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Abstract

Background: Leukemia/lymphoma cell lines have been critical in the investigation of the pathogenesis and therapy of
hematological malignancies. While human LL cell lines have generally been found to recapitulate the primary tumors
from which they were derived, appropriate characterization including cytogenetic and transcriptional assessment is
crucial for assessing their clinical predictive value.

Results: In the following study, five canine LL cell lines, CLBL-1, Ema, TL-1 (Nody-1), UL-1, and 3132, were characterized
using extensive immunophenotyping, karyotypic analysis, oligonucleotide array comparative genomic hybridization
(oaCGH), and gene expression profiling. Genome-wide DNA copy number data from the cell lines were also directly
compared with 299 primary canine round cell tumors to determine whether the cell lines represent primary tumors,
and, if so, what subtype each most closely resembled.

Conclusions: Based on integrated analyses, CLBL-1 was classified as B-cell lymphoma, Ema and TL-1 as T-cell
lymphoma, and UL-1 as T-cell acute lymphoblastic leukemia. 3132, originally classified as a B-cell lymphoma, was
reclassified as a histiocytic sarcoma based on characteristic cytogenomic properties. In combination, these data begin
to elucidate the clinical predictive value of these cell lines which will enhance the appropriate selection of in vitro
models for future studies of canine hematological malignancies.

Background
Hematological diseases in humans are widely heteroge-
neous including numerous molecular subtypes with wide
ranging prognoses and therapeutic responses. Oncogen-
esis is well understood for some subtypes, while the mo-
lecular changes leading to other subtypes remain
unknown [1]. A similar level of molecular heterogeneity
likely exists in the >1000 leukemia/lymphoma (LL) cell
lines that have been described to date [2].
Although the use of cell lines provides numerous ad-

vantages, including ease of handling and manipulation,
high homogeneity, provision of a continuous source of
sample material, and accessibility to the scientific com-
munity [3], detailed characterization is crucial before
they are used as an in vitro preclinical cancer models.

Nearly 100 % of examined human LL cell lines carry
stable genetic alterations and karyotypic changes that
maintain the major features of the original cells [2] while
a number of other human LL cell line studies have pro-
vided evidence that these cell lines have a high clinical
predictive value that may translate into a favorable re-
sponse rates in Phase II clinical trials [4, 5].
Cell line characterization minimally requires that a com-

prehensive set of immunophenotyping and cytogenetic data
have been published [6]. However, with the recent explo-
sion of advances in the genomics field, it is now possible to
provide a more in-depth assessment of cytogenetic and
transcriptional characteristics of cell lines that can provide
further insight into biological processes including chromo-
somal translocations, signaling pathways, mutational ana-
lysis, gene dysregulation, and RNAi gene silencing [2]. Of
the >1000 human LL cell lines described, ~40 % have been
characterized in sufficient detail for accurate classification
as discrete LL subtypes [6].
Spontaneously occurring lymphoid malignancies in dogs

share the same histopathological and clinical features of

* Correspondence: steven_suter@ncsu.edu; Matthew_Breen@ncsu.edu
4Comparative Medicine Institute, North Carolina State University, Raleigh, NC,
USA
1Department of Molecular Biomedical Sciences, College of Veterinary
Medicine, North Carolina State University, CVM Research Building - Room
348, 1060 William Moore Drive, Raleigh 27607, NC, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Roode et al. BMC Veterinary Research  (2016) 12:207 
DOI 10.1186/s12917-016-0836-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-016-0836-z&domain=pdf
mailto:steven_suter@ncsu.edu
mailto:Matthew_Breen@ncsu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


their human couterparts, in addition to evolutionarily
conserved chromosome aberrations and mutations, indi-
cating shared pathogenesis across species [7–9]. There are
only a small number of established canine LL cell lines,
six of which have already been characterized at the
genomic level [10, 11]. Similar to human LL cell lines, the
importance of detailed genomic and phenotypic
characterization in an effort to define a framework to as-
sess their clinical predictive value was recently emphasized
[12]. Five additional canine LL cell lines, CLBL-1, Ema,
UL-1, TL-1 (Nody-1), and 3132, have been used previously
in in vitro studies [13–21]. These cell lines have varying
levels of characterization, none of which includes an in-
depth genomic and transcriptomic approach [22–24].
We present a comprehensive characterization of five

canine LL cell lines starting with an extended panel of
immunophenotyping. High resolution oligonucleotide
array comparative genomic hybridization (oaCGH) was
performed to assess genome-wide copy number status,
and multicolor fluorescence in situ hybridization (FISH)
analysis was used to further identify copy number imbal-
ances and structural changes in karyotype architecture.
Transcription status of each cell line was investigated
using high-density array based gene expression profiling
(GEP) and quantitative reverse transcriptase polymerase
chain reaction (qRT-PCR). Additionally, genome wide
copy number data of each cell line were compared with
data from primary canine round cell tumors to further
confirm their classification and relevance as in vitro pre-
clinical models of lymphoid neoplasia for canine and
comparative medicine.

Methods
Canine LL cell lines
Five previously established canine LL cell lines with varying
levels of initial characterization were included in this study:
CLBL-1 [22] (kind gift from Dr. Barbara Rutgen, University
of Veterinary Medicine Vienna, Austria, Ema [23] (kind gift
from Dr. Takuya Mizuno, Yamaguchi University, Japan),
TL-1 [23] (Nody-1, kind gift from Dr. Yasuhiko Okamura,
Iwate University, Japan), UL-1 [23] (kind gift from Dr.
Hajime Tsujimoto, University of Tokyo, Japan), and 3132
[24, 25] (kind gift from Dr. Mark Holmes, University of
Cambridge, UK). All cell lines were maintained at 37 °C
and 5 % CO2 in RPMI-1640 culture medium (Mediatech,
Hendon, VA) supplemented with 10 % fetal bovine serum
(FBS, Mediatech), 2 mM Glutamax (Life Technologies,
Grand Island, NY), and 100 μg/ml Primocin (Invivogen,
San Diego, CA) and tested negative using a PCR Myco-
plasma test kit (Applichem, Cheshire, CT).

