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Abstract

determine the relative contributions of these defenses.

was detectable in both toe-clips and internal organs.

Background: While emerging diseases are affecting many populations of amphibians, some populations are
resistant. Determining the relative contributions of factors influencing disease resistance is critical for effective
conservation management. Innate immune defenses in amphibian skin are vital host factors against a number of
emerging pathogens such as ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd).
Adult water frogs from Switzerland (Pelophylax esculentus and P. lessonae) collected in the field with their natural
microbiota intact were exposed to Bd after experimental reduction of microbiota, skin peptides, both, or neither to

Results: Naturally-acquired Bd infections were detected in 10/51 P. lessonae and 4/19 P. esculentus, but no disease
outbreaks or population declines have been detected at this site. Thus, this population was immunologically
primed, and disease resistant. No mortality occurred during the 64 day experiment. Forty percent of initially
uninfected frogs became sub-clinically infected upon experimental exposure to Bd. Reduction of both skin peptide
and microbiota immune defenses caused frogs to gain less mass when exposed to Bd than frogs in other
treatments. Microbiota-reduced frogs increased peptide production upon Bd infection. Ranavirus was undetectable
in all but two frogs that appeared healthy in the field, but died within a week under laboratory conditions. Virus

Conclusion: Intact skin microbiota reduced immune activation and can minimize subclinical costs of infection.
Tolerance of Bd or ranavirus infection may differ with ecological conditions.

Keywords: Amphibian, Antimicrobial peptide, Chytridiomycosis, MALDI-MS, Microbiota, Pelophylax, Ranavirus

Background

Experimental studies are needed in disease ecology to de-
termine the relative importance of factors influencing dis-
ease outcome. Results can be applied to conservation
management of amphibians encountering a variety of in-
fectious diseases emerging with global change [1-5]. Two
predominant amphibian pathogens associated with global
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population declines are ranaviruses and the amphibian
chytrid fungus Batrachochytrium dendrobatidis (Bd).

Ranaviruses are large icosahedral DNA viruses belong-
ing to the family Iridoviridae. They have been detected
in fish, amphibians and reptiles. Ranavirus associated
disease in amphibians has been reported in the Americas,
Europe, and Asia, and ranaviruses have also been detected
in amphibians in Australia [4,6]. To our knowledge, there
are no previous reports of ranavirus occurring in wild-
caught amphibians in Switzerland.

Bd is the causal agent of chytridiomycosis, an amphib-
ian disease capable of producing epizootics and perhaps
species extinctions [3,7]. The fungus is top-ranking in

© 2012 Woodhams et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:dwoodhams@gmail.com
http://creativecommons.org/licenses/by/2.0

Woodhams et al. BMC Veterinary Research 2012, 8:197
http://www.biomedcentral.com/1746-6148/8/197

the most recent Amphibian Conservation Action Plan
[2]. In Europe, the earliest archived specimens with Bd
infections were found in 1998 [8], however, recent stud-
ies have detected the fungus in Switzerland from much
older samples (N. Peyer and B. Schmidt, unpublished
data), and both a Swiss strain and a “global panzootic
lineage” have been identified in Switzerland ([9]; M.C.
Fisher, pers. comm.). Infection of wild amphibians has
been documented in ten European countries and
appears to be widespread (http://www.Bd-maps.net/). As
in other regions, the disease affects some host species
more than others [8,10]. Therefore, attention to disease
resistance mechanisms may lead to protective interven-
tions for threatened amphibian species.

In Switzerland, many amphibian populations have
declined in recent years, and 70% of the 20 species are
on the Swiss Red List of threatened species [11]. In con-
trast, few declines have been reported for populations of
water frogs, Pelophylax lessonae and P. esculentus. These
species also appear to be relatively tolerant of Bd in the
wild [8]. Amphibian host mechanisms of disease resist-
ance include a variety of behavioral, innate, and adaptive
immune responses [12]. Symbiotic bacteria associated
with amphibian skin can inhibit Bd and disease develop-
ment in some species [13-16]. Antimicrobial peptides
(AMPs) may also be important against chytridiomycosis
[10,17]. Nearly 50 skin AMPs were previously described
from the water frog complex [18-23], and given the simi-
larity of peptide families, some are probably effective
against Bd [24]. A unique aspect of this study compared
to most previous Bd-exposure experiments [25], is that
adult frogs are examined upon capture from an abun-
dant wild population with their immunity primed, as
opposed to examining pathogen-naive metamorphs.
Therefore, adult water frogs are ideal for experiments to
test the mechanisms of disease resistance by reducing
components of the innate immune system that may con-
fer protection in the wild.

