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Abstract

Background: A clear association of amino acid variation in the prion protein gene (PRNP) with susceptibility and
resistance to classical scrapie exists in sheep, but not in goats. In this study we examined DNA sequence variation
in the PRNP of 149 animals from two scrapie-infected herds of Saanen dairy goats, and identified 6 non-

synonymous variants in the coding region.

Results: In the larger herd, all of the 54 scrapie-affected goats tested had at least one allele with the arginine (R)
codon at position 211, with 52 being homozygous for that variant. No animal homozygous for the glutamine (Q)
codon at 211 were affected and only two heterozygotes (R/Q) were affected. A weak association was found at
position 146 and no significant associations were found with amino acid variation at the remaining four variant
positions (142, 143, 222 and 240), however, the allelic variation was low. Similar patterns were observed in the

second scrapie-affected herd.

Conclusion: We also evaluated previous studies on goat herds affected with scrapie and this relationship of R
susceptibility and Q resistance at 211 was present independent of the genotypes at the other positions including
222. The fact that glutamine at 211 provides a significant protective property to scrapie irrespective of the other
positions could be important for breeding strategies aimed at improving herd resistance to scrapie, while

maintaining important productivity traits.
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Background

Scrapie is a fatal neurodegenerative disease that affects
sheep and goats. It is classified as a transmissible spongi-
form encephalopathy (TSE) belonging to a group of prion
diseases, which includes Creutzfeldt-Jakob disease in
humans, bovine spongiform encephalopathy (BSE) in cat-
tle, and chronic wasting disease in cervids. Prion diseases
not only have a serious impact on health and welfare, but
control of these diseases impacts animal movement and
trade. Prion diseases can occur sporadically as well as
through heredity or infectious transmission routes [1] but
pathogenesis is contingent on conversion of the normal
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host prion protein (PrP¢) to a disease-associated form
(PrP*°). In sheep and goats, scrapie is characterized by the
deposition of this abnormal, protease resistant prion pro-
tein (PrP*°) in the central nervous system and peripheral
tissues [2, 3]. The host prion gene (PRNP) encodes the
prion protein (PrP€) and mutations within this gene have
been associated with differential resistance and suscepti-
bility to scrapie (as reviewed [4]).

Genetic resistance to scrapie is well established in
sheep and three-codon PRNP genotypes have typically
been utilized for risk assessment (as reviewed in [4]).
The association of these three amino acid codons at
positions 136, 154 and 171 produces 5 haplotypes
(ARQ, VRQ, AHQ, ARR, ARH) and 15 genotypes [4, 5].
The ARR haplotype is associated with high resistance,
whereas VRQ or ARQ are associated with higher suscepti-
bility to scrapie [6, 7]. Sheep breeding programs selecting
for the ARR genotype have been widely used for scrapie
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control and eradication programs in Europe and North
America [8]. Patterns of associations to scrapie resistance
and susceptibility based on the three codons used for
sheep do not hold true in goats.

Although the natural occurrence of scrapie in goats ap-
pears generally lower than that in sheep, active surveil-
lance reports suggest that the prevalence rates in goats
may be underestimated in some countries [9]. There have
been a number of studies that examined resistance and
susceptibility to scrapie in goats from European countries
(e.g., France, Italy, United Kingdom, Greece), where the
goat populations are large and the incidence of scrapie has
been high. These studies have characterized PRNP se-
quence variation in goats, and have reported a number of
polymorphisms in goat populations worldwide [10-25]. In
particular, thirty nine amino acid substitutions have been
described, of which only six G127S [18], 1142M [26],
N146S/D [12], H154R [10, 12, 14, 19], R211Q [19], and
Q222K [11, 14, 19] have been associated with resistance
or susceptibility to scrapie in goats. At least 16 synonym-
ous silent mutations have also been documented. To date,
39 out of the 256 codons have been shown to be poly-
morphic across goat breeds and generally 6 to 12 are de-
scribed as polymorphic within a given goat breed. While
some of the polymorphic sites are similar in sheep and
goats, species-specific variation, like that observed for
A136R154R171, are also present (as reviewed in [4]).