Immunophentyping
Immunophenotyping of each line was completed using
flow cytometry as previously described [11, 26] at the

UC Davis Leukocyte Antigen Biology Laboratory using a
panel of monoclonal antibodies reactive with canine
leukocyte antigens, including CD1a, CD1c, CD3, CD4,
CD5, CD8α, CD8β, CD11a, CD11b, CD11c, CD11d,
CD14, CD18, CD21, CD34, CD45, CD45RA, CD49a,
CD54, CD79α, CD80, CD86, DM5, MHC-II, 5G2, AG5,
TCRαβ, TCRγδ, TCRαβ, TCRCCγδ, and Thy-1 (CD90).
Analysis at the NCSU Clinical Immunology Laboratory
was also performed using a smaller number of anti-
bodies, including CD3, CD4, CD5, CD8α, CD21, CD34,
and CD79α/β.

PARR
Polymerase chain reaction for antigen receptor rea-
rrangement (PARR) was completed as previously de-
scribed [27, 28] to assess clonality and, possibly lineage.
PCR products were separated using capillary gel ele-
ctrophoresis (QIAxcel Electrophoresis System, Qiagen,
Valencia, CA). A clonal sample was determined if one or
more discrete bands were seen on the gel, and a polyclonal
sample was determined if multiple bands or a smear of
amplicons were seen. A negative sample was determined
if no bands were seen.

Isolation of cell line DNA and RNA and generation of
metaphase preparations
Aliquots of 1 × 107cells were removed from the same
culture flask at the same time point for isolation of DNA
and RNA and preparation of metaphase chromosome
preparations to ensure consistency in downstream ana-
lyses. DNA was isolated using the DNeasy Blood and
Tissue kit (Qiagen, Valencia, CA) and manufacturer’s
protocol, and quantity and quality of DNA were evalu-
ated using spectrophotometry (260/280 > 1.8) and gel
electrophoresis. RNA was isolated using the RNeasy Plus
Mini Kit (Qiagen) and manufacturer’s protocol, and
assessed using the 2100 Bioanalyzer RNA 6000 Nano Kit
(Agilent Technologies, Santa Clara, CA) to confirm an
RNA integrity number (RIN) >9.0. Metaphase chromo-
some preparations were prepared from each cell line as
previously described [29] using conventional techniques
of colcimid arrest (final concentration of 50 ng/ml for
1 h), hypotonic treatment, and methanol-glacial acetic
acid fixation prior to being dropped onto glass slides.

Identification of copy number aberrations (CNAs) using
oaCGH
oaCGH was completed as previously described using a
180,000 feature canine oligonucleotide array (Agilent
Technologies) with repeat-masked 60mer oligonucleotides
spaced ~13 kb across the genome [30]. An equimolar pool
of DNA from 25 clinically healthy female dogs was used
as a common reference for all cell lines. Cell line and
reference DNA was labeled with Cyanine 3-dUTP and
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Cyanine 5-dUTP, respectively, using the Agilent Enzym-
atic Labeling Kit, and probe hybridization, array washing,
and scanning was performed as described elsewhere [30].
Scan data were processed using Feature Extraction

v.10.10 software (Agilent Technologies) and imported
into Nexus Copy Number v7.5 (Biodiscovery, Haw-
thorne, CA). Raw data were evaluated to identify and ex-
clude probes displaying non-uniform hybridization or
signal saturation, and copy number calls were made
using Biodiscovery’s FASST2 segmentation algorithm.
Copy number calls were based on a minimum of three
consecutive probes per segment, and mean log2 cell
line:reference thresholds of +/− 0.2 were used to define
gain and loss, respectively. Genes within the defined in-
tervals were identified using the UCSC canine genome
browser (CanFam2 assembly; http://genome.ucsc.edu/)
and the NCBI gene database (http://www.ncbi.nlm.nih.-
gov/gene). Genes previously associated with cancer were
based on those reported in the Cancer Gene Census
(http://cancer.sanger.ac.uk/cosmic/census) [31].
Further statistical analyses using the Feature Extrac-

tion data were performed using R [32]. The signals
(rProcessedSignal and gProcessedSignal) were normal-
ized using the following equations:

a ¼ log2 rprocessedSigna=gProcessedSignalð Þ ð1Þ
ProcessedRatio ¼ a–mode að Þ½ �=MAD að Þ ð2Þ

Where, Processed ratio is the centered and normalized
ratio of the Agilent processed fluorescent signals. Seg-
mentation was performed across all chromosomes using
circular binary segmentation [33]. Data were further di-
chotomized as gain (1), no change (0), or loss (−1), based
on segments that were +/− 3 MAD (mean absolute devi-
ation) from the median of each sample’s response across
all chromosomes. Hierarchical clustering of the five cell
lines was performed using dichotomous data using
Euclidean distance and Ward’s method. Additionally,
hierarchical clustering of the cell lines with 299 canine
primary round cell tumors including 123 leukemias [34],
106 lymphomas (Thomas et al., in preparation), and 70
histiocytic malignancies (Kennedy et al., in preparation)
was performed using segmented data using Euclidean
distance and Ward’s method. Tumor type and subtype
were both annotated on the heatmap.