Results

Ranavirus infection

Two frogs died within a week of collection. Ranaviruses
were deteced by PCR in the liver, kidney, and toe clip of
one P. esculentus and in the liver of one P. lessonae.
Virus was isolated on IgH2 from all of the organs tested
from both frogs (liver, kidney, heart, lung, and intestine
of the first and liver, kidney, heart, and intestine of the
second frog). Cell culture supernatant from all isolates
was positive for ranavirus by PCR. Sequencing of the
PCR products from the livers of each of the frogs
showed that a 488 bp portion of the MCP gene was
100% identical between the two viruses and 97.57% iden-
tical to the corresponding portion of the genome of
FV3, the type species of the genus Ranavirus.
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Bd infection

Bd was prevalent in field collected water frogs. Swabs
were Bd positive for 10/51 P. lessonae and 4/19 P. escu-
lentus before experimental treatments (Figure 1a). About
40% of initially uninfected frogs of both species devel-
oped skin infections upon experimental exposure with
Bd (Figure 1la). Prevalence before or after treatments
was not significantly different between species (Fisher’s
exact tests, P’s >0.05). These infections were sometimes
not detected on feet swabs but were detected on body
swabs and vice versa (Figure 1b). The proportion of
frogs that became infected in each treatment was not
significantly different for P. lessonae or both species
combined (Pearson X, P’s > 0.05; Figure 2a). The zoo-
spore infection load did not differ significantly among
treatments for P. lessonae or both species combined
(Kruskal-Wallis tests, P’s > 0.05). No mortality occurred
during the 64 d experiment. One naturally infected
P. esculentus died shortly after the experiment (d 80)
showing clinical signs of chytridiomycosis and high Bd in-
fection loads (Figure 1b).

Mass change

Nearly all frogs gained mass during the experiment
(Figure 2b). Results were similar for both species, thus,
the combined results are reported here. Frogs that be-
came infected during the experiment gained slightly, but
not significantly, less mass than frogs that remained un-
infected (Independent t-test, t;; = —-0.401, P = 0.690).
However, frogs that were initially infected in the field
(N=14) gained a mean of 1.2% body mass in comparison
with initially uninfected frogs (N=53) that gained 12.1%
body mass (Independent t-test, tg5 = —=2.992 P = 0.004).
Initially uninfected frogs that were exposed to Bd during
the experiment (N=46) gained 11.1% body mass, and ini-
tially uninfected frogs that became infected during the
experiment (N=20) gained 11.3% body mass. Frogs that
were exposed to Bd and had both skin peptides and
microbiota reduced, gained significantly less weight than
frogs in some other treatments, including immune
reduced frogs that were not experimentally exposed to
Bd (Figure 2b; ANOVA, Fys5, = 3.612, P = 0.012). Thus,
Bd infection and immune reduction interacted to pro-
duce a growth reduction effect.

Skin peptide recovery

The dry weight quantity of peptides recovered after norepin-
ephrine administration was significantly correlated to body
mass (gbm) for both species (Pearson correlations, r = 0.489,
n =27, P =0.0048, P. lessonae; r = 0.753, n = 11, P = 0.0038
P. esculentus). Correcting for surface area did not signifi-
cantly improve this correlation; therefore, we used g gbm™
as the unit of peptide quantity recovered. Norepinephrine
administration induced significant quantities of skin peptides
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Figure 1 Infection with B. dendrobatidis (Bd). (a) Proportion of water frogs infected with Bd determined by quantitative rtPCR. (b) Infection
intensities indicating Bd zoospore equivalents measured from swabs of Pelophylax esculentus and P. lessonae on day 40 post-exposure (feet
swabbed) or on day 64 post-exposure (body swabbed after rinse). Frogs that were naturally infected with Bd (triangles) or uninfected before
beginning the experiment (circles) are indicated. One P. esculentus died on day 80. This frog was naturally infected, and in addition to the highest
Bd infection intensity, clinical signs indicative of chytridiomycosis included progressive shedding of skin in water, splayed limbs, inappetence, and
lethargy.