Despite the high amount of variation observed in the
PRNP in various goat breeds, clear associations with
scrapie susceptibility or resistance are limited. In the
studies that have suggested associations with PRNP poly-
morphisms, the power of the analyses is often weak be-
cause of the relatively low frequencies of the putative
resistant allele and the emphasis on identifying resist-
ance alleles rather than susceptibility alleles. The un-
affected animals represent a mixture of resistant and
susceptible animals of varying exposure status, while the
affected animals are more homogeneous in susceptibility
traits. The absence of clearly identified variation, which
is associated with scrapie in goats, has limited the imple-
mentation of breeding strategies to eliminate scrapie
sensitive alleles in goat herds.

The objectives of this study were: (i) to identify the
variation in PRNP genotypes in 2 herds of Saanen dairy
goats with scrapie affected animals; (ii) to examine asso-
ciations between PrP< amino acid variation and scrapie
disease in the largest herd and (iii) to validate the associ-
ations using the second scrapie affected herd together
with published associations.

Methods

Scrapie affected herds

The first scrapie affected dairy goat herd was composed
of 331 Saanen goats greater than 12 months of age. The
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herd was depopulated as part of routine disease control
measures following the detection and confirmation of a
scrapie-positive goat. Jugular blood was sampled in
EDTA-vacutainer tubes for DNA extraction and the
obex and retropharyngeal lymph nodes were removed
for scrapie diagnostic testing. Initial testing of obex and
lymph node tissues was conducted using a commercially
available ELISA (Bio-Rad TeSeE ELISA, Bio-Rad
Laboratories, Hercules, CA). Confirmatory testing was
subsequently performed using immunohistochemistry
with antibodies F89 and F99, and western immunoblot
(Bio-Rad TeSeE western immunoblotting kit, Bio-Rad
Laboratories) as previously described [27]. An animal
was considered positive for scrapie if it was positive in at
least one tissue by the confirmatory tests. A total of 66
animals were found positive for classical scrapie. PRNP
was sequenced for 54 of the 66 scrapie-affected and 56
of the unaffected animals.

A second, smaller scrapie-affected herd that comprised
130 Saanen goats greater than 12 months of age was also
identified and subjected to depopulation. Following the
testing regime described above, 13 animals were identi-
fied as classical scrapie positive. PRNP was sequenced
for 10 scrapie-affected and 29 unaffected animals.

PRNP sequencing and genotyping

Genomic DNA was extracted from EDTA-preserved whole
blood using the MagNa Pure DNA Isolation Kit for blood
(Roche Applied Sciences) as per manufacturer’s instruc-
tions, and was quantified using PicoGreen. The Goat PRNP
reference sequence was obtained from Genbank (accession
# X74758) and primers were designed to amplify the ORF
of PRNP (PRNP2-F: AGCTGATGCCAGTGCTATGC and
PRNP4R: GTGGCCTCCTTCCAGACTTG).

PCR buffer components were in the following concen-
trations: 1x PCR buffer (Invitrogen), 0.2 mM of each
dNTP, 1.5 mM MgCl,, 0.3 uM of forward primer, 0.3 uM
of reverse primer, 0.05 U/uL of Taq DNA polymerase
(Invitrogen), 10 ng of DNA and ddH2O for a total
volume of 20 ul. PCR conditions used for amplifica-
tion were as follows: initial denaturation at 94 °C for
5 min; [denaturation at 94 °C for 30 s, annealing at
60 °C for 1 min, extension at 72 °C for 1 min 30 s] x
35 cycles; final extension at 72 °C for 15 min; and 4 °
C hold. Two pl of the amplified product were sub-
jected to agarose gel electrophoresis to confirm amp-
lification. PCR products were purified using ExoSAP
(New England BioLabs) following the manufacturer’s
instructions. BigDye® Terminator v3.1 Cycle Sequen-
cing Kit (Applied Biosystems) was used to sequence
the fragments, using both the forward and reverse
primers. Sequences were edited and aligned to Ovine
and Caprine PRNP using MEGA™ 6.0 [28].
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Analysis of genotypes in affected and unaffected samples
Comparison of the genotype frequencies of affected and
unaffected groups were carried out using logistic regres-
sion models fitted to scrapie status of goats in the af-
fected groups. When there were no positive scrapie
cases, Fisher’s exact test was used.