FISH analysis
FISH of all cells lines was performed as previously
described [29] to evaluate structural changes and verify
oaCGH copy number data using panels of clones from
the CHORI-82 dog bacterial artificial chromosome
(BAC) library (www.chori.org). Initially, two clones
(326 K03 and 330E21), previously determined to
hybridize to the centromeric regions of canine

autosomes [35], were fluorescently labeled and hybrid-
ized to metaphase preparations of each cell line. Centro-
meric signals were used to properly orient the
chromosomes, aid in confirming modal chromosome
count, and identify bi-armed chromosomes.
Twenty additional BAC clones were selected to con-

tain known oncogenes and tumor suppressor genes that
met two of the three following criteria: (1) located in a
region of CNA in at least one of the five cells lines, (2)
displayed differential expression between cell lines based
on the GEP, and (3) have been associated with human
and/or canine lymphoid malignancies in prior studies [8,
9, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The BAC
clones selected represented the following genes:
BCL11B, IGH, VEGFA, CCNC, FOXO3A, CDKN2A,
MYC, KIT, CDK6, EZH2, MYCBP2, FLT3, PTEN, HEY1,
E2F5, NFKB2, ERG, MLLT2, CD83, and DEK (Table 1).
The 20 clones were divided into four panels of five for
multicolor FISH, and each panel was hybridized to
metaphase spreads of each cell line and healthy dog con-
trols. Copy number status of each probe was scored in
at least 50 cells of each cell line and normal controls.

GEP analysis
Total RNA from each cell line was used to perform gene
expression profiling (GEP) as described elsewhere [11, 47]
using the GeneChip Canine Genome 2.0 array (Affymetrix,
Santa Clara, CA) which is comprised of 18,000 Canis famil-
iaris mRNA transcripts and over 20,000 non-redundant
predicted genes. Additionally, total RNA was isolated as de-
scribed from lymph nodes harvested from six healthy
mixed breed dogs that showed no evidence of lymphoid
neoplasia at necropsy [11]. Microarrays were processed by
the Lineberger Functional Genomic Core Facility at the
University of North Carolina Chapel Hill. Total RNA (1 μg)
was processed for microarray hybridization using the Mes-
sageAmp II-Biotin Enhanced Kit (Ambion, Life Technolo-
gies, Grand Island, NY) and hybridization was performed
according to Affymetrix technical protocols. GEP analysis
was performed using GeneSpring GX v12 (Agilent Tech-
nologies). Expression array data were normalized using the
GC-RMA procedure [48] and signals were median-
centered across all arrays. Data were filtered to remove
probe sets with limited variation (standard deviation <2)
across all arrays, and fold change analysis was performed
for each cell line using the averaged expression data from
the normal lymph node controls as baseline. Additionally,
unsupervised hierarchical clustering analysis was performed
across all cell lines and controls using the filtered probe set.
Functional analysis was performed by evaluating for enrich-
ment in genes that were up- or down-regulated in each cell
line by >5-fold compared to normal lymph node controls.
Enrichment analysis in Gene Ontology (GO) biological pro-
cesses and Kyoto Encyclopedia of Genes and Genome
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(KEGG) Pathways was completed using the Database for
Annotation, Visualization, and Integrated Discovery (DA-
VID) v 6.7 [49, 50].

qRT-PCR analysis
One ug of total RNA from each cell line and two normal
lymph node controls was used to perform qRT-PCR to
validate GEP as previously described [11]. qRT-PCR was
performed using Applied Biosystems OneStepPlus Real-
Time PCR system (Life Technologies) and a cycling
protocol with an initial denaturation at 95 °C for 3 min;
followed by 40 cycles of 95 °C for 3 s, 62 °C for 20 s, and
72 °C for 15 s; with a final extension at 72 °C for 5 min,
followed by a melt curve analysis. All assays were per-
formed in triplicate.
Primers were designed using NCBI Primer-BLAST as

previously described [11] for MYC, KIT, FLT3, PTEN, and
RPL32 (Table 2). Relative quantification using the com-
parative Ct method (ΔΔCT) was performed as described
previously using normal lymph node as the baseline for
comparisons. RPL32 was used as the reference gene based
on its stable expression across all samples in GEP analysis
and previous identification as a suitable qRT-PCR refer-
ence gene for canine lymphoid neoplasia [51].

Results
Immunophenotyping
Flow cytometry data are presented in Table 3. All cell
lines expressed CD45 and CD45RA, and 4/5 expressed
CD18, which verifies a leukocytic origin. CLBL-1 dis-
played positive staining for CD1a, CD1c, CD11a,
CD11b, CD54, CD79α, CD80, CD86, and MHC-II and
no staining for CD3, CD4, CD5, CD8, and Thy-1 indi-
cating a mature B-cell origin, which is further supported
by a monoclonal product resulting from PCR analysis of
the IGH gene. Ema was positive for Thy-1, a T-cell
marker. TL-1 cells were negative for most antigens, how-
ever weak expression of MHCII was observed, which may
indicate a T-cell phenotype as MHCII is expected to have
high intensity on B cells and antigen presenting cells, with
much weaker expression observed on T cells [52]. TL-1
and Ema both were found to have rearrangement of
TCRG gene (oligoclonal for TL-1), further supporting a
mature T-cell phenotype for both cell lines. UL-1
expressed most antigens including CD34, which indicates
an immature precursor phenotype. Positive expression for
CD3, CD4, CD5, CD8α, CD8β, CD11d, and Thy-1 all sup-
port a T-cell phenotype. UL-1 is also positive for CD14,
which is normally a marker for myeloid cells; however, ex-
pression is also demonstrated in B and T cell precursors
but not mature cells [52], further supporting an immature
phenotype. Additionally, PCR of TCRG indicated a mono-
clonal product further supporting T-cell phenotype. 3132
is most likely of dendritc/histiocytic origin based on the
positive expression of CD1a and CD11c, which is charac-
teristic of histiocytic diseases [53] and a combination not
found in other cell lines of lymphoid origin in this or
previous studies [10, 11]. Additionally, strong intensity for
MHC-II further supports dendritic cell origin. However, a
T-cell origin cannot be completely ruled out based on
expression of CD4, CD8α, and a monoclonal product
resulting from PCR of TCRG.

