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Abstract

Background: The present in vitro study investigated whether the utilization of fructooligosaccharides (FOS) may
influence canine fecal microbial population in presence of diets differing in their protein content and digestibility.
Fresh fecal samples were collected from five adult dogs, pooled, and incubated for 24 h with the undigested
residue of three diets: 1, Low protein high digestibility diet (LP HD, crude protein (CP) 229 g/kg); 2, High protein
high digestibility diet (HP HD, CP 304 g/kg); 3, High protein low digestibility diet (HP LD, CP 303 g/kg) that had
been previously subjected to enzymatic digestion. In the in vitro fermentation study, there were six treatments: 1)
LP HD; 2) HP HD 3) HP LD; 4) LP HD + FOS; 5) HP HD + FOS; 6) HP LD + FOS. Fructooligosaccharides were added
at the final concentration of 1.5 g/L. Samples of fermentation fluid were collected at 6 and 24 h of incubation.

Results: Values of pH were reduced by FOS at 6 and 24 h (P < 0.001); conversely, low protein digestibility and
high dietary protein level resulted in higher pH at both sampling times (P < 0.001). At 24 h, FOS lowered ammonia
(−10 %; P < 0.001) and resulted (P < 0.05) in higher concentrations of total volatile fatty acids (VFA) (+43 %), acetic
acid (+14 %), propionic acid (+75 %) and n-butyric acid (+372 %). Conversely, at 24 h, low protein digestibility resulted
(P < 0.01) in lower concentrations of acetic acid (−26 %), propionic acid (−37 %) and total VFA (−21 %). Putrescine
concentrations were increased at 6 and 24 h of fermentation by low protein digestibility (+21 and 22 %, respectively;
P < 0.05) and FOS (+18 and 24 %, respectively; P < 0.01). After 24 h of fermentation, high dietary protein level resulted
in lower counts of lactobacilli and enterococci (−0.5 and −0.7 log cells/mL, respectively; P < 0.05) whereas low protein
digestibility tended to increase counts of C. perfringens (+0.2 log cells/mL; P = 0.07).

Conclusions: Results from the present study showed that diets rich in protein may exert negative influences on the
canine intestinal ecosystem, slightly increasing the presence of ammonia and reducing counts of lactobacilli and
enterococci. Moreover, the presence of poorly digestible protein resulted in lower concentrations of VFA. Conversely,
administration of FOS may improve metabolism of canine intestinal microbiota, reducing ammonia concentrations
and enhancing VFA production.
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Background
The role of the microbial community that inhabits the
large intestine is considered of fundamental importance
in the maintenance of gastrointestinal tract health and
host physiology. As some studies suggested, major func-
tions of the gut microbiota include protection against
potentially pathogenic microorganisms [1], detoxification
of some catabolites introduced with the diet [2] and
stimulation of the immune system [3]. Exogenous
factors, diet above all, can shape the composition and
metabolic activity of the intestinal microbiota [4].
Several strategies have been proposed to improve and
maintain intestinal microbiota balance, among which the
inclusion of prebiotic supplements. Prebiotics (mainly of
vegetable origin) are often added to pet food, due to the
increasing interest regarding companion animal health
and welfare. Despite the fact that dogs are animals with
a prevalent carnivorous diet, prebiotic supplements can
enhance their gut health. Several positive effects have
been seen in dogs receiving prebiotic non-digestible
oligosaccharides, including stimulation of beneficial
microbes [5], inhibition of undesirable bacteria [6], and
reduction of protein-derived catabolites [7, 8]. Moreover,
the intestinal microbiota of dogs can be negatively af-
fected by the amount of undigested protein that reaches
the colon and leads to putrefactive fermentation [9, 10].
The aim of this study was to assess the in vitro effects of

diets differing in their protein content and digestibility,
and containing or not a source of fructooligosaccharides
(FOS), on the composition and activity of the canine fecal
microbiota.