from both species in comparison with water-injected con-
trols (Mann—Whitney U-tests, Ps < 0.001; Figure 3). The
quantity recovered from controls was (mean + SD) 50 +
11.7 pg gbm™ from P. lessonae and 14.7 + 13.3 pg gbm™ for
P. esculentus. P. esculentus produced more peptides on aver-
age (2741 pg gbm™) than P. lessonae (1549 pg gbm™)
when stimulated with norepinephrine (Independent t-test,
t35 = —4.030, P = 0.0003; Figure 3). Peptide-reduced frogs

had recovered peptide quantities similar to non-
reduced frogs by 64 days after treatment (Figure 4a).
The quantities of peptides recovered on day 64 dif-
fered among treatments (Figure 4a). Small sample
sizes prohibited testing the treatment effect on P. escu-
lentus peptides, but P. lessonae with both peptide and
microbiota immune defenses reduced and exposed to
Bd had significantly less peptides than frogs in some
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Figure 2 Change in B. dendrobatidis (Bd) infection status and mass of initially uninfected frogs (Pelophylax esculentus and P. lessonae,
N = 53) in each experimental treatment. (a) Proportion of frogs that became infected during the experiment and mean (+ SE) infection load
expressed as log(zoospore equivalents + 1). Asterisk indicates infection was detected in one control frog that may have had an undetectable
infection before the experiment. (b) Mean percent (+ SE) mass gain of frogs in each treatment. Letters above bars indicate homogeneous subsets

based on a Tukey post-hoc test.

J

other treatments (ANOVA, F,4; = 6.043, P = 0.0006,
Figures 3, 4a).

Relative intensities of peptides

In addition to the overall quantity of peptides recovered,
we measured the relative intensity of peptides within the
mass spectra. Mean peptide intensities varied among
treatments. In P. lessonae, Bd exposure and Bd exposure
with peptide reduction showed the highest intensities,
and the control immune-reduced treatment the lowest
(ANOVA, P < 0.0001; Figure 4b). For P. esculentus, small
sample sizes precluded statistical testing. Dry weight of
partially-purified peptides was significantly correlated to
the sum relative intensity of peptide peaks identified by
MALDI-TOF MS (Pearson correlation, r = 0.376, n = 62,
P =0.003).

Peptide production stimulated by infection with Bd
In P. lessonae, Bd infection significantly increased the
quantity of peptides recovered from two treatments:

Bd exposed with microbes reduced, and Bd exposed
with both microbes and peptides reduced (Independ-
ent t-tests, P’s < 0.05). Thus, an interaction of reduced
microbes and Bd exposure increased skin peptide pro-
duction (Figure 5a).

Peptide profiles differed among treatment groups

The profiles of P. lessonae skin peptide ranked inten-
sities were independently analyzed for the effects of Bd
exposure, Bd infection, norepinephrine treatment, and
antibiotic treatment with multivariate analyses of vari-
ance. Neither Bd exposure, Bd infection pre-treatment,
nor Bd infection post-treatment significantly affected
peptide profiles (MANOVA, P’s > 0.05). Reducing pep-
tides with norepinephrine significantly affected the pro-
files of recovered peptides (Wilks’ Lambda, Fj; 51 = 2.595,
P = 0.016). Similarly, reducing microbiota with antibiotics
significantly affected peptide profiles (Wilks’” Lambda,
Fy01 = 2.083, P = 0.049). When allocated to one of
these four treatment combinations (peptides and/or
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Figure 3 Skin peptide recovery from Pelophylax esculentus and P. lessonae upon administration of norepinephrine or water control at
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microbiota reduced or intact) differences in peptide profiles
were apparent (Wilks' Lambda, Fess76 = 1625, P = 0.031;
Figure 5b).

