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A 10-day vacancy period after cleaning and
disinfection has no effect on the bacterial
load in pig nursery units
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Abstract

Background: Biosecurity measures such as cleaning, disinfection and a vacancy period between production cycles
on pig farms are essential to prevent disease outbreaks. No studies have tested the effect of a longer vacancy
period on bacterial load in nursery units.

Methods: The present study evaluated the effect of a 10-day vacancy period in pig nursery units on total aerobic
flora, Enterococcus spp., Escherichia coli, faecal coliforms and methicillin resistant Staphylococcus aureus (MRSA). Three
vacancy periods of 10 days were monitored, each time applied in 3 units. The microbiological load was measured
before disinfection and at 1, 4, 7 and 10 days after disinfection.

Results: No significant decrease or increase in E. coli, faecal coliforms, MRSA and Enterococcus spp. was noticed.
Total aerobic flora counts were the lowest on day 4 after disinfection (i.e. 4.07 log CFU/625 cm2) (P < 0.05), but the
difference with other sampling moments was limited (i.e. 0.6 log CFU/625 cm2) and therefore negligible.
Furthermore, this observation on day 4 was not confirmed for the other microbiological parameters. After
disinfection, drinking nipples were still mostly contaminated with total aerobic flora (i.e. 5.32 log CFU/625 cm2) and
Enterococcus spp. (i.e. 95 % of the samples were positive) (P < 0.01); the feeding troughs were the cleanest location
(total aerobic flora: 3.53 log CFU/625 cm2 and Enterococcus spp.: 50 % positive samples) (P < 0.01).

Conclusions: This study indicates that prolonging the vacancy period in nursery units to 10 days after disinfection
with no extra biosecurity measures has no impact on the environmental load of total aerobic flora, E. coli, faecal
coliforms, MRSA and Enterococcus spp..
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Background
Weaned piglets are subjected to many environmental,
behavioural and dietary stresses. Moreover, the intestinal
gut flora is still precarious, which makes them highly
susceptible to enteric diseases [1]. Disease outbreaks in
animal houses can lead to animal mortality and higher
condemnation rates at slaughterhouses. The resulting
economic damage can be severe [2] together with pre-
ventive measures (e.g. quarantine in case of epidemics)
and even destruction of farm animals [3]. In addition,
foodborne zoonotic diseases are a significant and wide-
spread global public health threat.

In nursery units, diarrhoea is one of the most important
causes of economic losses in the pig industry. Post-weaning
diarrhoea is multifactorial but the proliferation of patho-
genic Escherichia coli strains throughout the intestinal tract
of piglets after weaning has been shown to play a significant
role [4, 5]. Another important pathogen for the pig industry
is Salmonella. In 2011, most of the reported food-borne
outbreaks (69 553 human cases) in the European Union
were associated with food originating from animals.
Salmonella was the most frequently detected causative
agent (26.6 % of outbreaks) [6].
Methicillin resistant Staphylococcus aureus sequence

type 398 (MRSA ST398) is an emerging opportunistic
pathogen among farm animals, especially pigs [7–9].
Epidemiological studies have shown that they not only
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colonise pigs, but can also be transmitted to persons
with direct livestock exposure. Moreover, it is indicated
that MRSA ST6398 represents an increasing cause of
infections in humans [10].
It is of great importance to prevent disease outbreaks

through biosecurity measures rather than cure them [3]. Bio-
security includes all measures that prevent pathogens from
entering a herd (external biosecurity) as well as reducing the
spread of pathogens within the herd (internal biosecurity)
[11]. Between production cycles, internal biosecurity mea-
sures such as cleaning, disinfection and a vacancy period are
applied. Every biosecurity measure can influence the degree
of infection pressure before new animals arrive.
Luyckx et al. [12] showed that a cleaning step in

broiler houses caused a reduction of total aerobic flora
by 2 log CFU/625 cm2 and that a disinfection step
caused a further reduction of 1.5 log CFU. In piglet nur-
sery units, the importance of a prolonged vacancy period
is unknown. The aim of the present study was to assess
the evolution of the bacterial load of total aerobic flora,
Enterococcus spp., E. coli, faecal coliforms and MRSA
during a 10-day vacancy period in piglet nursery units.
Enterococcus spp. and faecal coliforms are suggested to
be adequate hygiene-indicator organisms for faecal con-
tamination of surfaces. In addition, E. coli have been
shown to be suitable index organisms for monitoring the
possible presence of Salmonella [13–15].