Methods
In vitro study
There were three experimental dry extruded diets
(provided by Effeffe Pet Food S.p.A., Italy): 1) Low
protein high digestibility diet (LP HD; crude protein
(CP) 229 g/kg dry matter (DM)); 2) High protein high
digestibility diet (HP HD; CP 304 g/kg DM); 3) High
protein low digestibility diet (HP LD; CP 303 g/kg
DM). All diets were formulated based on the following
ingredients: cereals, meat and meat by-products, oils
and fat, protein plant extract, minerals and yeasts. The
sole source of animal protein in the HD diets was a
highly digestible swine meat meal (CP 685 g/kg DM; in
vitro digestibility 0.71) whereas the LD diet contained
the highly digestible swine meat meal (in the same
amount as in the LP HD diet) and a poorly digestible
meat meal from cattle and swine (CP 629 g/kg DM; in
vitro digestibility 0.31). Digestibility of meat meals was
determined using the 2-step procedure proposed by
Vervaeke et al. [11] and modified (2 h incubation with
HCl, pepsin and gastric lipase followed by 4 h with pan-
creatin and bile salts) as described by Biagi et al. [12].

The chemical composition of the experimental diets
and their undigested residues is shown in Table 1.
The experimental diets were digested using the same 2-

step procedure that was used to determine digestibility of
meat meals [12]. Digestibility coefficient was 0.84, 0.83
and 0.68 for LP HD, HP HD and HP LD, respectively.
After in vitro digestion, the undigested residue of each diet
was dried at 65 °C (until a constant dry weight was ob-
tained) and later used in the in vitro fermentation study.
Five healthy adult dogs (household dogs, different

breeds, living in different environments, between 1 and
6 years of age, average body weight: 17 kg) were fed for
4 weeks with the LP HD diet added with FOS (from par-
tially hydrolyzed inulin from chicory) at 15 g/kg of food
(Effeffe Pet Food Sp.A., Italy). Before the trial started, con-
sent was obtained from each owner. The feeding of a
commercial diet to the dogs that were used as fecal donors
for the present in vitro study is a procedure that does not
fall in the subject matter and scope of the actual legisla-
tion on the protection of animals used for scientific pur-
poses. Fresh feces were collected from the five dogs
immediately after excretion, pooled and suspended at
10 g/L in pre-reduced Wilkins Chalgren Anaerobe Broth
(WCAB). The fecal suspension was used to inoculate
(33 mL/L) five 30 ml anaerobic serum bottles (containing
21 ml of medium prepared according to Sunvold et al.
[13]) per treatment.
In the in vitro fermentation study, there were 6 treat-

ments: 1) LP HD; 2) HP HD; 3) HP LD; 4) LP HD + FOS;
5) HP HD+ FOS; 6) HP LD+ FOS. The anaerobic serum
bottles contained the undigested residue of the diets,
added at 10 g/L. Fructooligosaccharides (Beneo OPS, FOS
from partially hydrolyzed inulin from chicory with a dp
between 2 and 8; Beneo GmbH, Mannheim, Germany)
were added at the final concentration of 1.5 g/L. These
concentrations should reflect the amount of FOS that

Table 1 Chemical composition of experimental diets and
undigested residues after in vitro digestion

DM,
g/kg

g/kg, DM basis

Crude
protein

Ether
extract

Crude
ashes

NDF ADF Starch

Experimental diets

LP HD 929 229 120 66 83 27 464

HP HD 935 304 140 82 109 27 364

HP LD 938 303 124 123 111 33 338

Undigested residues

LP HD - 159 35.7 215 539 175 41.4

HP HD - 174 47.2 259 481 124 28.7

HP LD - 212 24.4 339 411 125 9.0

LP HD low protein high digestibility, HP HD high protein high digestibility, HP
LD high protein low digestibility, ADF acid detergent fiber, NDF neutral
detergent fiber
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reach the hindgut when they are included in a commercial
extruded food for dogs at a concentration of 15 g/kg of
food. In fact, if we estimate that the coefficient of digest-
ibility for the dry matter of a commercial super premium
dry food for dogs is 0.9, and assuming that all the FOS will
reach the large intestine, the ratio between the undigested
food fraction and FOS in the hindgut will be approxi-
mately 10:1.5.
Fecal cultures pH was adjusted to 6.7; bottles were

incubated for 24 h at 39 °C in an anaerobic cabinet
(Anaerobic System, Forma Scientific Co., Marietta,
USA; under a N2 85 %, CO2 10 %, H2 5 % atmos-
phere) and samples of fermentation fluid were collected
from each bottle at 6 and 24 h and immediately frozen at
-80 °C for the determination of ammonia, volatile fatty
acids (VFA), biogenic amines and bacterial counts.
Additional fresh aliquots were used for pH measurement
at 6 and 24 h.