Discussion
We found that both ranaviral disease and chytridiomycosis
can contribute to mortality of water frogs in Switzerland.
Field surveys have shown that at many sites, Bd infection
prevalence is high ([8]; L. R. Davis and U. Tobler unpub-
lished data). However, most frogs that had naturally
acquired infections in the field did not show subsequent
signs of disease development in the lab. In addition, ex-
perimental exposure of frogs to Bd zoospores under la-
boratory conditions ideal for Bd growth in culture, did not
lead to mortality. Most frogs resisted infection, or tolerated
low level infections without developing clinical signs of
disease. Thus, we conclude that P. esculentus and P. lesso-
nae are largely disease resistant, and infection tolerant, as
adults, given the strains of Bd occurring in Switzerland.
These frogs may experience disease-related mortality at
more susceptible life-history stages, but if so, such die-offs
have not substantially affected population sizes [11]. In
addition, 0 of 528 Pelophylax spp. tadpoles had detectable
Bd infections when sampled from 16 ponds in Switzerland
including ponds with infected adults [26]. Factors leading
to the stable co-existence of host populations and the chy-
trid fungal pathogen are only beginning to be understood
[27]. Both the adaptive and innate branches of immunity
are involved [12].

By experimentally reducing two components of innate
immunity, antimicrobial skin peptides and skin microbiota,

we aimed to determine the relative importance of each
defense. However, even when both defenses were ex-
perimentally reduced, and the frogs were exposed to
repeated infectious doses of Bd, we did not detect
increased mortality or even an increase in infection in-
tensity. Thus, the effects of reduced immunity and Bd
were subclinical.

Subclinical effects of Bd have been determined in
other systems including Bufo bufo larvae [28], Pseudacris
regilla larvae [5], Plethodon cinereus adults [16], and
Hyla chrysoscelis and Bufo fowleri metamorphs [29,30].
Here, we found that Bd infection and a reduction of
both peptide and microbiota immune defenses inter-
acted to produce a growth reduction effect. Our data
suggest a trade-off between energy expenditure on
growth and immune defense. Given that antimicrobial
peptides may be costly to produce, it is not surprising
that P. lessonae appeared to increase peptide production
upon exposure to Bd only when microbiota was reduced.
Microbiota may extend the host innate immunity against
Bd [31], thus reducing the need for costly peptide
production.

The significant reduction of growth in naturally
infected compared to uninfected frogs may indicate
cause or consequence of Bd infection. When uninfected
frogs were experimentally exposed to Bd and when they
became infected, growth reduction was not simply a re-
sult of Bd exposure, but an interaction of Bd exposure
and immune reduction. Thus, factors in addition to nat-
ural Bd exposure probably contributed to reduced growth
in the 14 naturally infected frogs, and these co-factors
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Figure 4 Quantity and relative intensity of skin peptides recovered from Pelophylax esculentus and P. lessonae in experimental
treatments. (a) Peptide quantities recovered from frogs in each treatment at the end of the experiment indicating that frogs in peptide reduced
treatments had recovered peptide stores by 64 days (compare to Figure 3). (b) Comparison of mean skin peptide intensities of samples collected
from frogs at the end of each experimental treatment. Letters above bars indicate homogeneous subsets based on a Tukey post-hoc test within
P. lessonae. Small sample size for P. esculentus precluded statistical analysis.
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may have contributed to the susceptibility of these frogs in
nature.

There are at least three explanations for why water frogs
continued to resist chytridiomycosis upon experimental
innate-immune reduction: (1) Host frogs increased synthe-
sis or expression of antimicrobial skin peptide defenses
upon exposure to Bd. Skin peptides were initially reduced,
but when collected again after 64 d, peptide levels had
recovered to previous quantities. (2) Some beneficial bac-
teria may have persisted on skin despite treatments with
broad spectrum antibiotics. Ongoing studies will deter-
mine the resistance or resilience of amphibian skin micro-
biota to antibiotic treatments. (3) Water frogs in this study
were collected as adults from a population coexisting with

ranavirus and Bd. Thus, frogs were immunologically
primed prior to experimental exposure and may have acti-
vated adaptive immune responses. Similarly, wild-caught
Hypsiboas crepitans resisted infection in one study and
may have been immunologically primed [32]. Amphibians
in several other studies were able to clear infections at
various temperatures including those conducive to fungal
growth [rev. in 33]. Although we did not determine the
primary source of disease resistance in this study, it is clear
that both Bd and the maintenance of innate immunity
have subclinical costs to water frogs. Colonization by
microbiota may help reduce these costs.

