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Abstract

invasion has been assessed.

Background: Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory
haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute
probably the most important element of all interactions within the tumour microenvironment. However, the
molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular
mechanisms that orchestrate these phenomena has been the aim of our study.

A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having
sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The
results were confirmed using real-time gPCR and confocal microscopy. Moreover, their ability for migration and

Results: Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly
over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway
mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-
regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the
angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed
that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells,
as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover,
we showed that macrophages increase cancer migration and invasion.

Conclusions: The presence of macrophages in the cancer environment induces acquisition of the macrophage
phenotype (specific antigens and chemokines/cytokines expression) in cancer cells. We presumed that cancer cells
also acquire other myeloid features, such as: capabilities of cell rolling, spreading, migration and matrix invasion
(what has also been confirmed by our results). It may, perhaps, be the result of myeloid-cancer cell hybrid
formation, or cancer cells mimicking macrophages phenotype, owing to various proteins secreted by macrophages.

Background

Solid tumours comprise cancer cells, resident stromal
cells, and migratory haemopoietic cells. Intricate interac-
tions between the cell types regulate tumour growth,
progression, metastasis, and angiogenesis. Macrophages
are an important element of these microenvironment
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interactions [1]. They may represent either M1 or M2
phenotype. The classical activation by microbial pro-
ducts is that of the M1 phenotype (also thought to have
anti-tumour properties), whereas alternative activation
(caused by cancer cells) drives macrophages conversion
toward the M2 phenotype. Cancer cells are known to
release various chemoattractants which recruit macro-
phages to colonize the tumour site [2]. On the other
hand, counter-activated tumour-associated macrophages
(TAMs) produce chemokines, cytokines, growth and
angiogenic factors [1,3], thus they actively contribute to
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tumour progression and their transition to malignancy.
Exploring the underlying molecular mechanisms of this
phenomenon seems to be utterly important. Therefore,
to view and explain the molecular interactions between
the cancer cells and TAMs, we established an in vitro
co-culture and conducted a global gene expression ana-
lysis using DNA microarrays of macrophages and cancer
cells. Neither there is an abundance of microarray data
on the global gene expression in TAMs [2,4,5] available,
nor there is much information on the changes of cancer
cells and their gene expression whilst cultured with
macrophages.

The findings confirm that cancer cells under co-cul-
ture conditions acquired the macrophage-specific anti-
gen expression. It could as well be indicative of these
cells also having other phenotypic characteristics of
macrophages, such as: capabilities of cell rolling, spread-
ing, diapedesis, or migration, that allow the metastasis
process. Our in vitro studies confirmed that macro-
phages enhance tumour migration and invasion.

Methods

Cell lines

The cell lines used for the study have previously been
used in other published research [6-9]. Two canine
mammary adenocarcinoma cell lines (CMT-W1, CMT-
W?2), anaplastic cancer cell line (P114), simple carci-
noma cell line (CMT-U27) and spindle-cell mammary
tumor cell line (CMT-U309) were examined. CMT-W1
and CMT-W2 cell lines were kindly donated by Prof.
Dr. Maciej Ugorski and Dr. Joanna Polanska from
Wroclaw University (Poland), CMT-U27 cell line was
kindly donated by Dr. Eva Hellmen from Swedish Agri-
cultural University (Sweden) and P114 cell line was
kindly donated by Dr. Gerard Rutteman from Utrecht
University (The Netherlands).

Cells were cultured under optimal conditions: a med-
ium RPMI-1640 enriched with 10% (v/v) heat-inacti-
vated fetal bovine serum (FBS), penicillin-streptomycin
(50 iU mL-1), and fungizone (2.5 mg mL-1) (reagents
obtained from Sigma Aldrich, USA), in an atmosphere
of 5% CO2 and 95% humidified air at 37°C, and routi-
nely subcultured every other day.

