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Abstract

Background: Anesthetic agents alter microcirculation, influencing tissue oxygenation and delivery of vital
substrates. Laser Doppler perfusion imaging is a widespread technique in the field of microvascular research that
can evaluate noninvasively and in real time the effects of environmental conditions, physical manipulations,
diseases and treatments on peripheral perfusion. This study aims to evaluate laser Doppler perfusion imaging as a
means to detect changes in skin microcirculation induced by some popular anesthetic agents in a murine model.
Twenty-four age- and gender-matched healthy CD1 mice were examined by laser Doppler perfusion imaging. The
skin microcirculatory response was measured at the level of plantar surfaces during isoflurane anesthesia with or
without subsequent dexmedetomidine or acepromazine. At the end of the procedure, dexmedetomidine was
reversed by atipamezole administration.

Results: In all mice, skin blood flow under isoflurane anesthesia did not show significant differences over time
(P = 0.1). The serial perfusion pattern and values following acepromazine or dexmedetomidine administration
differed significantly (P < 0.05).

Conclusions: We standardized a reliable laser Doppler perfusion imaging protocol to non-invasively assess changes
in skin microcirculation induced by anesthesia in mice, considering the advantages and drawbacks of this technique
and its translational value.
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Background
Microcirculation is the final link between the cardiovas-
cular system and cellular interfaces and, ultimately,
molecular processes. Many studies have investigated the
effect of anesthetics on peripheral and systemic microcir-
culation in humans [1-5], especially their effects on
microvascular perfusion, aiming to ensure adequate
tissue oxygenation and nutritional supply. Mice are an
ideal model to study anesthetic action due to their
easy manipulation, well-established behavioral and
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homeostatic responses to anesthesia, and well-known
genetic background. Outbred mouse strains are widely
used in toxicology and pharmacology, and CD1 mice have
been employed in anesthesia research [6-8] on the as-
sumption that most characteristics of interest have a poly-
genic inheritance and are related to phenotypic variation
in a genetically heterogeneous population [9,10]. More-
over, anesthesia is required for most in vivo studies using
mouse microcirculatory models, and the use of diverse
anesthetic agents in translational research can interfere
with experimental results [11,12]. As an example, pento-
barbital [13,14], midazolam-medetomidine [15] and
isoflurane [16] have been used in preclinical studies on
peripheral arterial disease to evaluate the effects of new
angiogenetic therapies. Microcirculatory responses to
the most popular inhalation (halothane, isoflurane) or
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Figure 1 LDPI scan technique. (A) Animal positioning in sternal
recumbency on a light-absorbing pad, with the hind plantar surfaces
symmetrical and perpendicular to the laser beam. (B) LDPI image
post-processing and measurement standardized protocol: the mean
intensity of the Doppler signal was registered in ROI encompassing
the hind paws and expressed as numerical value normalized for their
area (perfusion color scale 0–5 volts).