Relative susceptibility of genotypes to scrapie

Herd 1 consisted of 331 animals more than 12 months
of age and 66 tested scrapie positive; the remaining 265
animals, consisted of animals that tested scrapie negative
on ELISA. The scrapie negative animals may have been
exposed to the disease and not succumbed or simply
may not have been exposed to the disease. In order to
estimate the relative susceptibility of different genotypes
to scrapie, the frequencies of alleles and genotypes in the
pre-exposed herd one were estimated. We assumed the
genotypes of the 56 unaffected samples that were geno-
typed were representative of the 209 unaffected animals
that were not genotyped and the genotypes of the 54 af-
fected animals were representative of thel2 affected ani-
mals that were not genotyped. The percentages of each
genotype in the pre-exposed herd that became scrapie
positive were compared.

Results

PRNP variation and allele frequencies in 2 scrapie
affected Ontario Saanen herds

The open reading frames of the PRNP [5] were se-
quenced in 54/66 of the affected animals and 56/265 of
the unaffected animals. A total of eight variable sites
were found, with six non-synonymous substitutions
(codon positions: 142, 143, 146, 211, 222 and 240) and
two synonymous substitutions (Fig. 1). Amino acids are
designated by the single letter codes that give six letter
alleles or haplotypes. Initially allele haplotypes were
assigned based on homozygous animals; heterozygous
animals were genotyped based on the confirmed alleles
in the homozygotes. This left haplotype uncertainty in
three of the ten alleles that were in low frequency,
(Table 1) and the genotypes with those alleles (Table 2).
The haplotype frequencies for each of the two herds
show a high prevalence of four alleles (Table 1).

Association of variants with scrapie susceptibility

We compared the genotypes of affected and unaffected
animals in order to assess the association with scrapie sus-
ceptibility using logistic regression (Table 2). The geno-
types IHNRQP/IHNRQP and IHNRQS/IHNRQP, were
seen in significantly higher frequency in scrapie positive
animals than scrapie negative animals. Conversely,
IHNQQS/THNRQP and IHNQQS/THNRQS were present
predominantly in scrapie negative animals. Next, we

Page 3 of 9

examined the relative susceptibility of the different geno-
types to scrapie.

We focused on the affected animals, as the unaffected
sample represents a mixture of potentially resistant ani-
mals as well as unexposed or less exposed animals
(Table 2). The homozygous genotype IHNRQP/IHNRQP
was estimated to be present in 53 individuals in the pre-
exposed herd and 16 were found in the scrapie positive
sample, while the heterozygote IHNQQS/ITHNRQP was
estimated to be present in 67 individuals prior to exposure
and only one was found in the scrapie positive samples. In
order to identify the amino acids conferring scrapie
susceptibility we analysed the six variable positions
individually.

The genotype frequencies of the affected animals were
compared to the expected frequencies based on the pre-
exposed herd and the null hypothesis that the affected
animals represent a random sample of genotypes in the
herd (Table 3). A significant difference was found at pos-
ition 211, and a weaker significance at 146. Arginine (R)
at 211 was clearly associated with susceptibility while
glutamine (Q) was associated with resistance in the
RQ,;; heterozygote. There were fewer affected animals
in herd 2 but all were RR,;;, consistent with R being a
susceptibility allele (Table 3).

When we examined the genotype estimates of the pre-
exposed herd at position 211, the relative risk of devel-
oping the disease for the genotype RR»1; and RQ,;; was
clear, with 64 of 182 RR,;; being affected while only two
of 125 RQy;; were affected. These data highlight the
protective effect of Q in the heterozygote making it ap-
proximately 22 x more resistant than RR (Table 4).