We found that the method of infection diagnosis is
important for classifying the effects of Bd exposure.
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Although numerous studies have shown that hundreds
of amphibian species were positive for Bd when sampled
(http://www.Bd-maps.net/), diagnostic PCR to detect Bd
DNA does not always detect low-level infections, and
thus may underestimate infection prevalence. We found
that low level infections can be missed by swabbing at a
single time point. We also found differences in detect-
ability depending on body location of swabbing, however
this is confounded by differences in swabbing date.
Other studies have demonstrated higher infection loads

on ventral as opposed to dorsal skin surfaces [34]. In
addition, DNA of dead fungal cells can be detected, as
well as DNA from zoospores in water or that happen to
be on the amphibian skin, but not infecting it [35]. This
becomes very important for interpreting the effects of
experimental exposure to Bd when large doses of zoos-
pores are applied. Researchers use several techniques to
discriminate between skin infection and transient patho-
gen presence: repeating diagnostic qPCR from skin swab
samples taken over several days with rinses or water
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changes between sampling periods ([32,35]; this study),
microscopy of skin samples or shed skin [36,37], or hist-
ology of skin tissue samples [38]. Detecting the effects of
the disease chytridiomycosis is usually determined by
clinical signs and histological descriptions of disease
state [39]. Diseased frogs exhibit increased skin slough-
ing, inappetance, lethargy, and loss of righting-reflex
[39,40]. These signs usually occur within hours to days
of death [41] and indicate a standard endpoint for eu-
thanasia in experimental trials to reduce animal suffer-
ing. Only one frog in our study showed clinical signs of
chytridiomycosis; unusual skin sloughing was observed
for over 2 months before presentation of lethal disease.

Conclusion

Amphibian species differ in their tolerance of pathogens
such as Bd or ranavirus [4,10]. Changes in ecological
conditions including the microbial communities present
in the host environment [42] may influence the immune
competence of host amphibians. Intact skin microbiota
reduced immune activation and may minimize subclin-
ical costs of infection.

Methods

Animal collection and husbandry

We collected seventy water frogs, Pelophylax lessonae
(= Rana lessonae) and P. esculentus (= Rana esculenta),
from a wetland near the Community of Hinwil, Canton of
Zirich, Switzerland (47°18'N/8°49’E; 1 km WSW Hinwil,
22 km ESE Ziirich) in August 2008. The genetics of this
population were previously studied [43,44]. We captured
amphibians by hand and immediately placed them into in-
dividual sterile plastic boxes. After swabbing and toe-
clipping frogs the next day (see below), we placed frogs
into new plastic enclosures containing a clay saucer and
filter-sterilized tap water. Frogs were fed crickets two to
three times weekly after water changes. After acclimation
for two weeks, frogs were allocated into one of five treat-
ment regimes and enclosures placed in a randomized
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block design on shelving in a controlled environment
room kept at approximately constant 18°C and 14:10 light:
dark schedule with full spectrum lighting. Collecting per-
mits were provided by the Canton Ziirich Office of Land-
scape and Nature conservation directorate, and all animal
procedures were approved by the Veterinary Authority for
the canton of Ziirich (227/2007) and the Federal Office
for the Environment.