Chemical and microbiological analyses
Analyses of experimental diets and their undigested resi-
dues were performed according to AOAC standard
methods [14] (method 950.46 for water, method 954.01
for CP, method 920.39 for ether extract, method 920.40
for starch, method 942.05 for crude ash). Fiber fractions
were determined according to the procedure described
by Van Soest et al. [15], where neutral detergent fiber
(NDF) was assayed with a heat stable amylase and
expressed inclusive of residual ash, acid detergent fiber
(ADF) was expressed inclusive of residual ash.
Ammonia was measured using a commercial kit (Urea/

BUN – Color, BioSystems S.A., Barcelona, Spain). Volatile
fatty acids were analyzed by gas chromatography [16]. For
the determination of biogenic amines, samples were diluted
1:5 with perchloric acid (0.3 M); biogenic amines were later
separated by high performance liquid chromatography and
quantified through fluorimetry, according to the method
proposed by Stefanelli et al. [17].
The Fluorescence In Situ Hybridization technique was

used to determine bacterial counts. For this purpose,
ready-to-use commercial kits (BioVisible B.V., Groeningen,

Netherlands) containing specific FITC-labeled probes for
the enumeration of enterococci (E. faecalis+ E. faecium),
Enterobacteriaceae, Clostridium perfringens, Bifidobacter-
ium spp. and Lactobacillus spp. were used. The slides were
evaluated with a Nikon Eclipse E-600 epifluorescence
microscope, equipped with FITC specific filter.

Statistical analyses
Data were analyzed by three-way ANOVA, with dietary
protein content and digestibility and FOS as the main
effects. Differences were considered statistically signifi-
cant at P < 0.05. All the statistical computations were
performed with Statistica 10.0 (Stat Soft Italia, Italy).
Due to the fact that the experimental design did not
comprise a low protein low digestibility (LP LD) diet,
interactions among main effects were not reported. The
reason for the absence of the LP LD diet is that the
experimental diets used in the present in vitro study
were also used in an in vivo study with dogs, where the
feeding of a low protein low digestibility diet would
have been unacceptable for ethical reasons.

Results
The pH values at 6 and 24 h of incubation are shown
in Table 2. After 6 h of incubation, pH was influenced
(P < 0.001) both by protein level (6.26 vs. 6.61 for LP
and HP, respectively) and digestibility (6.38 vs. 6.71 for
HD and LD, respectively), and reduced by FOS supple-
mentation (6.23 vs. 6.75). At 24 h, pH values were lowered
(P < 0.001) by high protein digestibility (5.98 vs. 6.30), low
dietary protein level (6.09 vs. 6.40) and FOS (5.96 vs. 6.44).
The concentrations of ammonia are shown in Table 2.

At 6 h of incubation, ammonia concentration was reduced
by the presence of FOS (34.6 vs. 37.0 mmol/L; P < 0.01).
After 24 h, ammonia was reduced by FOS (36.4 vs.
40.3 mmol/L; P < 0.001) and influenced by protein digest-
ibility (38.9 vs. 37.4 mmol/L for HD and LD, respectively;
P < 0.01) and protein level (38.5 vs. 38.1 mmol/L for HP
and LP, respectively; P < 0.05).
Concentrations of VFA are shown in Table 3. After 6 h

of fermentation, FOS reduced concentrations of propionic

Table 2 pH values and ammonia concentrations (mmol/L) after 6 and 24 h of the vitro studya

ANOVA P-value

LP HD HP HD HP LD LP HD + FOS HP HD + FOS HP LD + FOS Protein level Protein digestibility FOS Pooled SEM

