carcinoma cells sig-
nificantly overexpress mir-452, leading to increased
cell invasion and migration and inhibition of apop-
tosis [54]. This miRNA was overexpressed by 13-fold
in hemangiosarcoma samples compared to both nodu-
lar hyperplasia and normal spleen samples, indicating
dysregulation of the cell cycle checkpoints may be a
key player in the transition to hemangiosarcoma.
The 18 miRNAs significantly different between

hemangiosarcoma and normal spleen only were further
investigated for potential downstream targets. Seven of
these, mir-139, mir-140, mir-26a, mir-424, mir-503, mir-
505, and mir-542 have been shown to be involved in
angiogenesis [55–63]. Although mir-139 has been

reported to act as a tumor suppressor in most studies,
its role in angiogenesis is becoming clearer [55, 56, 64,
65]. Mir-139 was found to increase cancer endothelial
cell migration and promote vessel formation in pancre-
atic cancer [55]. Mir-139 was also found to negatively
regulate CXCR4, playing a role in tightly regulating
angiogenesis to prevent over-activation of endothelial
cells [56]. It is possible that mir-139 is upregulated in re-
sponse to the increased CXCR4 levels associated with
mir-126 and mir-150 overexpression. Both mir-140 and
mir-26a directly target VEGFA to repress its expression
[57, 58]. These 2 miRNAs were underexpressed in the
hemangiosarcoma samples compared to normal spleen,
which fits with previous findings of increased VEGF
expression in patients with hemangiosarcoma [13]. Mir-
424 was found to be increased in tissues undergoing vas-
cular remodeling after hypoxia, resulting in increased
cell migration, and blockade of mir-424 led to decreased
proliferation and vascular tube formation [59]. Another
group found a contradictory function, in that mir-424
regulated VEGF and bFGF signaling by reducing expres-
sion of receptors for those cytokines and increased ex-
pression of mir-424 led to reduced proliferation and
migration of endothelial cells [60]. This group also found
that VEGF and bFGF had stimulatory effects on mir-424
expression, indicating that increased levels of VEGF, as
seen in hemangiosarcoma, may have led to the finding
of mir-424 being overexpressed, participating in a nega-
tive feedback loop [14, 60]. While it remains clear that

Table 2 MiRNAs significantly differentially expressed between hemangiosarcoma and normal spleen onlya

MicroRNA Fold Change p-value Hemangiosarcoma (Means) Normal Spleen (Means)

mir-139 3.554455 0.046672 71.8 20.2

mir-140 −2.21531 0.002865 12837.4 28438.8

mir-188 2.539683 0.003478 192 75.6

mir-193a 5.277433 0.013137 509.8 96.6

mir-22 2.010375 0.003289 65029.2 32346.8

mir-26a-2//mir-26a-1 −2.03635 0.020626 118478.2 241263.2

mir-301b 2.34 0.049404 46.8 20

mir-30e −2.1239 0.002838 2931.4 6226

mir-33b 2.569892 0.041145 47.8 18.6

mir-365-2//mir-365-1 4.615929 0.048929 1043.2 226

mir-424 4.978495 0.007939 92.6 18.6

mir-450a 7.765751 0.023887 3673.2 473

mir-450b 2.68626 0.023021 3519 1310

mir-503 5.391026 0.029408 168.2 31.2

mir-505 2.169014 0.016269 30.8 14.2

mir-542 5.563845 0.039428 2326.8 418.2

mir-758 3.142857 0.011275 4.4 1.4

mir-876 6.5 0.038656 2.6 0.4
a fold change ≥ ± 2 and significance set a p < 0.05
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mir-424 plays a role in angiogenesis, further studies are
warranted to evaluate its specific role in canine heman-
giosarcoma. Mir-503 is transcribed with mir-424 due to
their close proximity, and mir-503 has also been shown
to be anti-angiogenic by targeting VEGFA [61–63]. Mir-
505, which was increased in the hemangiosarcoma
samples, has been shown to decrease endothelial cell
migration and vascular tube formation [66]. One study
found that mir-542-3p targeted angiopoietin-2 and acted
as an anti-angiogenic signal [67]. Angiogenesis requires
a delicate balance of its mediators, and mir-424, mir-
503, mir-505, and mir-542 may be overexpressed in
these samples due to the effects of the multitude of
other miRNAs acting in a pro-angiogenic manner.
Vessel formation in hemangiosarcoma should not be
strictly compared to normal angiogenesis, as tumor ves-
sels are tortuous and leaky [68]. It is feasible that mixed
angiogenic signaling leads to the abnormal vessel forma-
tion found in canine hemangiosarcoma. Mir-503 has also
been shown to target the PI3K pathway by inhibiting the
regulatory subunit, PI3K p85, acting as a tumor suppres-
sor [69]. Again, this finding may be a regulatory negative
feedback loop in response to mir-126 overexpression.
Further work should be done to evaluate the inter-
related roles of these miRNAs.
Mir-22, which was overexpressed in the hemangiosar-