Experimental design

We randomly allocated 67 frogs among five treatment
regimes without reference to infection status or species
(Table 1). To reduce symbiotic microbiota we added
antibiotics (10 units*ml™ penicillin, 10 ug*ml™ strepto-
mycin, and 10 ug*ml’ tetracycline; Sigma, St. Louis,
Missouri) to the water and filter sterilized before every
water change. These doses were deemed safe and effect-
ive in other studies ([45]; L.A. Rollins-Smith pers.
comm.). We used filter-sterilized tap water without anti-
biotics in all other treatments. To reduce antimicrobial
skin peptides we administered norepinephrine at a dose
that strongly reduces skin peptides in other species
[46,47]. All other frogs were given amphibian phosphate-
buffered saline as a control for injection. After 64 d, pep-
tides were induced from frogs in all treatments. These
final peptide samples were analyzed by mass spectrometry
(see below). Exposure to Bd zoospores occurred on two
successive days beginning the day following peptide re-
duction. We collected zoospores from a Swiss Bd isolate
(TG 739) by washing 5 day old 1% tryptone agar plates
(grown at 18°C) for 20 min with sterile frog water. We
added approximately 1.5 x 10° - 2 x 10° zoospores, or
sterile wash for controls, directly onto each frog sitting
in 150 ml water. We determined the viability of zoos-
pores by microscopic examination and counted zoos-
pores stained 1:10 in lugol solution (Sigma) on a
heamocytometer. Water was changed one day after the
final exposure. Frogs were monitored daily during the
64 d experiment.

Table 1 Experimental design including sample size for each water frog species, the type of immune reduction, and

exposure to B. dendrobatidis zoospores

Treatment N N Antimicrobial Microbe Bd
regime P. lessonae P. esculentus feed':(iig reduced exposed
1 5 3 * * -

2 10 5 +

3 12 2 * +

4 8 7 * +

5 14 1 * * n

Treatments began before species determination, therefore, sample sizes vary. * indicates immune reduction treatment.
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Ranavirus analysis

Toe clips from 70 frogs were collected in ethanol and
tested for the presence of ranaviral DNA [48]. Two frogs
died before the beginning of the experiments and were
frozen for later virological testing. Samples from liver,
kidney, intestine, lung, and heart were collected in 3 ml
Dulbecco’s modified Eagle’s medium (DMEM) (Biochrom
AG, Berlin, Germany) supplemented with antibiotics.
Cells were disrupted using a Branson-250 Sonifier at an
output level of 30 for 3 impulses and cell debris was pel-
leted by low speed centrifugation (1500xg, 10 minutes at
4°C). The supernatant was used for DNA preparation and
virus isolation. For virus isolation, 200 ul of supernatant
were inoculated onto iguana heart cells (IgH2, ATCC,
CCL-108) following the protocol described elsewhere
[49]. Samples showing cytopathic effects (CPE) were pas-
saged onto new IgH2. Virus isolates were characterized
by type of CPE and sensitivity to chloroform and detec-
tion of ranavirus DNA. Toe clips were transferred into
DMEM and treated as described above. DNA was pre-
pared from sample homogenates or cell culture super-
natant using the DNAeasy® kit (Qiagen GmbH, Hilden,
Germany). A PCR targeting a conserved portion of the
major capsid protein (MCP) gene of ranaviruses was car-
ried out as described previously [50]. PCR products were
sequenced directly. The sequences were compared to the
data in GenBank (National Center for Biotechnology In-
formation, Bethesda, USA) online (www.ncbinih.gov)
using BLASTN and BLASTX options.

Bd analysis

We swabbed all frogs at four time points with sterile rayon
swabs (Milian). Feet only were swabbed 6 d before the first
exposure and at 40 d post exposure. After rinsing with
sterile water, we swabbed the body 11 d pre-exposure and
64 d post-exposure. We compared results from both types
of swabs. A Bd positive result at either pre-exposure time-
point was considered infected before the experiment. If a
frog had a Bd positive result at either post-exposure time-
point we considered it infected at the end of the experi-
ment. We extracted DNA from swabs using PrepMan
Ultra (Applied Biosystems) and detected Bd genomic
equivalents with quantitative real-time PCR according to
Boyle et al. [51]. Standards of 0.1, 1, 10, and 100 zoo-
spore equivalents were obtained from ecogenics GmbH
(Ziirich-Schlieren, Switzerland) and run in duplicate. All
samples were diluted 1:10 to prevent PrepMan inhibition of
the PCR and run in duplicate. When the result was ambiva-
lent, the analysis was repeated. A result below the lowest
standard (0.1 zoospore equivalents) was considered negative.