Table 1 BAC clones from CHORI-82 dog library selected to
represent 20 cancer-related genes for FISH analysis. Chromosome
locations based on the CanFam2 genome assembly are noted

Gene BAC clone Chromosome Start (bp) Stop (bp)

BCL11B 326-K01 8 70,661,395 70,752,579

IGH 027-N17 8 75,997,304 76,191,846

VEGFA 152-L05 12 15,212,673 15,228,610

CCNC 268-D08 12 60,739,913 60,764,849

FOXO3A 048-I05 12 68,583,078 68,701,688

CDKN2A 325-C12 11 44,255,629 44,256,009

MYC 335-M01 13 28,238,008 28,242,545

KIT 98-B16 13 50,017,518 50,212,194

CDK6 181-D14 14 21,147,772 21,367,160

EZH2 300-P18 16 4,905,169 4,971,032

MYCBP2 216-G13 22 33,561,172 33,820,510

FLT3 062-D23 25 14,581,755 14,658,045

PTEN 521-G14 26 40,921,802 40,981,821

HEY1 484-E08 29 30,184,049 30,186,972

E2F5 157-A19 29 34,748,851 34,758,529

NFKB2 001-D14 28 17,903,193 17,910,910

ERG 100-F17 31 35,578,420 35,760,306

MLLT2 468-E14 32 13,354,180 13,586,952

CD83 127-B24 35 16,354,899 16,533,175

DEK 517-A02 35 20,035,294 20,172,093

Table 2 Primer sequences and associated cDNA amplicons
length used for qRT-PCR analysis

Primer Sequence Amplicon length

MYC-F 5′-TCGCCTATTTGGGAAGACAC-3′ 141

MYC-R 5′-AAGCTGACGTTGAGAGGCAT-3′

KIT-F 5′-CGAAGATGTGTGAAGCAGGA-3′ 126

KIT-R 5′-GTGTCCGCTACCCTGGAATA-3′

PTEN-F 5′-ACTTTGAGTTCCCTCAGCCA-3′ 141

PTEN-R 5′-AGGTTTCCTCTGGTCCTGGT-3′

FLT3-F 5′-CAGAGGCAGTGTATGGAGCA-3′ 129

FLT3-R 5′-GGCAATTCAGGGAACTGTGT-3′

RPL32-F 5′-ATGCCCAACATTGGTTATGG-3′ 180

RPL32-R 5′-CTCTTTCCACGATGGCTTTG-3′
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Karyotype architecture
Chromosome enumeration and centromere localization
via FISH of metaphase chromosomes was used to assess
the gross karyotypic architecture of each cell line. The
normal dog karyotype includes 38 pairs of acrocentric
autosomes, a large sub-metacentric X chromosome and
a small metacentric Y chromosome [54]. Enumeration of
chromosomes from 30 metaphase spreads of each cell
line indicated varying levels of aneuploidy (Fig. 1).
CLBL-1, Ema, and 3132 were all hypodiploid, while TL-
1 and UL-1 contained normal modal chromosome
counts (Table 4).

Genome wide copy number imbalance
oaCGH analysis revealed varying levels of genomic im-
balance in each of the cell lines with detected CNAs

ranging in size from 19.5 Mb to entire chromosomes
(Fig. 2). Large differences in the number of aberrations
(Fig. 3a) and the percent of the genome impacted by re-
gions of imbalance (Fig. 3b) were also noted. CLBL-1,
TL-1, and UL-1 have a similar and even distribution of
the number of aberrant gains and losses; whereas Ema
was skewed towards an increase in the number of losses,
and 3132 was skewed towards regions of copy number
gain. When the cumulative size of CNAs and the per-
cent of the genome impacted by imbalance were
assessed, Ema and TL-1 were minimally changed which
is reiterated from the oaCGH profiles in which both cell
lines had less visually obvious CNAs. CLBL-1 and UL-1
had similar total percent of the genome changed, but
CLBL-1 had a greater percent of the genome with imbal-
ances of loss and UL-1 had a greater percent of the gen-
ome gained. 3132 had the greatest percent of the
genome changed which was expected given the number
of aberrations detected and the extensive genomic com-
plexity visualized in the oaCGH profile. Cancer-
associated genes in regions of imbalance were identified
and are detailed in Additional file 1: Table S1. Cell lines
were clustered to determine their relatedness to each
other based on genome-wide copy number assessment
(Fig. 4). 3132 branched away from the other four, and
Ema and TL-1, the two mature T-cell neoplasms based
on immunophenotyping, were the most closely related.

FISH analysis
FISH analysis was completed for 20 genes relevant to
lymphoid neoplasia to verify oaCGH data, enumerate
the level of imbalance at each locus, and investigate any
structural aberrations associated with the selected genes
of interest. The 20 genes were divided into four panels
of five for multicolor FISH analysis. Each of the four
FISH panels is identified in the insets of Fig. 5 with con-
trol chromosomes from clinically healthy dogs indicating
the appropriate localization of each BAC clone. A repre-
sentative metaphase spread with CNAs or structural
changes in one of the cell lines is shown in each panel.
Structural changes were identified in each cell line.