coma samples, has been shown to downregulate PTEN,
which parallels the previous finding of PTEN inactiva-
tion in canine hemangiosarcoma [50, 70–72]. Mir-30e
has been shown to be an endogenous miRNA in human
microvascular endothelial cells and plays a role in
human atherosclerosis by altering differentiation path-
ways [73–75]. Mir-33b and mir-758, which were overex-
pressed in the hemangiosarcoma samples, have also
been shown to regulate gene expression in human ath-
erosclerotic plaques [76]. Another miRNA, mir-365,
which was overexpressed in these samples, has been
shown to decrease vascular smooth muscle production
in vascular injury repair [77]. It is clear that mir-30e,
mir-33b, mir-365, and mir-758 are involved in the vascu-
lature, but their specific role in canine hemangiosarcoma
is unclear.
The remaining 6 miRNAs have been previously impli-

cated in neoplasia, but more specific information relat-
ing specifically to hemangiosarcoma and/or angiogenesis
could not be found [78–83].
Another group has evaluated miRNA expression in ca-

nine hemangiosarcoma, specifically looking at mir-214
[84]. This miRNA was found to act as a tumor suppres-
sor by promoting apoptosis, and was downregulated in
their samples [84]. Later work by the same group found
overexpression of mir-214 in the media of canine
hemangiosarcoma and human angiosarcoma cell lines,
which contradicted their previous findings of

underexpression within the cells themselves [85]. They
also found increased expression of mir-214 in the
plasma of canine patients with hemangiosarcoma, which
decreased after tumor removal [85]. The explanation for
the contradictory findings in these studies was that
intracellular and extracellular concentrations of miRNAs
can be different and because miRNAs can have a multi-
tude of downstream targets, they may act differently
depending on their location and the disease state. Mir-
214 was not significantly different in expression in the
samples reported here. One reason for this may have
been the methods used to evaluate for differential ex-
pression of miRNA. In the study reported here, RNA-
sequencing was used to determine differentially
expressed miRNAs, compared to the previously reported
studies which used qRT-PCR to evaluate for miRNAs
[84, 85]. Both the study reported here and the previously
published works had relatively small sample numbers,
and evaluation of a larger sample size may help to clarify
these confounding results [84, 85]. Despite the lack of
agreement in the findings of mir-214, the results re-
ported here agree with the findings of mir-126 reported
by the previous group, in which they found overexpres-
sion of mir-126 in plasma samples of canine patients
with hemangiosarcoma [85]. These previous studies only
evaluated mir-214 and mir-126 expression and did not
evaluate for other miRNAs, but the finding of mir-126
overexpression, similar to the findings of the current
study, is noteworthy. It is important to note that disease
stage was not evaluated in the study reported here nor
in the previously reported studies evaluating miRNA in
canine hemangiosarcoma. This may also help to explain
the contradictory findings regarding mir-214, as patients
with different disease stages may have different miRNA
expression levels. The long-term goal of the study pre-
sented here is to identify these dysregulated miRNAs in
the circulation of patients with hemangiosarcoma. Mir-
126 was overexpressed in these tissue samples, and work
by others has shown it to be overexpressed in the serum
of canine patients with splenic hemangiosarcoma. The
hope is that with additional investigation, other miRNAs
that were identified in the current study will be found in
the circulation, allowing use of a minimally invasive
diagnostic test for canine splenic hemangiosarcoma.

Conclusions
Results of the current study confirm the hypothesis that
miRNAs are significantly differentially expressed be-
tween canine splenic hemangiosarcoma, nodular hyper-
plasia, and normal spleen samples. Ten of the 22
miRNAs dysregulated in hemangiosarcoma samples have
been shown to have roles in angiogenesis (mir-26a, mir-
126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-
503, mir-505, and mir-542). This is of particular
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importance for this tumor specifically, as it is a tumor of
endothelial cells. An additional 4 miRNAs (mir-30e, mir-
33b, mir-758, and mir-365) have been shown to be dys-
regulated in vascular disease processes. Two additional
miRNAs (mir-22 and mir-452) have been implicated in
cancer pathways, with mir-22 downregulating PTEN, a
tumor suppressor that plays a role in hemangiosarcoma,
and mir-452 altering cell cycle checkpoints to increase
cell replication [54, 70–72]. Although the sample num-
bers in this study were small, the results point to clear
roles of miRNAs in the pathogenesis of hemangiosar-
coma via alteration of angiogenic signaling and cancer
pathways. Further work needs to be done to evaluate
these miRNA in a larger sample size and to elucidate the
specific roles these miRNAs play in the angiogenic alter-
ations leading to development of hemangiosarcoma, as
the majority of these miRNAs have not been previously
implicated in hemangiosarcoma. Further exploration is
indicated to identify these miRNA in circulation to allow
delineation of a specific miRNA panel that may become
useful as a minimally invasive, pre-surgical diagnostic
test to differentiate canine splenic hemangiosarcoma
from other masses of the spleen.
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