The results in Tables 3 and 4 show a clear association
between R,;; and scrapie susceptibility. In the literature
there are reported patterns of resistance for M4y, Sis6
Ryy; and Ky, [11, 14, 19, 21, 29, 30], but the power of
the analyses for these codons are often weak because of
low allele frequencies of the proposed resistant alleles
(Table 5). We examined the 544 scrapie affected samples
described in the literature, and this showed most are
homozygous for the proposed susceptibility alleles at po-
sitions 142, 146, 211 and 222. This is because the resist-
ant alleles are in very low frequency in most herds in
Europe and the US [11, 13, 14, 19, 21, 29, 30] and
emphasises the importance of establishing the allele fre-
quencies in the herds when associating resistance and
susceptibility with genotypes. As with the data presented
here, the heterozygote RQ,;; is found significantly less
frequently than homozygous RR»;;, and the QQ,;; geno-
type was not seen in any affected animal.

Discussion
Scrapie poses a threat to the Canadian goat industry as
herds on farms that test positive are entirely eradicated,



Srithayakumar et al. BVIC Veterinary Research (2016) 12:59

Page 4 of 9

1 20 30 40 50 4] 70 80 2 100 110 120 130
CHIRUS_ V17711 . oot
CHIUS_ 217711 L oot
CHicus_¥1-7711 .
CHircus_4/1-7711 .
CHicus_5/1-7711 .
CHircus_&/1-7711 .
CHircus_7/1-7711 .
CHrus_&/1-7711 . . . .
CHrmus /17711 . . . . .
CHIRUS_IWI-TT1 . . .o

o AT OOTGARAAGCCACATABGCAQTTOOAT CCTOGTTCTCTTTGTGBCCATGTG0ATGACGTORGCCT CTGCAKGAABLE T0G0GAGGATOGRACACTO006G6AGCLGAT

ATGGTGAAAAGCCACATAGGCAGTTGGATCCTGGTTCTCTTTGTGGCCATGTGGAGTGACGTGGGCCTCTGCAAGAAGCGACCAAAACCTGGCGGAGGATGGAACACTGGGGGGAGCCGATACCC+GGACAGGGCAG

L GOPOPPO00D PO

C.Hircus_1/1-7138
CHirus_2/1-7138 . . . .
CHirus_¥1-7138 . . . .
CHircus_4/1-7138 . . . .
CHircus_5/1-7138 . . . .
CHirus_6/1-7138 . . . .
CHircus_7/1-7138 . . . .
CHirus_8/1-7138 . . . .
C.Hircus_9/1-7138
C.Hircus_10/1-138

o1 0LTOGGBCARCOGCTATCCACCTCAGBGABGBGETGBLTOBBTCABLCCCATOABGTORCTORRGLCAACLTCATGBAGGTERCTGBGAT CAGCCLCATORTGRTGGLTGROGACAGLCACATEGTRRTGEAd

TCCTGGAGGCAACCGCTATCCACCTCAGGGAGGGGGTGGCTGGGGTCAGCCCCATGGAGGTGGCTGGGGCCAACCTCATGGAGGTGGCTGGGGTCAGCCCCATGGTGGTGGCTGGGGACAGCCACATGGTGGTGGAG

1©00 009

C.Hircus_1/1-7215
C.Hircus_2/1-7215
CHrus_¥1-7215 . . . .
CHrus_4/1-7215 . . . .
C.Hircus_5/1-7215 .
CHircus_8/1-7215 .
C.Hircus_7/1-7215 .
CHirus_§/1-7215 . . . .
CHrus_¥1-7215 . . . .
C.Hircus_10/1-275

S T S A S TSSO A SO e i ol gl

GCTGGGGTCAAGGTGGTAGCCACAGTCAGTGGAACAAGCCCAGTAAGCCAAAAACCAACATGAAGCATGTGGCAGGAGCTGCTGCAGCTGGAGCAGTGGTAGGGGGCCTTGGTGGCTACATGCTGGGAAGTGCCATG

i@

i

C.Hirus_1/1-7812
CHircus_2/1-7#12
CHircus_¥1-7812 .
CHircus_4/1-7M2 .
C.Hirus_5/1-782 .
C.Hircus_8/1-782 .
CHirus_7/1-7M2 .
CHirus_8/1-7M2 . . . .
CHmus_ ¥1-782 . . T .
C.Hircus_10/1-312

i

19000000

Consensus

O o O G i

A T T NN, 3 i i

CHrus_1/1-7540
CHrous_21-7540 . . . .
CHrmus_ ¥1-7540 . . . .
CHrmus_4/1-7540 . . . .
CHircus_5/1-7540 . . . .
CHrmus_&/1-7540 . . . .
CHircus_7/1-7549 . . . .
CHmus_8/1-7540 . . . .
CHirous_9/1-7540 . . . .
CHious_10/1-53 .