CLBL-1 contains a derivative 13 chromosome that
appears to include two copies of Canis familiaris 13
(CFA 13) joined by the centromere resulting in the for-
mation of a metacentric chromosome (Fig. 5b), in
addition to a grossly normal copy of CFA 13 based on
the location of the 2 probes on CFA 13. A similar abnor-
mality occurred in UL-1 with chromosome 25, as is evi-
denced by 2 copies of FLT3 forming a metacentric
chromosome in addition to an acrocentric chromosome
with FLT3 placement in the expected location on CFA
25 (Fig. 5c). Both Ema and CLBL-1 contained a deriva-
tive metacentric chromosome resulting from the appar-
ent fusion of CFA 28 and CFA 35 (Fig. 5d). Ema

Table 3 Phenotypic characteristics of canine LL cell lines based
on flow cytometry analysis

Cell line CLBL-
1

Ema TL-
1

UL-
1

3132

Antigen

CD1a ++ – – + +

CD1c ++ – – + ++

CD3 – – – + –

CD4 – – – + +

CD5 – – – + –

CD8α – – – ++ ++

CD8β – – – + –

CD11a + + – – +

CD11b + – – – ++

CD11c – – – – ++

CD11d – – – + –

CD14 – – – + +

CD18 ++ ++ – ++ ++

CD21 – – – + –

CD34 – – – + –

CD45 ++ ++ ++ + ++

CD45RA ++ + + + +

CD49α ++ ++ – ++ ++

CD54 ++ – – + ++

CD79α/β ++ – – – –

CD80 + ++ ++ + ++

CD86 + – – + ++

DM5 – – – + –

MHC-II ++ – + + ++

TCRαβ – – – + –

TCRγδ – – – + +

Thy-1 (CD90) – ++ – + –

Strong expression (++), intermediate expression (+), or no expression (−) of
each antigen is indicated

Roode et al. BMC Veterinary Research  (2016) 12:207 Page 5 of 16



contained additional copies of CFA 28 and CFA 35,
while CLBL-1 contained another CFA 28 and a heterozy-
gous loss of CFA 35. Numerous structural aberrations
occurred in 3132, and appeared to be random from cell
to cell. Further detail of these structural changes was dif-
ficult to ascertain given the heterogeneity observed in
the metaphase spreads.
A summary of the frequency of CNA at each of the 20

investigated loci is presented in Fig. 6. Ema and TL-1
showed grossly normal copy number changes, as was
seen in the oaCGH; however, both were found to have a
homozygous deletion of CDKN2A. Ema also had a het-
erozygous loss of MLLT2 in 100 % of cells and a hetero-
zygous loss of FLT3 in 15 % of cells which was detected
via oaCGH. Additionally, TL-1 had three copies of E2F5

and HEY1, both located on CFA 30, in 100 % of cells.
UL-1 and CLBL-1 showed copy number changes in nine
and 10 of the loci evaluated, respectively. CLBL-1 exhib-
ited heterozygous losses of CCNC, FOXO3A, CDK6,
MYCBP2, PTEN, CD83, and DEK, and a copy number of
three for MYC and KIT (both located on CFA 13) in the
majority of cells (>87 %). UL-1 had more genes gained,
with three copies of BCL11B, IGH, VEGFA, CCNC,
FOXO3A, FLT3, and NFKB2 in the vast majority (>93 %)
of cells. Additionally, 50 % of cells gained an extra copy
of CDK6. FISH analysis of 3132 showed copy number
changes at 19/20 loci, many of which were strikingly
heterogeneous. MYC, KIT, and CD83 each have propor-
tions of cells with normal copy number and gains of 3,
4, and >4 copies. Losses of ERG and EZH2 were

Fig. 1 Karyotypic organization of each canine LL cell line. Centromeric regions were visualized through the use of two BAC clones, and used to
orient the chromosomes. Images of DAPI stained metaphase spreads (left panel) were used to prepare rudimentary karyotypes (middle and right
panels). Chromosomes were arranged by descending size of bi-armed chromosomes followed by single-armed chromosomes

Table 4 Chromosome enumeration of five canine LL cell lines based on evaluation of 30 metaphase spreads

Cell line Ploidy Modal chromosome number Chromosome range Bi-armed chromosomes

CLBL-1 Hypodiploid 70 66–72 4–7 per cell

Ema Hypodiploid 73 70–76 5–7 per cell

TL-1 Normal 78 76–82 1 per cell

UL-1 Normal 78 76–80 1–3 per cell

3132 Hypodiploid 40 37–42 25–34 per cell
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identified in all or nearly all 3132 cells, with proportions
(10–23 %) of cells displaying homozygous deletion.

Gene expression analysis
GEP data were filtered to remove probe sets with limited
variation (standard deviation <2) across the five cell lines
and six non-neoplastic lymph nodes resulting in 1153
probe sets used for subsequent analyses. Unsupervised clus-
tering resulted in immediate branching of 3132 from the
other 10 samples. The remaining samples were then
separated into two discrete groups including the four cell
lines, and the six control lymph nodes (Fig. 7). Normal
lymph nodes unsurprisingly display greater transcription

conservation across biological replicates compared with the
cell lines as indicated by their shorter connecting branches.
The cell lines displaying the greatest transcriptional similar-
ity were Ema and TL-1, the two mature T-cell lines, as reit-
erated from the oaCGH clustering analysis. UL-1, most
likely an immature T-cell phenotype, is also more similar to
Ema and TL-1 than CLBL-1, a B-cell line.
Fold change analysis was also completed by comparing

each cell line with the mean expression of the non-
neoplastic lymph nodes. Fold changes of known cancer
related genes and the transcripts with the 50 largest ab-
solute fold changes (up or down) in each cell line are
listed in Additional file 1: Tables S2 and S3, respectively,