Results
Before disinfection, the mean enumeration of total aer-
obic flora was 5.64 log CFU/625 cm2 (Fig. 1a). The pro-
portion of positive samples for E. coli, faecal coliforms
and MRSA (after enrichment) and Enterococcus spp. was
49, 65 and 16 % (Fig. 2a) and 95 % (Fig. 3a), respectively.

On day 1 after disinfection, mean enumeration of total
aerobic flora was significantly reduced to 4.44 log CFU/
625 cm2 (P < 0.01) (Fig. 1a). Of the 135 samples taken
on day 1, 13, 23 and 7 % were positive for E. coli, faecal
coliforms and MRSA detection, respectively (Fig. 2a). In
addition, 69 % of the samples gave countable results for
Enterococcus spp. (Fig. 3a). The proportion of positive
samples for E. coli, faecal coliforms and Enterococcus
spp. was significantly lower compared to the proportions
found before disinfection (P < 0.01).
Three days later (day 4), total aerobic flora were

significantly reduced to 4.07 log CFU/cm2 (P < 0.05).
Only 7 % of the samples were positive for E. coli, but the
number of positive samples found for faecal coliforms
and MRSA were higher (25 and 14 %, respectively).
Countable results for Enterococcus spp. also increased to
77 %.
On day 7 after disinfection, mean enumeration of total

aerobic flora was 4.24 log CFU/625 cm2. Of all samples,
15, 29 and 13 % were positive for E. coli, faecal coliforms
and MRSA detection, respectively and comparable to
day 1, 70 % of the samples gave countable results for
Enterococcus spp..
On day 10, total aerobic flora increased further to 4.67

log CFU/625 cm2, which was 0.6 log CFU more than
4 days after disinfection (P < 0.01), but not significantly
different from day 1. Proportion of positive samples for
E. coli, faecal coliforms and MRSA were 12, 24 and 8 %,
respectively. In addition, 79 % of the samples were
countable for Enterococcus spp..
Overall, no significant differences were noticed be-

tween sampling moments after disinfection for E. coli,
faecal coliforms, MRSA and Enterococcus spp..
During the entire 10-day vacancy period, the overall

contamination level (total aerobic flora) was the highest

Fig. 1 Mean enumeration of total aerobic flora with standard errors. Mean enumerations are given for each sampling moment (a) and location
after disinfection (b). Samples (n = 135) were taken before disinfection (0d) and 1 day (1d), 4 days (4d), 7 days (7d) and 10 days (10d) after
disinfection. Samples (n = 108) were taken from each location. Significant differences between sampling moments/ locations are indicated by
different letters above bars
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for drinking nipples (i.e. 5.32 log CFU/625 cm2) (P < 0.01)
and the lowest for feeding troughs (i.e. 3.53 log CFU/
625 cm2) (P < 0.01) (Fig. 1b). Results of Enterococcus spp.
confirmed these observations (P < 0.01) and also showed
that the floors were still highly contaminated (i.e. still
84 % of the samples were positive) (P < 0.01) (Fig. 3b).
Results for E. coli, faecal coliforms and MRSA did not
indicate the most critical locations after cleaning and
disinfection (C&D) (Fig. 2b).
During the vacancy period, mean temperature ranged

from 15 °C to 16 °C and relative humidity (RH) from 57 to
67 % (Fig. 4). These two parameters did not have a signifi-
cant effect on the different bacteriological parameters.

Discussion
Biosecurity measures, such as cleaning and disinfection
(C&D) and a prolonged vacancy period of the animal
houses are an essential part of the hygiene management

on the farm to prevent disease outbreaks. The effect of a
vacancy period of 10 days after disinfection on several
bacteriological parameters was examined during this
study.
Disinfection reduced the total aerobic flora by 1.2 log

CFU/ sampling surface. During the following 10 day
vacancy, only a small reduction was observed on day 4,
though this seemed microbiological negligible (maximum
difference of 0.6 log CFU/625 cm2). One possible explan-
ation for the observed small fluctuations and the decline
of total aerobic flora on day 4 is that some bacteria can
survive stressful conditions by entering a viable but non-
culturable state [14]. These nonculturable bacteria were
not enumerated nor detected by the methods used in this
study. Another possible explanation is that residual flora
could proliferate again after disinfection, due to lack of
niche and nutrient competition with other bacteria. These
residual bacteria could have survived the disinfection step