Gargiulo et al. BMC Veterinary Research 2013, 9:255 Page 2 of 7
http://www.biomedcentral.com/1746-6148/9/255
injectable anesthetics (propofol-fentanyl, barbiturates and
ketamine) have been investigated in rats at the level of in-
testinal [17], cremaster or dorsal muscle microcirculation
[18-20] using invasive dorsal microcirculatory chambers
or intravital microscopy. So far, few data have been re-
ported regarding the microvascular effects of the popular
laboratory-animal anesthetic agents acepromazine and
dexmedetomidine. Acetylpromazine maleate is an α-
adrenergic receptor antagonist broadly used for sedation
and balanced anesthesia in animals [21]. Concurrent ad-
ministration of acepromazine reduces the required dose of
isoflurane while potentiating peripheral vasodilation and
lowering blood pressure in dogs [22]. The combination
of acepromazine with ketamine and xylazine is recom-
mended for a safe and reliable surgical anesthesia in
mice, although it is associated with marked hypotension
[23,24]. Dexmedetomidine hydrochloride is a selective
α2-adrenoceptor agonist with preferential affinity for
α2A and α2B receptors [21]. Perioperative administration
of dexmedetomidine hydrochloride reduces the required
doses of isoflurane, thiopental and propofol in humans
and animals, and it reduces the activation of the sympa-
thetic nervous system during surgery, preventing harmful
hemodynamic events such as acute kidney injury [25].
Reliable techniques for measuring perfusion in accessible
tissues such as skin may have significant potential to im-
prove our understanding of microvasculature regulation
under anesthesia. Laser Doppler perfusion imaging (LDPI)
is a noninvasive technique allowing real-time quantifica-
tion of skin perfusion in two-dimensional color-coded
images. Enhancement of the measured area provides a
better evaluation of blood flow heterogeneity, allowing
for the identification of subtle changes in skin perfu-
sion induced by anesthesia and indicating circulatory
status in other areas [26,27]. Although LDPI offers a
simple and accurate estimate of peripheral perfusion,
a standard method for the study of microcirculatory
changes related to anesthesia in mice is lacking. In
the present study, we reviewed several biological vari-
ables, such as gender, environmental variables and oper-
ational variables, such as body temperature, skin district and
recording conditions, to develop a LDPI protocol to evaluate
the effects of some anesthetic agents on microcirculation
in mice. Our LDPI protocol is a potentially valuable re-
search tool to detect in vivo real-time microcirculatory
changes in preclinical experiments in mice.

Results
Standardized protocol for animal positioning and LDPI
image post-processing and measurement are described
in Figure 1. Sequential perfusion units (PU, volts) values
for each group are reported in Table 1 as median, mini-
mum and maximum values. No significant differences
were seen between males’ and females’ peripheral blood
flow (PBF) at any time point (P > 0.05). The effects of
different anesthetics on peripheral perfusion for each
group are presented in Figure 2. In all mice, mean perfu-
sion under isoflurane anesthesia showed an increasing
trend at 10 and 20 minutes after maintenance (4.25 to
4.55 volts), reaching a steady perfusion value without
significant differences among groups and in later times
(P = 0.1). In contrast, the mean LDPI values following
acepromazine (group 1) and dexmedetomidine adminis-
tration (group 2) differed significantly. Between 10 and
20 minutes after acepromazine administration, a signifi-
cant perfusion increase (P = 0.005) was observed, from
4.55 to 4.85 volts. Dexmedetomidine administration pro-
duced a clear biphasic effect, leading to a significantly
reduced (P = 0.0001) blood perfusion (2.47 volts) after
5 minutes, followed by an increase to 4.32 volts (P = 0.008)



Table 1 Microvascular perfusion values

Groups Measurement time

10 min 20 min 25 min 30 min 35 min 40 min

1 4.37/3.73-4.90 4.57/3.67-5.52 4.53/3.98-5.53 4.84/4.29-5.76

2 4.32/3.69-4.75 4.52/3.62-5.33 2.37/2.02-3.13 4.32/3.73-4.81 4.41/3.72-4.72

3 4.34/3.71-4.83 4.52/3.66-5.50 4.57/3.85-5.78

Mouse peripheral PU (volts) in the isoflurane + acepromazine (1), isoflurane + dexmedetomidine (2) and isoflurane-alone (3) experimental groups at significative
time points (median/min-max).
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after 15 minutes. The latter perfusion value, close to that
under isoflurane anesthesia (P = 0.6), was quite retained
(4.34 volts) even following dexmedetomidine reversal by
atipamezole (the antidote to the α2-receptor agonist)
(P = 0.9). No significant peripheral perfusion changes
were observed in control mice after up to 30 minutes
(4.57 volts) of 1.5% isoflurane anesthesia (P = 0.11).