oomee - CHACHTORCAGTCAIGOARCACACAST

AGCAGGCCTCTTATACATTTTGGCAATGACTATGAGGACCGTTACTATCGTGAAAACATGTACCGTTACCCCAACCAAGTGTACTACAGACCAGTGGATCAGTATAGTAACCAGAACAACTTTGTGCATGACTGTGT

GRRGCTTCARAAICTOO T

ol

C.Hireus_1/1-7688
C.Hircus_2/1-7686
C.Hircus_¥/1-7688 .
C.Hircus_4/1-7686 .
C.Hircus_5/1-7688 .
C.Hircus_6/1-7686 .
C.Hircus_7/1-7688 .
C.Hrus_8/1-7686 . . . .
C.Hircus_¥/1-7686 . . . .
C.Hirus_10/1-688

GO0GGCAAGTGTGATCLTCTTTT TT

CAACATCACAGTCAAGCAACACACAGTCACCACCACCACCAAGGGGGAGAACTTCACCGAAACTGACATCAAGATAATGGAGCGAGTGGTGGAGCAAATGTGCATCACCCAGTACCAGAGAGAATCCCAGGCTTATT

AT AT i

ACCAAAGGGGGGCAAGTGTGATCCTCTTTTCTTCCCCTCCTGTGATCCTCCTCATCTCTTTCCTCATTITTITCTCATAGTAGGATAG

Fig. 1 Nucleotide sequences of the eight variable sites for the ten haplotypes observed in the Ontario Saanen herds. C. hircus PRNP (genbank
accession # X74758.1) was used as the reference. Synonymous substitutions are denoted in lower case
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and its presence limits the international export of goat
genetics. Control of scrapie in sheep and goats requires
knowledge of the PRNP genotypes which influence dis-
ease susceptibility. In sheep there is a clear association
of amino acid variation at three positions in PRNP to
susceptibility and resistance to scrapie. There are weaker
associations with four positions in goats and this seems
to be caused by low frequencies of variants, which in
turn impact the power of the analyses. Analyses have
also focused on identifying resistant alleles in unaffected
animals that represent a mixture of resistant and

unexposed animals. In this study, we had samples from a
large herd of Saanen dairy goats with 66 affected individ-
uals and a smaller herd with 13 affected animals.

The previous studies on goat scrapie have identified a
number of variants in the different breeds and herds,
which are associated with a lower incidence of scrapie
[10-12, 14, 19, 26]. These include M4, Sia6, Qo211 and
Ky, which were present in the two herds we examined;
but apart from Q,;, the frequencies of the other vari-
ants were low. However, these variants were only found
in the unaffected animals in both herds.
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Table 1 Allele frequencies for PRNP in herds 1 and 2

Amino acid position Haplotype frequency
142143 146 211 222 240  Herd 1 Herd 2
T H N R Q p 0459 0526
2 - - - - - S 0305 0231
3 - - - Q - 0.159 0.090
4 - - S - - 0032 0.090
55 M - - Q - S 0.005 0.000
6 - - S Q - S 0.005 0.000
7 - - - Q K S 0.005 0.000
8 - - - - K S 0014 0.000
9 M - - - - - 0014 0.064
0 - R - - - S 0.005 0.000