Fig. 2 oaCGH profiles of each of the five canine LL cell lines. Each oaCGH profile includes the chromosomes (1–38,X) on the x-axis and log2 cell
line:reference ratio on the y-axis with copy number gains and losses indicated by the horizontal bars above and below the midline, respectively
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as genes that may have functional relevance. Addition-
ally, genes with a fold change >5 were further assessed
in functional gene-annotation enrichment analysis. Due
to limited functional annotation of canine genes, official
gene symbols were used for enrichment analysis based
on human gene annotations. Up to the top ten enriched
GO biological processes and KEGG pathways are listed
in Additional file 1: Tables S4 and S5, respectively. All
five cell lines exhibited upregulation of genes associated

with the GO biological processes of cell proliferation
and division, and three of five exhibited upregulation of
genes involved in metabolic processes (e.g. sterol biosyn-
thetic process, glucose metabolic process, cholesterol
metabolic process). All five cell lines also exhibited
downregulation of genes involved in immune response
and leukocyte activation. When the KEGG pathways
were assessed, four of the cell lines exhibited upregula-
tion of metabolic and biosynthesis pathways (e.g. steroid

Fig. 3 Genomic imbalances identified in the five canine LL cell lines. a Percentage of CNAs detected as gain or loss via oaCGH analysis, with the
total number indicated on each column. b Genomic imbalances in each cell line expressed as percent genome changed and the total number of
megabases (Mb) within regions of copy number change. Copy number changes on the X chromosome were omitted from these analysis as the
reference was sex mismatched in 4/5 cell lines

Fig. 4 Hierarchical clustering of canine LL cell lines based on genome wide copy number status. Dichotomous data was clustered using Euclidian
distance and Ward’s method. Columns represent the individual cell lines and rows represent individual regions along the genome. Blue indicates
a region of gain and red indicates a region of loss
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biosynthesis, pyruvate metabolism) as similarly identified
in the GO term analysis. TL-1 was also found to exhibit
upregulation of genes in both the ERBB and Jak-STAT
signaling pathways; while genes involved in the MAPK
signaling pathways and the NOD-like and Toll-like recep-
tor signaling pathways were upregulated in 3132. All cell
lines exhibited downregulation of cell adhesion molecules.
qRT-PCR was performed to verify GEP findings and

analyze the relationship between copy number change and
expression change in four well known cancer associated
genes including MYC, KIT, FLT3, and PTEN (Fig. 8).
Homozygous loss of PTEN was observed in CLBL-1 and
3132, which both show the greatest decreases in PTEN ex-
pression. Three copies of FLT3 were present in UL-1, and
this gene was upregulated 17 fold (and was the only cell
line to show an upregulation). Fold changes in MYC and
KIT are more variable across the cell lines and have min-
imal correlation with copy number changes observed.
CLBL-1 and Ema had slight downregulation of MYC,
while the other three showed modest upregulation. KIT
was largely downregulated in CLBL-1, Ema, and 3132
(two of which had copy number gains), and upregulated
8-fold in TL-1 in which the loci was copy number neutral.

Genome-wide CNA comparison with primary tumors
Finally, we compared the five cell lines with genome
wide copy number data generated in our laboratory from

299 primary round cell tumors via clustering analysis to
determine whether the cell lines represented primary tu-
mors, and, if so, what subtype each most closely resem-
bled (Fig. 9). All cell lines were found to cluster within
the primary tumors, indicating they are more closely re-
lated to primary tumors than other cell lines. 3132 seg-
regated within a large cluster composed of primarily
histiocytic malignancies. CLBL-1 branches from a cluster
of mature B-cell neoplasms consisting primarily of B-cell
lymphomas with a smaller subset of B-cell chronic
lymphocytic leukemias. TL-1 and Ema both clustered in
a somewhat heterogeneous grouping comprised chiefly
of T-cell lymphomas, and both these cell lines were most
closely related to a T-cell lymphoma. UL-1 grouped in a
cluster composed of acute leukemias, most of which
were lymphoid in origin.

Discussion
We present a detailed characterization of five canine LL
cell lines using a genome-wide molecular approach in-
cluding oaCGH and GEP analysis. The data presented
here, combined with previously published canine LL cell
line characterizations [11], provides the opportunity to
more appropriately select canine LL cell lines for pre-
clinical in vitro studies. Overall, our data suggests that
CLBL-1 represents a mature B-cell lymphoma as previ-
ously reported [22], and Ema and TL-1 both represent

Fig. 5 FISH analysis of 20 cancer-related genes in each canine LL cell line verifies and enumerates oaCGH findings and identifies structural aberrations.
The 20 genes were divided into four panels of five genes each for multicolor FISH (a-d). In each panel, individual chromosomes from clinical healthy
control dogs are included in the inset to show normal probe placement. For each gene panel, a representative metaphase spread showing copy
number or structural aberrations (arrows) is included. Cell line and copy number of each probe are denoted in each panel
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T-cell lymphomas as previously reported [23]. In con-
trast, UL-1 should be reclassified as T-cell acute lympho-
blastic leukemia (instead of a T-cell lymphoma) and
3132 should be reclassified as a histiocytic sarcoma
(instead of a B-cell lymphoma).
CLBL-1 immunophenotyping in this study agreed with

the immunophenotyping published when the cell line
was initially established. Positive expression of CD11a,
CD79α, CD45, CD45RA, and MHCII and no expression
of CD3, CD4, CD5, CD8, CD11d, CD14, CD21, CD34,
and CD56 classifies it as a B-cell lymphoma. Addition-
ally, B-cell PARR revealed a monoclonal rearrangement,
which we also found [22]. CLBL-1 was the only cell line
in this dataset that had been previously karyotyped [55].
It was found to be hypodiploid with a modal chromo-
some number of 70–71, which matches our findings.
There was only one biarmed chromosome mentioned, de-
rivative chromosome 13, which we also identified via FISH
analysis. Since centromere visualization was not previ-
ously completed, and a non-standard canine chromosome
nomenclature was used, correlation of further previously
identified chromosome aberrations with our findings via
DAPI banding, FISH, and oaCGH was not possible. Nu-
merous CNAs identified in CLBL-1 via oaCGH are shared
with primary canine B-cell lymphomas (B-LSA). Gain of