Discussion
Anesthetics modulate microcirculation mainly via auto-
nomic sympathetic and parasympathetic nerves on vas-
cular smooth muscle. Phenothiazine tranquilizers as well
as α2-agonists exert their hemodynamic effects mainly
by interacting with α-adrenergic-receptors. Phenothia-
zines cause vasodilation predominantly by blocking α1
Figure 2 Representative LDPI images. Peripheral perfusion patterns in m
points with significant differences (P < 0.05) are reported. Group 1 (top row
(middle row) 5 (C) and 15 minutes after dexmedetomidine injection (D) an
(lower row) 10 (F), 20 (G) and 30 minutes after isoflurane maintenance (H)
receptors but are also dopamine receptor antagonists
[28]. While D1-like dopamine receptors induce relaxation
of resistance arteries [29,30] D2-like dopamine receptors
are typically present on postganglionic sympathetic neu-
rons, where their excitation leads to a reduction of the
neural release of norepinephrine, inducing a passive fall in
vascular resistance and heart rate [31]. Dexmedetomidine
is a selective α2-adrenoceptor agonist that shows a dose-
dependent, preferential affinity for α2A and α2B receptors
[21], evoking a biphasic blood pressure response: a short
hypertensive phase mediated by the α2B receptors,
followed by hypotension mediated by the α2A receptors
[32,33]. The peripheral hemodynamic effects of phenothi-
azines and of α2-agonists thus differ: while acepromazine
causes significant hypotension in isoflurane-anesthetized
ice over time after administration of 3 anesthetic protocols. Time
) 10 (A) and 20 minutes after acepromazine injection (B); group 2
d 5 minutes after atipamezole administration (E); control group
(perfusion color scale 0–5 volts as reported in Figure 1).
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animals [34], dexmedetomidine [35,36] increases periph-
eral vascular tone, counteracting the isoflurane-induced
vasodilation and reduction in arterial blood pressure [22].
LDPI permits a noninvasive, real-time measurement of
microvascular blood flow using two-dimensional color-
coded images of skin perfusion. The use of laser doppler
flowmetry technique to detect the sympathetic tone
during general anesthesia in humans has been reported
[3,37,38], and translational approaches using LDPI in
microvascular perfusion mouse models offer the advan-
tages of being easy and fast [39]. Moreover, various anes-
thetics alter blood flow in rodents [40-43], so anesthetic
regimens used in mouse microcirculatory models should
be taken into account, and they should not adversely affect
the vascular bed to be examined. The main finding in this
study is that LDPI is able to evaluate in real time the
anesthesia-induced changes in mouse peripheral microcir-
culation. The hemodynamic effects recorded during the
different anesthetic protocols were as expected based on
previous clinical and animal studies, although the analyz-
ing techniques were different [2-5,22]. Because LDPI scans
are disrupted by motion [44] and single or combined sed-
atives have lacked restraining effects in mice, we chose to
perform our study under 1.5% isoflurane anesthesia to
record reference perfusion values. Isoflurane produces
only minor effects on murine hemodynamic status [6,7].
Costantinides et al. (2011) [45] reported that 1.5% iso-
flurane produces stable body temperature, mean arter-
ial pressure (MAP) and heart rate (HR) values in mice,
comparable to those observed in awake animals, so they
recommended it for physiological and pharmacological
studies of cardiac function and to facilitate translational
research in non-invasive imaging platforms. In the present
study, isoflurane anesthesia yielded a reproducible and