At 6 h

pH 6.60 6.76 6.90 5.93 6.24 6.52 <0.001 <0.001 <0.001 0.04

NH3 37.3 37.8 36.0 33.6 35.2 35.1 0.238 0.281 0.002 0.89

At 24 h

pH 6.23 6.41 6.67 5.74 5.99 6.14 <0.001 <0.001 <0.001 0.03

NH3 40.3 41.6 39.2 36.0 37.8 35.6 0.023 0.002 <0.001 0.64

LP HD low protein high digestibility, HP HD high protein high digestibility, HP LD high protein low digestibility, FOS fructooligosaccharides
aValues are the means of five bottles per treatment
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and iso-butyric acid (0.73 vs. 1.45 mmol/L and 0.05 vs.
0.15 mmol/L, respectively; P < 0.05). The high dietary pro-
tein level resulted in lower concentrations of n-butyric
acid (2.21 vs. 5.14 mmol/L; P < 0.05) whereas low protein
digestibility determined lower concentrations of acetic
acid and total VFA (9.1 vs. 15.3 mmol/L and 11.6 vs.
20.7 mmol/L, respectively; P < 0.05). The acetic to propio-
nic acid ratio and acetic acid + n-butyric acid to propionic
acid ratio were increased (P < 0.05) by FOS. After 24 h of
fermentation, FOS resulted (P < 0.001) in higher concen-
trations of total VFA (47.1 vs. 32.9 mmol/L; P < 0.001),
acetic acid (27.2 vs. 23.9 mmol/L; P < 0.05), propionic acid
(9.93 vs. 5.69 mmol/L; P < 0.05), and n-butyric acid (9.53
vs. 2.56 mmol/L; P < 0.001). Both the acetic to propionic
acid ratio and acetic acid + n-butyric acid to propionic
acid ratio were reduced by FOS and increased by low pro-
tein digestibility (P < 0.01). Low protein digestibility also
resulted (P < 0.01) in lower concentrations of total VFA
(33.9 vs. 43.1 mmol/L), acetic acid (20.7 vs. 28.0 mmol/L)
and propionic acid (5.63 vs. 8.89 mmol/L).
With regard to biogenic amines (Table 4), spermine

concentrations after 6 h of incubation were affected by
protein level (39.9 vs. 32.3 μmol/mL for LP and HP,
respectively; P < 0.001). Putrescine concentrations were in-
creased at 6 and 24 h of fermentation by low protein digest-
ibility (+21 and +22 %, respectively; P < 0.05) and FOS (+18

and +24 %, respectively; P < 0.01). At 24 h, low protein di-
gestibility resulted in higher spermidine (97.8 vs 71.4 μmol/
mL; P < 0.001), whereas FOS induced an increase in sperm-
ine concentration (19.8 vs. 9.7 μmol/mL; P < 0.001). Cadav-
erine concentrations were not affected by treatments.
Bacterial counts after 6 and 24 h of incubation are

shown in Table 5. At 6 h, high dietary protein level
resulted in lower counts of Clostridium perfringens
(5.90 vs. 6.71 log cells/mL; P < 0.05), Lactobacillus
spp. (3.46 vs. 4.42 log cells/mL; P < 0.001) and entero-
cocci (7.71 vs. 8.52 log cells/mL; P = 0.026). After
24 h of fermentation, high dietary protein level
resulted in lower counts of Lactobacillus spp. (3.2 vs.
3.7 log cells/mL, P < 0.05) and enterococci (7.5 vs. 8.2
log cells/mL; P < 0.05), low protein digestibility tended to
increase counts of C. perfringens (6.0 vs. 5.8 log cells/mL;
P = 0.07) and FOS resulted in higher Enterobacteriaceae
(8.6 vs. 8.2 log cells/mL; P < 0.001) and lower Lactobacillus
spp. (3.1 vs. 3.6 log cells/mL; P < 0.001). Bifidobacteria
were not affected by treatments (data not shown) and
averaged 6.72 and 6.85 log cells/mL at 6 and 24 h of
incubation, respectively.