Fig. 2 Proportion of positive samples given for detection of E. coli, faecal coliforms and MRSA, respectively. Proportions are given for each
sampling moment (a) and location after disinfection (b), in percentage. Samples (n = 135) were taken before disinfection (0d) and 1 day (1d),
4 days (4d), 7 days (7d) and 10 days (10d) after disinfection. Samples (n = 108) were taken from each location. Significant differences between
sampling moments/ locations per bacteriological parameter are indicated by different letters above bars

Fig. 3 Proportion of countable samples given in percentage for Enterococcus spp.. Proportions are given for each sampling moment (a) and
location after disinfection (b). Samples (n = 135) were taken before disinfection (0d) and 1 day (1d), 4 days (4d), 7 days (7d) and 10 days (10d)
after disinfection. Samples (n =108) were taken from each location. Significant differences between sampling moments are indicated by different
letters above bars
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by the presence of a resistance mechanism [16–19] or by
detrimental factors present during disinfection, such as
residual organic material.
Moreover, a longer vacancy period can even have a

negative effect, not only financially because of a lower
number of production cycles (i.e. lower income) but also
bacteriologically. For example, recontamination could
occur by vectors such as vermin and rodents in case of
biosecurity breaches [20–22], especially when other
compartments in the same building are still filled with
animals or if residual organic material (e.g. faeces and
feed) is present after C&D. Flies may be reservoirs and
vectors of several bacteria such as Salmonella [20, 23, 24],
E. coli O157:H7 [25], Staphylococcus aureus [26] and
Streptococcus suis type 2 [27]. Wild rodents can also carry
pathogens such as Salmonella, Campylobacter, Yersinia
and MRSA ST398 [28–31]. As biosecurity measures are
very well implemented on the pilot farm, it can be as-
sumed that on other farms, the bacteriological load and
infection pressure may even increase during vacancy.
Some bacteria can survive for long periods under vari-

ous conditions in the environment, such as Salmonella,
Staphylococcus aureus (including MRSA) and Entero-
coccus spp. [32]. The results from the present study indi-
cate that a prolonged vacancy period without extra
biosecurity measures creates no reduction in these bac-
teria. Extra biosecurity measures such as specific pathogen
control programs and pest control during the vacancy
period could therefore be beneficial.
Finally, the contamination levels of several locations

were analysed during the vacancy period. Drinking

nipples were still mostly contaminated with total aerobic
flora and Enterococcus spp.. Luyckx et al. [33] showed
that drinking cups are critical locations for C&D in
broiler houses. Drinking water from these contaminated
sources could be a possible cause for disease in animals.
Therefore extra attention should be given to these loca-
tions during C&D and during the vacancy period. In
addition, also disinfection of drinking lines is recom-
mended as they can be contaminated with biofilms, in-
cluding pathogenic bacteria [34]. As this study is carried
out on an experimental farm, also other locations can be
identified as critical locations for C&D, due to their
different specific structural design or composition com-
pared to the studied farm.

Conclusion
This study indicates that a vacancy period up to 10 days
after cleaning and disinfection with no extra biosecurity
measures has no beneficial effect on the bacterial load of
total aerobic flora, E. coli, faecal coliforms, MRSA and
Enterococcus spp. in piglet nursery units.

Methods
Sampling plan
This study was carried out in 6 identical nursery units
(A1 to A3 and B1 to B3) on the experimental pig farm
at the Institute for Agricultural and Fisheries Research
(ILVO, Merelbeke, Belgium). Each unit consists of 8
pens of 1.8 m2. Piglets were moved to these units imme-
diately after weaning (4 weeks of age) and stayed there
for 6 weeks. Each pen housed 6 piglets. Pen flooring was
a synthetic grid, under which a board slopes towards a
centrally-located slurry pit. Units A1 to A3 were moni-
tored during 2 successive vacancy periods in February
and April 2015 and units B1 to B3 during 1 vacancy
period in March 2015. After pig removal, units were
soaked with water. The day after, units were cleaned
with hot water (80 °C), then disinfected with 1 % (v/v)
MS Megades (Schippers, Bladel, The Netherlands) on
the same day. The disinfection product consists of glu-
taraldehyde and quaternary ammonium compounds.
After cleaning and disinfection, the pen remained vacant
for 10 days. During this vacancy period, temperature
and relative humidity (RH) were monitored hourly using
thermo-hygrometers (Ilog EI-HS-D-32-L, ESCORT data
logging systems). Three random pens per unit were
sampled before disinfection and at 1, 4, 7 and 10 days
after disinfection. Per sampling moment, 135 samples
were taken, for a total of 675 samples.