¥ unconfirmed haplotypes

PRNP variation in Ontario Saanens

Thirty-seven amino acid substitutions have been previ-
ously described in the open reading frame of PRNP in
goats around the world. The six polymorphisms found
in the Saanens from Ontario have been previously de-
scribed [11, 13, 14, 19, 26]. It is usual to observe only a
subset of the global goat PRNP polymorphisms in a
given breed or herd. Previous studies have found poly-
morphic positions ranging from 5 to 14 [11, 13, 18-20].
Saanens often have six polymorphic codons, with the
specific position differing among different herds in
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different countries. Three of the six (142, 211, and 240)
were found in Italian Saanens; four (142, 211, 222 and
240) were found in the French and Spanish Saanens. The
remaining two polymorphic codons 143 and 146 that were
seen in low allele frequencies (0.34 and 5 %, respectively),
have been reported in Saanens crossbred with Hellenic
and Damascus breeds, respectively [10, 12, 24]. As the
Saanen breed originated from Switzerland, these similar-
ities and differences are the result of founder effects com-
bined with cross breeding with local goat breeds.

Of the ten haplotypes found in this study, three
(IHNRQP, IHNRQS and IHNQQS) were present in 90 %
of the sampled animals. The two major PRNP haplotypes
(IHNRQP and IHNRQS) differed from one another by
the presence of proline (P) or serine (S) at position 240.
In both of the herds investigated, P,4 was slightly higher
in frequency (55 %) compared to S,49 (45 %). This pat-
tern has been noted in French Saanens [19, 21], Italian
[11, 14], Spanish [20], British [18]; North American [13]
and Greek goats [10, 23, 29, 30]. When we estimated the
haplotype and genotype frequencies for all the animals
in both herds, comparable trends were observed for the
two main haplotypes (IHNRQP and IHNRQS); however,
for the other haplotypes present in low frequencies, sig-
nificant differences were present between the two herds.
Low haplotypic frequencies are usually encountered
when examining PRNP variation in goat herds [10, 11,
14, 19-21, 23].

Table 2 Comparison of genotypes among the complete herd, affected and unaffected animals in herd 1. Logistic regression was

used to compare affected and unaffected animals

PRNP genotype Pre-exposure® Scrapie positive Scrapie negative OR (95 % Cl) P-value
sample sample

IHNRQP/IHNRQP 53 16 7 2.947(1.089-7.973) 0.033
IHNRQS/IHNRQP 63 28 6 8.974(3.261-24.699) <0.005
IHNRQS/IHNRQS 13 7 1 8.191(0.949-70.704) 0.055
MHNRQP/IHNRQS 14 0 3 ND* -
MHNQQS/IHNRQP 5 0 1 ND -
IHNRQP/IRNRQS 1 1 0 ND -
IHSRQP/IHNRQP 9 0 2 ND -
IHSRQP/IHNRQS 14 0 3 ND -
IHSRQP/IHSRQP 5 0 1 ND -
ihsqqgs/IHNRQP 5 0 1 ND -
IHNQQS/IHNRQP 67 1 14 0.057(0.007-0.459) 0.007
IHNQQS/IHNRQS 44 1 9 0.098(0.012-0.827) 0.033
IHNQQS/IHNQQS 24 0 5 ND -
IHNRKS/IHNRQP 5 0 1 ND -
IHNRKS/IHNRQS 5 0 1 ND -
IHNRKS/IHNQQS 5 0 1 ND -
Total 331 54 56 - -

“number of genotypes pre-exposure was estimated as described in the methods

* OR could not be determined (ND) for genotypes without any scrapie positive cases
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Table 3 Comparison of observed and expected numbers of
scrapie positive samples for each amino acid variant. Allele
frequencies of the pre-exposed herd are indicated in parentheses.
P-values of <0.05 are indicated in bold. Chi-square analysis was
used for herd 1, and Fisher's exact test was used for herd 2 as the
sample size was low

Numbers in Scrapie positive samples

Herd #1 Herd #2
Codon Genotype  Observed Expected® Observed  Expected®
142 11(0915) 54 51 10 8
IM (0.085) 0 3 0 2
MM (0.000) O 0 0 0
143 HH (0.997) 53 54 10 10
HR (0.000) 0 0 0 0
RR (0.003) 1 0 0 0
146 NN (0.876) 54 49 10 8
NS (0.105) 0 5 0 2
SS (0.019) 0 1 0 0
211 RR (0.615) 52 30 10 8
RQ (0.333) 2 20 0 2
QQ (0.051) 0 4 0 0
222 QQ (0969 54 52 10 10
QK (0.021) 0 2 0 0
KK (0.010) 0 1 0 0
240 PP (0.295) 16 12 3 5
PS (0.465) 30 28 7 3
SS (0.239) 8 15 0 2