stable effect on peripheral blood perfusion over time
(P = 0.1). Acepromazine increased isoflurane plantar per-
fusion, as reported by Lemke et al. [22], and reduced vas-
cular tone and arterial pressure due to its α-blocking
action. After dexmedetomidine administration, a rapid
and intense decrease in plantar perfusion was followed by
a longer phase of increased perfusion, in agreement with
the typical biphasic hemodynamic effect of this class
of sedatives. In all of the mice, the increased perfu-
sion recorded 15 minutes after dexmedetomidine ad-
ministration did not surpass the perfusion brought about
by isoflurane (P = 0.6), and it was noticeably lower than
the perfusion recorded following acepromazine adminis-
tration (P = 0.01), which did not increase significantly
even after atipamezole injection (P = 0.9). Special care was
taken to avoid methodological bias. To date, the skin has
been used as a model of microcirculation to investigate
vascular mechanisms in cardiovascular [46-48] or kidney
diseases [49] and diabetes [50,51]. Autonomic innervation
of microvessels in the region of interest [3,28,52-54],
somatic stimulation of cutaneous arterial sympathetic
nerve activity [55], positioning and body temperature [56]
are all crucial factors affecting skin blood flow measured
by LDPI. Glabrous skin areas are highly innervated by
noradrenergic sympathetic vasoconstrictor nerves [3,28],
which are regulated by α-adrenoceptors [57] in several
species [52-54]. For these reasons, we chose plantar region
to investigate blood flow changes brought about by
anesthetic drugs, also avoiding hair clipping, which might
affect cutaneous arterial sympathetic nerve activity and
alter LDPI measurements [55]. In our setting, precise hind
plantar surface positioning was achieved to keep the site
of interest highly symmetrical and precisely perpendicular
to the laser beam (Figure 1) [58-60]. Moreover, body
temperature was monitored by a rectal probe and adjusted
between 35.5-36.5°C by an infrared lamp. Our experi-
ments were performed in a temperature-controlled room
[29], and we started LDPI recordings after each animal
had acclimatized. The effects of sex hormones on vascular
tone continue to be a matter of debate [61,62]. Stucker
et al. (2001) [63] reported in an LDPI study only a ten-
dency toward higher perfusion values in men than in
women, stating that moderate gender differences in skin
perfusion between study groups should be tolerated. Simi-
larly, Kunkel et al. (2007) [64] found that foot skin perfu-
sion in normal human subjects was independent of
gender. In our experience, no significant differences be-
tween males and females were found in the peripheral
blood flow in either control or treated animals. In accord-
ance with the manufacturers’ technical instructions, the
room lighting should be kept to a minimum brightness.
We set our lighting discrimination between background
and the site of measurement to the default threshold level
of 6.2 volts, adjusting the backscattered laser light inten-
sity in the range of 7–9 volts, obtaining an optimum qual-
ity of data. To compare perfusion in different images, a
user-defined color scale was adopted during the acquisi-
tion process, ranging from 0 to 5 volts (perfusion output
value of 0 volts was calibrated to 0% perfusion, whereas 5
volts was calibrated to 100%). The average perfusion in
each region of interest (ROI) was normalized to the wall
plantar surface area to reduce bias related to unavoidable
anatomical and position variance. To further minimize
any data divergence, the hind paw perfusion value for each
animal at each time point was calculated as the average
value of both hind paw ROIs.