Discussion
Due to ethical and economic concerns regarding the use
of animals for scientific purposes, in vitro fermentation

Table 3 Concentrations (mmol/L) of volatile fatty acids at 6 and 24 h of the vitro studya

ANOVA P-value

LP HD HP HD HP LD LP HD + FOS HP HD + FOS HP LD + FOS Protein level Protein digestibility FOS Pooled SEM

6 h

Acetic acid 15.2 17.6 9.7 16.8 11.2 8.8 0.304 0.005 0.220 1.44

Propionic acid 1.58 1.56 1.09 1.04 0.59 0.52 0.236 0.214 <0.001 0.18

iso-Butyric acid 0.16 0.15 0.12 0.10 0.02 0.03 0.246 0.731 0.011 0.04

n-Butyric acid 2.81 3.10 1.04 7.47 2.33 2.12 0.040 0.304 0.052 1.04

iso-Valeric acid 0.03 0.01 0.04 0.01 0.01 0.01 0.207 0.304 0.135 0.01

Total VFA 19.8 22.4 12.0 25.5 14.2 11.4 0.090 0.019 0.809 2.30

C2:C3 10.3 11.8 9.1 16.4 23.8 26.9 0.457 0.879 0.030 5.53

C2 + n-C4:C3 12.3 13.7 10.0 23.6 28.1 30.3 0.616 0.997 0.005 5.43

24 h

Acetic acid 27.4 24.2 18.8 28.1 33.2 21.8 0.862 0.003 0.037 2.23

Propionic acid 7.65 6.37 1.93 12.12 10.88 7.86 0.105 <0.001 <0.001 0.66

iso-Butyric acid 0.09 0.52 0.16 0.27 0.09 0.27 0.201 0.500 0.483 0.11

n-Butyric acid 2.12 3.79 1.11 9.72 7.97 10.67 0.880 0.848 <0.001 0.90

iso-Valeric acid 0.44 0.68 0.23 0.44 0.11 0.22 0.950 0.303 0.106 0.14

Total VFA 37.7 35.5 22.3 50.6 52.3 40.8 0.864 0.001 <0.001 2.66

C2:C3 3.65 3.81 9.61 2.35 3.07 2.77 0.585 0.006 <0.001 0.70

C2 + n-C4:C3 3.91 4.40 10.22 3.14 3.86 4.13 0.409 0.001 0.001 0.65

LP HD low protein high digestibility, HP HD high protein high digestibility, HP LD high protein low digestibility, FOS fructooligosaccharides, VFA volatile fatty acids,
C2/C3 acetic acid/propionic acid ratio, C2 + n-C4/C3 acetic acid + n-butyric acid/propionic acid ratio
aValues are the means of five bottles per treatment
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models have been widely used to investigate the effects
of dietary factors on gut microbiota, both in humans
and animals [13, 18–22]. The aim of the present study
was to investigate whether FOS may influence fecal mi-
crobial population of dogs in presence of diets differing
in their protein content and digestibility.
The reduction of colonic luminal pH has potential

positive effects on the host gut health, due to the inhibit-
ing effect that an acidic environment has on some harm-
ful bacteria [23]; moreover, a low pH can induce a shift
from ammonia to ammonium ions, thus limiting the ab-
sorption of ammonia across the intestinal mucosa [24].
In the present study, pH was reduced by FOS whereas
high dietary protein level and low protein digestibility
resulted in higher pH values. The higher pH values that
were found in bottles containing the high dietary protein
level may be the consequence of the slightly higher am-
monia concentrations that were observed at 24 h. On

the other hand, at 6 and 24 h, low protein digestibility
resulted in lower VFA concentrations and this finding
may explain the higher pH values observed in the vessels
containing the LD diets. It is known that bacterial fer-
mentation of carbohydrates leads to the production of
VFA and lactic acid which, in turn, lower the intestinal
pH. In fact, in the present study, FOS resulted in higher
concentrations of VFA. In a previous in vitro experiment
with canine fecal inoculum, FOS fermentation resulted
in lower pH values than control [12]. Conversely, in an-
other in vitro study, FOS did not affect pH when fer-
mented in presence of feline fecal inoculum [25].
Moreover, in several in vivo studies with dogs, dietary
supplementation with FOS failed to affect fecal pH [26–
29]. However, it is well known that the concentration of
VFA can vary while digesta move along the intestine as
these metabolites are absorbed by the intestinal mucosa
[30]. According to Topping and Clifton [31], only 5 % of

Table 5 Bacterial counts (log cells/mL) at 6 and 24 h of the in vitro studya

ANOVA P-value

LP HD HP HD HP LD LP HD + FOS HP HD + FOS HP LD + FOS Protein level Protein digestibility FOS Pooled SEM