*Allele frequencies for the expected numbers were calculated using the
frequencies of the pre-exposed herd

PRNP variants associated with scrapie susceptibility

When we compared the genotypes of affected and un-
affected animals, we found two genotypes to be associ-
ated with scrapie susceptibility and two to be associated
with resistance. Specifically, we compared the estimated
allele and genotype frequencies of the herd prior to ex-
posure with those of affected animals. Of the six variable
positions, two (146 and 211) had genotype frequencies
significantly different in the affected samples than those
expected from the pre-exposed frequencies. There was
weak significance for position 146 and similar results have

Table 4 Comparison of the genotypes at position 211 to assess
the relative scrapie risk

Genotype Pre-exposed Scrapie Scrapie Relative
herd* positive* negatiwfF risk

RR 182 64 118 22

RQ 125 2 123 1

QQ 24 0 24 0

*Total number of animals in each group, were calculated using the frequencies
of the pre-exposed herd
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been found in other studies, where the homozygous
NN 46 genotype has been associated with scrapie suscepti-
bility in Cypriot goats [16, 24]. The homozygous RRy1;
genotype was strongly associated with scrapie susceptibil-
ity, with the heterozygous RQ,;; genotype conferring a
degree of protection to the disease.

Effect of position 211 on scrapie susceptibility and
resistance

All the affected animals from herd 1 had at least
one allele with arginine (R) at position 211. Specific-
ally, of the 54 affected samples tested, 52 were
RR,;;, whereas, the remaining 2 were RQsp;. In the
unaffected group, RR,;; was seen in 25 of the 56
samples and RQ,;; and QQ,;; were seen in 26 and
5 animals, respectively. A similar result was seen in
the second herd where all the affected samples were
RR,;;. These findings indicate that glutamine (Q) at
position 211 confers protection to scrapie. The fre-
quency of Q is usually low and therefore the homo-
zygous QQ»p; is seen in very low frequency in most
herds, however it has not been seen any of the af-
fected animals reported in the literature (Table 5).

Significant differences between the frequencies of
the RQ,;; in the unaffected samples compared to the
affected samples shows heterozygous goats have a sig-
nificantly lower susceptibility to scrapie than RRjj;
individuals. A comparison of the estimated genotypes
of the herd prior to scrapie exposure to the affected
animals shows 35 % of the homozygous RR,;; indi-
viduals developed the disease, whereas only 1.6 % of
the heterozygous RQ,;; individuals succumbed. Simi-
lar patterns have been reported in the literature. In
French goat populations, the risk of succumbing to
scrapie for RR,;; and RQ,q; to be 30-39 % and 4.4—
14 %, respectively [19, 21]. These results highlight the
protection provided by the glutamine (Q) at position
211 and low prevalence of the disease in the hetero-
zygous animals.

Although additional studies are required, it is interest-
ing to compare the 211 variant position in goats to pos-
ition 171, of the A;36R154Q 71 allele in sheep. In sheep,
homozygous ARR is considered resistant and homozy-
gous ARQ is susceptible; whereas ARR/ARQ heterozy-
gous sheep are relatively resistant to scrapie [7, 31].
Similar results were found in this study where homozy-
gous QQ,;; and RRy;; were found resistant and highly
susceptible respectively, while there was a very low
prevalence of scrapie in RQ,;; heterozygous animals. Al-
though, scrapie has not been seen in Canadian ARR/
ARQ sheep to date, it has been detected in Europe sheep
[31-33]. Statistical models have estimated that geno-
types with ARR haplotypes were 1000x more resistant to
the disease compared to homozygous ARQ [33, 34]. In
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Table 5 Comparison of genotypes affected with scrapie from the literature. A total of 544 scrapie cases from various breeds were

assessed

Number 142 146 21 222 References

:;fected Il M MM NN NS ) RR RQ QQ QQ QK KK

30 83 1 0 - - - 83 7 0 87 3 0 Barillet et al. 2009
259 238 21 0 - - - 246 13 0 256 3 0 Corbiere et al. 2013
39 - - - - - - - - - 39 0 0 Vaccari et al. 2006