Conclusions
LDPI is able to evaluate noninvasively and in real time
the skin microcirculation changes induced by general
anesthesia in mouse models. LDPI could be useful for
studying the effects of anesthetics on peripheral microcircu-
lation and to avoid the inconsistent use of anesthetic agents
in cardiovascular translational research. Standardization of
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an appropriate LDPI procedure is needed in preclinical
studies to avoid bias in experimental results.

Methods
Ethical permission
This study was approved by the animal welfare regula-
tion committee (CESA) of the University “Federico II”
of Naples and by the Italian Ministry of Health. It com-
plied with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health
(NIH Publication No. 85–23, revised 1996).

Study subjects and design
Twenty-four CD1 mice (15 females and 9 males), 8 to
10 weeks old, were randomly assigned to one of three
experimental groups (5 females and 3 males) and se-
quentially examined in identical ambient conditions.
Skin perfusion was recorded by LDPI under isoflurane
anesthesia combined or not with acepromazine or dex-
medetomidine, as well as after the administration of ati-
pamezole to antagonize dexmedetomidine’s effects.

Experimental protocol
Animals were acclimated for 15 min at a room temperature
of 27 ± 3°C before anesthetic induction. During LDPI re-
cording, the ambient lighting was kept at a minimum.
Body temperature was monitored by a rectal temperature
probe (Harvard Apparatus®, MLT1404) and closely ad-
justed to 35.5 ± 0.5°C by an infrared lamp kept 60 cm away
from the body surface. On the basis of a critical revision
of the existing literature, peripheral perfusion was mea-
sured at the level of the hairless, highly sympathetic inner-
vated plantar surfaces [3,28]. Animals were placed in
sternal recumbency on the light-absorbing pad provided
by the apparatus company, positioning the hind plantar
surfaces symmetrically and perpendicularly to the laser
beam (Figure 1). Isoflurane induction and maintenance
were identical for all mice: each animal was weighed
on a precision scale and transferred from a holding
cage to a small rodent anesthetic chamber (isoflurane
4% in 2 L/min oxygen) (ISOFLURANE-VET®, MERIAL
ITALIA S.p.A.®). When deeply anesthetized, animals were
placed in sternal recumbency on the recording bed
and fitted with a facial mask delivering isoflurane 1.5%
in 1 L/min oxygen. LDPI scans were recorded 10 and
20 minutes after isoflurane maintenance. Subsequent
group treatments were carried out according to the sched-
ule below, with precise time intervals between the LDPI
recordings based on the pharmacodynamics of the
different anesthetic agents:
Group 1 (8 subjects): Acepromazine (PREQUILLAN®,

FATRO S.p.A.®) 5 mg/kg (= 0.99 mg/kcal) was adminis-
tered intraperitoneally (IP), followed by two LDPI scans
at an interval of ten minutes.
Group 2 (8 subjects): Dexmedetomidine (DEXDOMITOR®,
Pfizer Italia Srl®) 1 mg/kg (= 0.19 mg/kcal) was adminis-
tered IP, followed by two LDPI scans after 5 and 15 mi-
nutes. Finally, dexmedetomidine was reversed by injecting
the α2-adrenoceptor antagonist atipamezole (ATIPAM,
Fatro®) 2.5 mg/kg (= 0.49 mg/kcal) IP, and a further LDPI
scan was performed after 5 minutes.
Group 3 “control” (8 subjects): an additional LDPI scan

was recorded 30 minutes after isoflurane maintenance.

Laser Doppler imaging system
The Periscan® apparatus displayed the blood perfusion
signal both as a numerical PU (volts) and as a color-
coded image ranging from dark blue (low perfusion) to
bright red (high perfusion). The settings used in the
present study were laser beam power = 1 mV; wave-
length = 670 nm; pixel size = 0.25 × 0.25 mm2; scanner
head distance =15 cm; scanning area = 3 × 2 cm2; scan-
ning time = 2 minutes.

Data processing
The mean intensity of the Doppler signal was quantified
using proprietary software in a fixed ROI, encompassing
the corresponding hind paw regions, normalized for the
areas of the hind paws and expressed as numerical
values (volts) to reduce the bias related to unavoidable
anatomical and position variance. To further minimize
any data divergence, the hind paw perfusion value for
each animal at each time point was calculated as the
average value of both hind paw ROIs.

Data analysis
Statistical analysis was carried out using the software
SPSS 18.0.2. (SPSS, Chicago, IL). To compare inter-
group differences, one way Friedman ANOVA was used.
A post hoc analysis with Dunn’s test was performed
when appropriate. A linear generalized model (LGM) for
repeated measurements (two-way ANOVA) was used to
assess perfusion patterns at different times within groups.
A P value <0.05 was considered statistically significant.
Abbreviations
HR: Heart rate; IP: Intraperitoneally; LDPI: Laser Doppler perfusion imaging;
MAP: Mean arterial pressure; PU: Perfusion units; ROI: Region of interest.
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