Species determination
Water frogs form a hybridogenic species complex in-
cluding the parent species Pelophylax ridibundus (R)

Page 9 of 11

and P. lessonae (L). Hybrid P. esculentus (E) can occur
with parent species or in all hybrid populations [52].
Since sexual hybrid populations can potentially exist in-
dependently of parent species, we here refer to hybrid
P. esculentus as a “species”. In Switzerland, most water frog
populations consist of only P. lessonae and P. esculentus
(LE populations; [44]). These two species can be difficult
to distinguish morphologically and microsatellite markers
have been identified to distinguish them in northern
Europe. We used 16 primer pairs to amplify loci in ei-
ther the L genome, the R genome, or both, in a multi-
plex PCR according to Christiansen and Reyer [52]
from toe-tip extracted DNA.

Skin peptide collection and analysis by MALDI-MS

We induced granular gland secretions by administration
of norepinephrine (40 nmol/g body mass bitartrate salt,
Sigma) by subcutaneous injection [46,47]. After adminis-
tration of norepinephrine, skin secretions were collected
for 15 min in water and acidified with 1% hydrochloric
acid to pH < 4.0 to help prevent proteolytic degradation of
the samples. Skin secretions were then partially purified
by passing over C-18 Sep-Pak cartridges (Waters Corp.,
Milford, Massachusetts) activated with acetonitrile, eluted
in buffer containing 70% acetonitrile and 0.1% trifluoroa-
cetic acid (TFA), spun dry at 60°C, weighed, and stored
at —20°C. The total dry weight quantity of partially-purified
skin secretions containing peptides recovered per gram
body mass (ug gbm™) was determined for each sample.

We analyzed peptide samples collected at day 64 from
all frogs by matrix-assisted laser desorption/ionization
(MALDI) mass spectrometry (MS) using an Autoflex I
time-of-flight mass spectrometer (Bruker Daltonics
GmbH, Bremen, Germany) equipped with a 337 nm ni-
trogen laser. Samples were reconstituted in water and
standardized at a concentration of 1 mg ml'. A 5 ul
sample solution was diluted with a solution of 10 pl
water + 0.1% trifluoroacetic acid containing 10 pg ml™
alytesin (amino acid sequence: pE-GRLGTQWAVGHLM-
NH,) internal peptide standard (GeneScript). We spotted
1 pl on a “Prespotted AnchorChip” target prepared with
a-cyano-4-hydroxycinnamic acid as matrix (HCCA,
Bruker), waited 1 min, and rinsed with 7 pl 10 mM
aqueous ammonium dihydrogen phosphate buffer con-
taining 0.1% TFA. Instrument calibration was obtained
using signals from the HCCA matrix at m/z 379.09 and
a mixture of standard peptides composed of Bradykinin
1-7 (m/z 757.40), angiotensin II (m/z 1046.54), angio-
tensin I (m/z 1296.69), renin substrate (m/z 1758.93),
ACTH clip 18-39 (m/z 2465.20) and Somatostatin 28
(m/z 3147.47) all obtained from the peptide calibration
standard II mix (Bruker).

For each mass spectrum we calculated the intensity of
each peptide peak in proportion to the alytesin external
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standard. Since peptides may vary in ionization and
detectability by MALDI-TOF MS, intensities do not in-
dicate absolute quantities of each peptide. We rank
transformed peptide intensity data to satisfy Box’s test
for homogeneity of covariance matrices. The mean
ranked peptide intensity was calculated for each treat-
ment. We independently explored the effects of various
factors on peptide profiles with multivariate analyses of
variance including antibiotic treatment, norepinephrine
treatment, exposure to Bd, and infection with Bd. Effects
of significant factors were then visualized with a canon-
ical variates analysis (PAST v.2.10 http://folk.uio.no/
ohammer/past).

Statistical analyses

All statistics were carried out using SPSS Statistics 17.0
(SPSS Inc., Chicago, IL, USA). We used standard para-
metric analyses when the data met the assumptions of
normal distribution of data and homogeneity of var-
iances (Levene’s statistic). Otherwise, we used homolo-
gous non-parametric tests as indicated.
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