At 6 h

Enterobacteriaceae 8.60 7.59 8.60 8.70 8.90 8.81 0.404 0.345 0.177 0.47

C. perfringens 6.74 5.20 6.59 6.68 5.93 5.89 0.049 0.231 0.976 0.55

Lactobacillus spp. 4.31 3.60 3.41 4.53 3.45 3.37 <0.001 0.303 0.929 0.13

Enterococci 8.54 7.20 7.80 8.50 7.81 8.13 0.026 0.297 0.405 0.43

At 24 h

Enterobacteriaceae 8.31 8.43 7.94 8.69 8.51 8.69 0.746 0.097 <0.001 0.09

C. perfringens 5.83 5.79 5.98 5.81 5.88 6.08 0.918 0.068 0.499 0.10

Lactobacillus spp. 4.20 3.34 3.16 3.16 3.00 3.12 0.002 0.836 <0.001 0.14

Enterococci 8.04 7.86 7.69 8.30 6.72 7.66 0.040 0.349 0.371 0.41

LP HD low protein high digestibility, HP HD high protein high digestibility, HP LD high protein low digestibility, FOS fructooligosaccharides
aValues are the means of five bottles per treatment

Table 4 Concentrations of biogenic amines (μmol/L) at 6 and 24 h of the in vitro studya

ANOVA P-value

LP HD HP HD HP LD LP HD + FOS HP HD + FOS HP LD + FOS Protein level Protein digestibility FOS Pooled SEM

At 6 h

Putrescine 443 542 601 591 577 705 0.241 0.013 0.003 35.2

Cadaverine 18.6 25.8 19.0 23.3 12.9 22.5 0.413 0.631 0.133 4.62

Spermidine 63.2 68.8 65.0 68.3 66.4 59.4 0.839 0.519 0.133 6.56

Spermine 40.3 34.5 35.6 41.2 28.6 29.0 <0.001 0.422 0.080 2.08

At 24 h

Putrescine 550 617 790 780 775 863 0.514 0.013 <0.001 50.0

Cadaverine 31.1 20.9 20.3 24.2 24.5 22.3 0.734 0.220 0.720 6.40

Spermidine 105.4 65.6 67.5 94.0 82.6 66.0 0.002 0.128 0.769 6.18

Spermine 11.9 5.8 11.6 25.8 20.6 17.1 0.055 0.519 <0.001 2.14

LP HD low protein high digestibility, HP HD high protein high digestibility, HP LD high protein low digestibility, FOS fructooligosaccharides
aValues are the means of five bottles per treatment
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total VFA produced in the intestine by bacterial fermen-
tation may be recovered in the feces. This could explain
the discrepancy in pH values and VFA concentrations
often found between in vitro and in vivo studies.
Fermentation of experimental diets resulted in differ-

ent VFA concentrations. After 24 h of fermentation, the
presence of FOS resulted in higher concentrations of
acetic, propionic and n-butyric acids. In particular,
higher intestinal concentrations of n-butyric acid may
improve the animal’s intestinal health because this acid
is the main energy source for the epithelial cells of the
terminal ileum [32] and hindgut [33]. In agreement with
our findings, other authors reported higher fecal concen-
trations of total VFA [34], n-butyric acid [26, 35] and
propionic acid, the latter under both in vitro [12] and in
vivo [26, 27] conditions, when FOS were added to
canine diets. With regard to dietary protein, VFA pro-
duction was reduced by low protein digestibility but was
not influenced by dietary protein level. This result sug-
gests that microbial fermentations in the canine hindgut
may be affected more by protein digestibility than by
protein content of the diet. However, it also has to be
noticed that LD diets contained slightly less starch than
the HD diets, which may partially explain the different
VFA concentrations that were observed. In a recent
study with dogs, feeding a high-protein greaves-meal
diet (609 g of CP per kg of diet) resulted in lower acetic
and propionic acids and higher branched-chain fatty
acids (BCFA) fecal concentrations than control (control
diet contained 264 g of CP per kg of diet), but digestibil-
ity of experimental diets was not evaluated [36]. In the
present study, LD diets reduced concentrations of both
acetic and propionic acids whereas HP diets had no
significant effect on the concentrations of these micro-
bial metabolites.
As already mentioned, high dietary protein level resulted