27 - - - - - - 27 0 0 27 0 0 Bouzalas et al. 2010
25 - - - - - - - - - 25 0 0 Acutis et al. 2006

104 103 1 0 104 0 0 104 0 0 99 5 0 Fragkiadaki et al. 2011
Total:544 424 23 0 104 0 0 460 20 0 533 11 0 -

this study we estimated RQ,;; were 22 x more resistant
than homozygous RR,;;, suggesting that RQ;7; in sheep
has a stronger influence on resistance than RQ,;; in
goats. Similar to homozygous ARR sheep, the QQ»i;
genotype in goats is seen in relatively low frequency
[31-33].

Although the mechanism for the conversion of PrP®
to the pathogenic form (PrP*¢) and its pathological ef-
fects are poorly understood, specific mutations in sheep
PRNP associated with resistance are shown to destabilize
the PrP“ protein [35]. Direct correlation of scrapie sus-
ceptibility and mutation induced changes are unlikely as
the structural consequence of scrapie associated variants
are local. As such, variations in scrapie susceptibility are
likely caused by altering protein stability. Destabilizing
the structure of PrP¢ may increase protease sensitivity
and slow amyloidogenesis, thereby preventing PrP®
from being converted to the pathogenic form. This is
thought to account for the change from scrapie sus-
ceptibility to resistance following a single amino acid
substitution (ARQ;7; to ARR;;;) in sheep [36], and
perhaps also the inhibition of cell-free conversion fol-
lowing the substitution of R to Q at codon 211 in re-
combinant goat PrP [37].

Position 211 and developing scrapie resistant dairy goat
herds in Ontario

An association of other variants (M4, Siae and
K5,,) with protection towards scrapie was not tested
in this study due to low allele frequencies of the po-
tentially resistant allele. QQ,;; provided protection
regardless of the amino acids at the other positions
such as 222. There is a suggestion from challenge
studies that K,,, may confer more resistance than
Q211 [22]. In preliminary studies on Ontario dairy
goat herds, the frequency of Kjy, has been found to
be very low or absent, making elimination of Qi
very difficult. The extent to which elimination of
R,1; could result in scrapie resistant herds is of great

interest and additional studies on surveying genotype
frequencies in Ontario dairy herds are underway.

Conclusions

The data presented, highlights the association of ar-
ginine (R) at position 211 with susceptibility to scra-
pie and the protective effect of Q, irrespective of the
amino acids at the other positions. To date there are
no programs in place in Canada to select for resist-
ance towards scrapie in goats. A major barrier may
be the low frequency of scrapie resistant animals in
Canadian goat herds. As the male to female ratio in
breeding programs is often 1:20, the genotype of the
bucks has a strong impact on the determination of
the overall genetic profile of the herd. The most effi-
cient strategy to select against high risk animals, at
the same time minimizing the loss of production
traits, would be to only utilize more resistant bucks
or semen. This would be a particularly useful
approach for goat producers associated with a farm
previously infected with scrapie, and goat producers
providing large numbers of breeding ewes to other
producers.

In sheep, breeding for scrapie resistant with ARR/ARR
rams has been a successful strategy for the prevention of
scrapie outbreaks [38]. Furthermore, increased frequen-
cies of the resistance associated ARR allele, as a result of
selective breeding, is assumed to have a population effect
by reducing the scrapie infection risk even for animals of
susceptible genotypes [8, 39]. As the protection provided
by R;7; in heterozygous sheep seems to be several folds
higher than the protection provided by Q,;; in heterozy-
gous goats, selection for homozygous QQ,;; goats
should be favoured. Breeding for resistance in goats
by recruiting bucks with scrapie-resistant genetics,
should increase the frequency of resistant alleles in
the herd, with a resultant reduction in classical scra-
pie susceptibility.
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