Sample processing
Sponge swab samples (3 M, SSL100, St. Paul, MN,
USA), pre-moistened with 10 mL Ringers solution
(Oxoid, BR0052G, Basingstroke, Hampshire, England),

Fig. 4 Mean temperature (°C) and relative humidity (RH, %) with
standard deviations given per sampling moment. Sampling
moments: day 1 (1d), 4 (4d), 7 (7d), 10 (10d) after disinfection
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were taken at 5 locations per pen: floor, concrete wall,
synthetic wall, drinking nipples and feeding trough. Sam-
pling of 3 pens per unit resulted in triplicates per type of
location or 15 swab samples per unit at each time point.
To neutralise the residual action of the disinfectants on
the microbiological growth, 10 mL Dey Engley neutralis-
ing broth (Sigma Aldrich, Fluka, D3435, St-Louis, MO,
USA) was used to pre-moisten the sponge swab samples
that were used on day 1 after disinfection. A surface of
625 cm2 (A4 paper format) was sampled whenever pos-
sible. Because the surface of the drinking nipples was
smaller than 625 cm2, 2 drinking nipples per pen were
sampled. Samples were transported to the lab under re-
frigeration and were processed immediately. For all mea-
sured pathogens, selected relevant parameters and
enumeration or detection techniques were based on
Luyckx et al. [12]. Swab samples were first diluted with
30 mL of Buffered Peptone Water (BPW, Oxoid,
CM0509) and then homogenised by placing them in a
Masticator (IUL instruments, S.A., Barcelona, Spain).
Prior to plating, swab samples were further diluted in
dilution series in saline peptone water (Bio Trading,
K110B009AA, Mijdrecht, The Netherlands) to produce
countable results on the selected agar media: Plate
Count Agar (Oxoid, CM0325) for total aerobic flora and
Slanetz and Bartley (Oxoid, CM0377) for Enterococcus
spp. (lower enumeration limit 30 CFU/625 cm2). Plate
Count Agar and Slanetz and Bartley plates were incubated
at 30 and 37 °C during 72 and 48 h, respectively. A 10 mL
BPW fraction was also transferred to a Stomacher® bag
and mixed with 10 mL double concentrated Mueller Hin-
ton Broth (Oxoid, CM0405) and 13 % (w/v) sodium
chloride (Merck, 1.06404.500, Darmstadt, Germany). After
overnight incubation of this solution at 37 °C, 100 μl was
plated on chromID® MRSA SMART (MRSM, bioMérieux,
Marcy l’Etoile, France) for the detection of MRSA. Chro-
mID® MRSA SMART were incubated at 37 °C for 24–
48 h. The remaining BPW fraction (original sample) was
also incubated overnight at 37 °C for additional analyses:
for detection of E. coli and faecal coliforms, 10 μl of the
enrichment broth was plated onto Rapid E. coli medium
(Biorad, 356–4024, Marnes-la-Coquettes, France) and
incubated for 24 h at 44 °C.

Statistical analysis
The distribution of the log-transformed enumerations of
total aerobic flora and Enterococcus spp. was analysed via
graphs (Q-Q plot and histogram). The log-transformed
enumerations of total aerobic flora followed a normal
distribution. A linear regression model was conducted
to evaluate the effect of a vacancy period and location
on the log-transformed total aerobic flora enumerations
(dependent variable). To assess the effect of predictor vari-
ables (vacancy period and location) on the non-normally

distributed outcome variables, variables describing the
enumeration and detection of the different bacteria
(Enterococcus spp., E. coli, faecal coliforms and MRSA)
were transformed into binary variables (absent or below
the detection limit = 0, present = 1). Subsequently a logis-
tic regression analysis was carried out. Temperature and
RH were added as covariates in both models. Variable
“unit” was included as a random effect in both models to
correct for measurements within one unit.
Post-hoc comparison was performed with a Tukey-

Kramer test. P-values ≤ 0.05 were considered as signifi-
cant. All statistical analyses were carried out using
Statistical Analysis System software (SAS®, version 9.4,
SAS Institute Inc., Cary, NC, USA).
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