in higher ammonia concentrations. Higher fecal ammonia
concentrations in dogs fed protein-rich diets were re-
ported by other authors [9, 28, 36, 37]. In a recent study,
Nery et al. [10] reported greater fecal ammonia concentra-
tions in dogs fed diets containing poultry meal if
compared with highly digestible wheat gluten diets; in the
same study, fecal ammonia concentrations were increased
when dogs were fed diets containing high levels of protein
(CP 390 g/kg of diet) if compared with low-protein diets
(CP 220 g/kg of diet). In another study, Hesta et al. [28]
noticed increased fecal ammonia concentrations in dogs
fed diets supplemented with meat and bone meal or
greaves meal but not when diets were supplemented with
poultry meal. Interestingly, in the present study, low pro-
tein digestibility did not increase ammonia concentrations.
This result is difficult to explain considering the fact that
the undigested residue of the LD diet contained more pro-
tein (212 g/kg of CP) than the undigested fraction of the

HD diets (159 and 174 g/kg of CP for LP and HP, respect-
ively). Ammonia is a toxic compound that can be the
cause of reduced villus height [38] and even have carcino-
genic effects [39]. In humans [40, 41] and dogs [7], the
treatment of renal and hepatic failure involves reducing
the circulating ammonia by using prebiotics or antibiotics,
thus reducing ammonia production by intestinal bacteria.
In fact, prebiotic ingredients represent a source of energy
for saccharolytic bacteria [42, 43] and contribute to
restricting proteolytic fermentation and promoting nitro-
gen utilization by colonic bacteria [7]. In the present
study, ammonia concentrations were reduced by FOS
both after 6 and 24 h of incubation. Conversely, in previ-
ous in vitro studies with canine [12] and feline [25] fecal
inocula, the incubation of FOS failed to reduce ammonia
concentrations. Inconsistent results have been obtained
also under in vivo conditions when dogs were fed diets
containing FOS. In fact, while Flickinger et al. [27]
observed that FOS tended to reduce fecal ammonia
concentrations in dogs, other authors [8, 26, 28, 44, 45]
failed to observe any positive influence of FOS on canine
fecal ammonia. It seems evident that the effect of FOS on
intestinal and fecal ammonia concentrations in dogs can
be influenced by several variables, including the amount
of FOS used, as well as dietary and environmental factors.
Moreover, like VFA, ammonia is easily absorbed through
the intestinal mucosa and its fecal concentration might
not be representative of the gut concentration.
While VFA are derived from both protein and carbo-

hydrate fermentation, BCFA derive exclusively from
branched amino acids bacterial breakdown [46–48]. It
has been shown that metabolites deriving from bacterial
fermentation of protein in the gut are affected both by
dietary protein content and source in humans [49] as
well as in dogs [10, 36, 50] and other carnivorous
animals, such as cheetahs [21]. However, in the present
study, iso-butyric and iso-valeric acids concentrations
were not affected by protein level and digestibility.
Conversely, at 6 h of fermentation, the presence of FOS
resulted in a reduction of iso-butyric acid concentration.
This finding is in accordance with Depauw et al. [21]
who reported a reduction of total BCFA when cheetah
fecal inoculum was incubated in presence of FOS.
Biogenic amines are putrefactive compounds derived

from amino acid and peptide decarboxylation [51]. Bio-
genic amines such as histamine and tyramine play import-
ant roles in maintaining the physiology of animals but also
have toxicological properties, therefore constituting a
potential health risk [52]. Moreover, other biogenic amines
such as cadaverine, putrescine, spermidine and spermine
do not seem to have direct toxic effects but can potentiate
histamine and tyramine toxicity by competing with detoxi-
fying enzymes [53]. In the present study, fermentation of
FOS resulted in increased concentrations of putrescine