CFA 13 has been identified in 25 % of B-LSA. Loss of
CFA14 and loss of the proximal region of CFA 3 have also
been found to occur in ~10 % of B-LSA [8]. Additionally,
CLBL-1 clustered with primary mature B-cell lymphoid
neoplasia when clustered with 299 primary canine round
cell tumors, further supporting the classification of CLBL-
1 as a B-cell lymphoma.
Ema immunophenotyping, at the time of establishment,

was positive for CD3, CD45, CD45RA, and Thy-1. In our
assessment, Ema was also positive (intermediate signal)
for CD11a and CD18 and negative for CD3. Similarly, TL-
1 was originally positive for CD3, CD18, CD45, CD45RA,
and MHC11 while our immunophenotyping indicated no
expression of CD3 and CD18. The slight differences in the
immunophenotyping data may be due to factors that can
influence flow cytometry data including, the amount of
antibody used, the call threshold of positive versus nega-
tive, instrumentation, and other reagents. Alternatively, it’s
possible that the loss or gain of antigens on the cell sur-
face occurred while in culture. Both Ema and TL-1 were
previously T-cell PARR positive, which is consistent with
our PARR data. Overall, the changes observed in immuno-
phenotype did not impact the overall interpretation of the
classification of both these cell lines as mature T-cell
lymphoid neoplasia.

Fig. 6 Summary of CNAs identified in FISH analysis of 20 cancer-related genes in each canine LL cell line. Each chart shows the distribution of copy
number for each probe, based on the analysis of 50 cells from each cell line. Data are stacked to represent the percentage of cells displaying copy
numbers 0 to >4 as indicated by the color key. To the right of each chart, dichotomized oaCGH data as gain (+), loss (−) or no change (0) is notated
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Both Ema and TL-1 were found to have a copy number
loss in the region containing CDKN2A in oaCGH analysis,
which was further confirmed to be a homozygous loss of
the gene loci in FISH analysis. CDKN2A loss occurs in
>55 % of T-cell lymphomas (T-LSA) and <2 % of other
subtypes of canine leukemia and lymphoma [8, 34]. Ema
was also found to have a loss of the proximal half of CFA
22, which occurs in 20 % of T-LSA, and TL-1 had a gain
of CFA 29 previously identified in 40 % of T-LSA [8]. Ema
and TL-1 were also the cell lines most closely related in
clustering analyses using both the oaCGH and GEP data,
and both segregated with primary T-LSA when clustered
with primary canine round cell tumors.

UL-1 immunophenotyping at the time of establish-
ment was positive for CD8α, CD18, CD45, CD45RA.
We found additional positive expression of CD3, CD4,
CD5, CD14, CD21, CD34, Thy-1, and MHC-II. All were
detected at an intermediate level therefore, as discussed
earlier, differences in methods and data analysis could
have resulted in previous negative findings. UL-1 was
also T-cell PARR positive which agrees with our PARR
findings. UL-1 was previously classified as a T cell
lymphoma; however, based on expression of CD34, a
surface glycoprotein expressed on hematopoietic stem
cells, we suggest it is more representative of a T-cell
acute leukemia (T-cell ALL). In veterinary medicine,
CD34 expression can be used to suggest an acute
leukemia since it is less commonly expressed in malig-
nancies of more mature cells, such as lymphomas and
chronic lymphocytic leukemias [26, 56]. Several regions
of CNA are also shared with primary canine ALLs in-
cluding the loss of the distal end of CFA 1 which occurs
in 20 % of ALLs, gain of CFA 12 and 25 which occurs in
15 and 10 % of ALLs, respectively, and loss of CFA 35
which occurs in 15 % of ALLs. Of the CNAs identified
in UL-1, more were in common with ALLs than other
subtypes. UL-1 also segregated with a group of ALLs
when clustered with primary round cell tumors. To-
gether, these findings support the classification of UL-1
as a T-cell ALL.
3132 immunophenotyping in our laboratory, in con-

junction with the original description of the cells (cellu-
lar pleomorphism, multinucleated giant cells, numerous
mitotic figures, extreme variations in nuclear:cytoplasm
ratio) suggests this cell line is representative of a dissem-
inated histiocytic sarcoma (HS). No immunophentypic
or genomic analysis of this cell line has been previously
reported, although it was later described as a B-cell
lymphoma based on detectable surface immunoglobulins
[24], and it has since been cited in the literature as a B-
cell lymphoma [21]. Our immunophenotyping revealed
expression of CD1, CD11c, CD18, and MHCII which is
the characteristic immunophenotype of canine HS [53,
57]. Since the cells also exhibit low and intermediate ex-
pression of CD4 and TCRδγ, respectively, we could not
completely rule out a T-cell lymphoma with aberrant ex-
pression of CD11c [52, 53], although subsequent gen-
omic results further supported HS. 3132 cells were also
T-cell PARR positive, although rearrangements of both
T-cell receptor and immunoglobulin genes have been
previously identified in human histiocytic sarcomas [1,
58] and in canine histiocytomas [53]. Finally, our karyo-
typic, CNA, and GEP data also suggests that 3132 cells
represent a histiocytic sarcoma. Metaphase spreads from
primary cases contain highly variable chromosome num-
bers with a range of 42–53 and an abundance of aber-
rant bi-armed chromosomes which is comparable to