Pinna et al. BMC Veterinary Research  (2016) 12:53 Page 6 of 9



and spermine. This finding is in apparent contradiction
with the reduction of other proteolytic compounds, such
as ammonia and iso-butyric acid, that was observed in
vessels containing FOS. Recently, in an in vitro study
with feline fecal inoculum, fermentation of FOS,
galacto-oligosaccharides and pectin resulted in in-
creased concentrations of putrescine [25]. Similarly,
Barry et al. [54] observed increased fecal concentrations
of cadaverine and putrescine in cats receiving FOS or
pectins. Beloshapka et al. [55] noticed an increase of
fecal spermine in dogs receiving two different raw beef
and chicken-based diets added with inulin and yeast
cell wall. Moreover, Propst et al. [35] found higher fecal
concentrations of biogenic amines in dogs fed increas-
ing levels of FOS. Conversely, in the study by Flickinger
et al. [27], feeding dogs with increasing levels of FOS
did not affect fecal concentrations of putrescine and
spermidine, while cadaverine and spermine were
reduced. Spano et al. [56] observed that lactic acid
bacteria (LAB) strains may produce biogenic amines by
enzymatic decarboxylation of amino acids when
exposed to acidic stress conditions. Therefore, since the
fermentation of FOS resulted in lower pH values, the
higher concentrations of cadaverine and putrescine that
were observed in the present study may be the result of
acid tolerance mechanisms activated by LAB. On the
other hand, low protein digestibility resulted in higher
concentrations of putrescine, presumably because of
increased proteolysis. Interestingly, concentrations of
spermine at 6 h and spermidine at 24 h of fermentation
were lowered by high dietary protein level. At present,
we do not have an explanation for this finding. How-
ever, based on the present results, biogenic amines, un-
like ammonia and BCFA, do not seem to represent an
accurate indicator for bacterial proteolytic metabolism.
After 24 h of incubation, high dietary protein level

resulted in lower counts of lactobacilli and enterococci
whereas low protein digestibility tended to increase
counts of C. perfringens. Similar results were observed in
other studies with dogs [9, 37] where the administration
of diets rich in animal derived protein resulted in
increased growth of proteolytic bacteria at the expense
of LAB, and these effects were even more evident when
dogs were fed diets based on low quality protein sources.
Conversely, Nery et al. [10] did not observe any variation
in C. perfringens fecal counts in dogs receiving diets
formulated with different protein content and protein
sources. According to the definition given by Roberfroid
[57], prebiotics are non-digestible substances that are
added to an animal’s diet to provide a source of energy
for beneficial bacterial strains residing in the hindgut. As
such, prebiotics would be expected to increase intestinal
counts of beneficial bacteria, such as LAB and bifidobac-
teria. In the present study, FOS failed to increase fecal

counts of LAB and bifidobacteria and even resulted,
after 24 h of incubation, in lower counts of Lactobacillus
spp. Several studies with sometimes conflicting results
have been conducted in order to investigate the effects
of FOS administration on the composition of canine
intestinal microbiota. In a study by Swanson et al. [26],
feeding adult dogs with 2 g of FOS per day resulted in
higher counts of bifidobacteria and lactobacilli. Con-
versely, Flickinger et al. [27] found that the use of FOS
reduced C. perfringens in dog feces, without exerting any
influence on the fecal population of lactobacilli and bifi-
dobacteria. Similarly, other authors [8, 44, 58] reported
no effects of FOS administration on fecal counts of LAB
and bifidobacteria in dogs. It has been reported by
several authors [59–61] that bifidobacteria are inconsist-
ently detected in canine feces. However, other authors
[26, 29] found greater fecal concentrations of bifidobac-
teria in dogs. In the present study, bifidobacteria were
not affected by experimental diets and their concentration
in fermentation liquid was 6.8 log cells/mL. However, in
this study, feces from dogs used as donors were not
individually analyzed so that is not possible to know if bifi-
dobacteria were present in all animals. Finally, it is worthy
to mention that bacterial populations were analyzed by
DNA analysis techniques in only a few of the cited studies
[8, 29, 37, 60, 61], while in the others bacteria were enu-
merated on selective media [9, 10, 26, 27, 44, 58, 59].

Conclusions
Results from the present study showed that diets rich in
protein may exert negative influences on the canine intes-
tinal ecosystem, slightly increasing the presence of ammo-
nia and reducing counts of lactobacilli and enterococci.
Moreover, the presence of poorly digestible protein
resulted in lower concentrations of VFA. Conversely,
administration of FOS may improve metabolism of canine
intestinal microbiota, reducing ammonia concentrations
and enhancing VFA production.
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