Fig. 7 Unsupervised hierarchical clustering of gene expression data
from five canine LL cell lines and six non-neoplastic control lymph
nodes. Data were filtered to remove transcripts displaying limited
variability (standard deviation <2) resulting in 1153 probe sets used
for clustering analysis using Euclidian distance and Ward’s method
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karyotypic findings of 3132. oaCGH of 3132 cells was in-
dicative of high genomic instability based on the number
of CNAs identified, the percentage of the genome in-
volved in regions of CNA, and the observation that sev-
eral chromosomes include numerous of gains and losses
across the chromosome, all of which have been found in
primary HS [59]. Several specific CNAs are also shared
with primary HS, including loss of CFA 16 and loss of
CFA 31. Loss of CFA 12, 14, and 36 and gain of CFA 13
are also conserved with CNAs in primary canine HS
[59]. When examining cluster analysis of GEP data with
primary canine round cell tumors, 3132 segregated with
a large group of histiocytic malignancies.
Dysregulation of several genes previously associated with

canine diffuse large B-cell lymphoma in the NF-kB signaling
and B-cell receptor signaling pathways shared conserved ex-
pression in CLBL-1 including the following: KRAS, NRAS,

PIK3R5, PLCG2, TGFBR2, TNFAIP3, TRADD, BCL2A1,
CAMK2D, NFATC2 [48], BUB1B, PRKCD, CD83, CXCL13,
CD36, IL8, IL2, CD40LG, LCK, LTBR, and TNFSF11 [21].
Similarities were also noted between CLBL-1 and other tar-
geted B-cell lymphoma gene expression studies, including
KIT (almost 400-fold based on qRT-PCR) [60] and ZAP70
downregulation (decreased 10 fold) [61].
There are less reported data regarding gene expression

changes in other canine hematopoietic malignancies.
KIT expression is decreased in canine T-cell LSA [62],
and was decreased three fold in the TL-1 cell line. SYK
expression is downregulated in canine T cell malignan-
cies [61] and was downregulated 12–14 fold in all three
T-cell cell lines (Ema, TL-1, and UL-1). MMP9 and
TIMP1 expression is significantly upregulated in canine
T-cell lymphomas [13], and was upregulated in both
Ema and TL-1 cells. UL-1 was the only cell line to

Fig. 8 qRT-PCR analysis of gene expression in five canine LL cell lines. Transcriptional levels of FLT3, PTEN, MYC, and KIT were assessed to verify
microarray changes and further analyze the relationship between copy number change and expression change. RPL32 was used as a reference
gene to normalize expression levels between samples, and fold changes were calculated relative to the average expression in two non-neoplastic
lymph nodes
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upregulate FLT3, and increased FLT3 expression has been
previously identified in canine a subset of acute lympho-
cytic leukemias and the GL-1 cell line [9]. Upregulation of
VEGFA was also found in UL-1 and has been previ-
ously reported in canine ALL [62]. Finally, upregula-
tion of GTSF1, LUM, and PYPH and downregulation
of CLEC12A and CD9 in primary canine histiocytic
sarcomas [63, 64] were found to be dysregulated simi-
larly in 3132 cells.
Cross contamination of cell lines is a common issue in

the scientific community with ~19 % of human LL cell
lines being cross contaminated [6]. This problem is further
evidenced by the identification of human cells in five re-
cently characterized canine B-cell lymphoma cell lines
[65]. Our cytogenetic analysis of chromosomal architec-
ture, in conjunction with oaCGH and FISH analysis,
proves none of the examined cell lines are cross contami-
nated with other canine or human cells.

Conclusion
In summary, we present the comprehensive immu-
nophenotypic and genomic characterization of 5 ca-
nine LL cell lines that confirms their cell of origin
in 3 cell lines (CLBL-1, Ema, and TL-1) and re-
futes their cell of origin in 2 cell lines (UL-1 and
3132). These data provide valuable information that
can be used to select cell lines for preclinical
in vitro studies based on the presence or absence
of particular immunophenotypic and/or genomic
characteristics of interest, which will enhance their
clinical predictive value. The generation of inte-
grated molecular profiling of cell lines and com-
parison with primary tumors will allow further
exploration into their biology and clinical utility in
veterinary medicine and contribute to comparative
and translational studies of hematopoietic malig-
nancies in dogs and humans.

Fig. 9 Hierarchical clustering of canine LL cell lines with 299 primary canine round cell tumors including 123 leukemias, 106 lymphomas,
and 70 histiocytic malignancies based on genome wide copy number status. Data consisted of segmented values that were scaled and
clustered using Euclidian distance and Ward’s method. Columns represent individual patients and rows represent individual markers along
the genome. Blue indicates a region of gain and red indicates a region of loss. Cancer type and Subtype metadata is annotated for each
column. Abbreviations are as follows: Acute myeloid leukemia (AML), T-cell chronic lymphocytic leukemia (T-CLL), B-cell chronic lympho-
cytic leukemia (B-CLL), acute lymphoblastic leukemia (ALL), B-cell lymphoma (B-LSA), T-cell lymphoma (T-LSA), and histiocytic
malignancy (HM)
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Additional file 1: Table S1. Known cancer-associated genes located in
regions of genomic imbalance in each of the five cell lines. Table S2.
Summary of fold changes of cancer-associated genes for each cell line
when normalized expression level was compared with mean normalized
expression levels of non-neoplastic lymph nodes. Table S3. List of 50
transcripts from each cell line with the largest absolute fold changes when
normalized expression level was compared with mean normalized expres-
sion levels of non-neoplastic lymph nodes. Table S4. Gene ontology (GO)
biological processes enriched for genes upregulated or downregulatued by
>5 fold in each cell line when compared with non-neoplastic lymph nodes.
The top ten terms associated with up and down regulated genes are listed.
Table S5. KEGG pathways associatated with genes upregulated or down-
regulated by >5 fold in each cell line when compared with non-neoplastic
lymph node. Up to the top ten pathways associated with up or down
regulated genes are listed. (XLSX 113 kb)
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