Canine blood mononuclear cell separation

The anticoagulated whole blood from healthy dogs
(patients of the Department of Small Animal Diseases
with Clinic, Faculty of Veterinary Medicine, Warsaw
University of Life Sciences, Poland) was collected for
routine diagnostic purposes (in that case the ethical
committee permission is not required). The remaining
volume of the blood samples was taken to our analyses
(with the written permission of the dog’s owners) and
immediately subjected to a mononuclear cell
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separation using Accuspin System-Histopaque 1077
(Sigma Aldrich, USA) according to the manufacturer’s
protocol. The blood specimen was placed on a porous
high-density polyethylene barrier, separating lower
chamber containing the Histopaque-1077 solution, in a
sterile centrifuge tube. The tube was centrifuged at
800 x g for 30 min at room temperature. On centrifu-
gation, erythrocytes and granulocytes descend through
the frit to pellet below the Histopaque-1077. Lympho-
cytes and monocytes remained above the frit on the
plasma-Histopaque-1077 interface. This layer of cells
was aseptically removed with a pipette and transferred
to a sterile 15-ml centrifuge tube. Then, the cells were
washed with PBS once and subjected to further
procedures.

Monocyte sorting and culturing

The isolated mononuclear blood cells were incubated
for an hour at room temperature with mouse monoclo-
nal anti-CD64 FITC-conjugated (Becton Dickinson,
USA) antibodies (specific for monocytes/macrophages
and minimally specific for granulocytes) applied in a
volume recommended by the manufacturer of 20 pl per
10° cells suspended in 100 pl. The leukocytes were ana-
lyzed using FACS Aria II (Becton Dickinson, USA). The
monocytes were at first identified and gated based on
the morphological criteria (SSC v/s FSC cytogram) as an
intermediate in size (FSC) and with an intricate nuclear
configuration (intermediate SSC) cells (Figure 1A). The
cytogram showed that most of the granulocytes were
eliminated during the mononuclear cells isolation. Then,
the CD64-positive cells were gated (Figure 1B) and spe-
cificity of staining was checked, showing only the CD64-
positive cells on the cytogram (Figure 1C).

The CD64-positive monocytes were then separated
and grown as a co-culture with cancer cells, as well as a
mono-culture. The culturing conditions were the same
as those for cancer cells. According to the subject data,
culturing of monocytes for 72 hrs is sufficient for their
differentiation towards macrophages [10,11].

Co-culture

In this model, cancer cells (CMT-W1, CMT-W2, CMT-
U27, CMT-U309, P114) were grown on separated flasks,
and sorted monocytes were then layered on the top of
each cell line. An Orange CellTracker fluorescent dye
CMTMR (Invitrogen, USA) was used to stain the cancer
cells population before the sorted monocyte population
was added. Staining was accomplished by incubation in
serum/antibiotics-free RPMI medium containing 5 pM
CMTMR (10 mM stock in DMSO; Sigma Aldrich, USA)
for 45 min at 37°C. Subsequently, the medium was aspi-
rated, and the cancer cells were washed twice with PBS
and incubated with complete RPMI for 1 hr. Sorted
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Figure 1 FACS mononuclear blood cells and co-culture analysis and sorting. Cytograms and histograms obtained using FACS Aria |l
(Becton Dickinson, USA). (A) The cytogram of mononuclear cells obtained from canine blood after the Accuspin System-Histopaque 1077
centrifugation. The monocytes were gated based on the morphological criteria (SSC v/s FSC cytogram). (B) Histogram of CD64 stained
leukocytes: CD64 negative (CD64-) leukocytes showed low FITC signal, whereas CDé4 positive (CD64+) leukocytes showed high FITC signal. (C)
The cytogram of CD64-positive cells showing antibodies specificity to monocytes. (D) Histogram of the fluorescence intensity of unstained
macrophages grown as a single culture. (E) Histogram of the fluorescence intensity of CMTMR-stained cancer cells grown as the single culture.
(F) Histogram and sorting gates of unstained macrophages and CMTMR-stained cancer cells grown as a co-culture for 72 hrs.

monocytes were placed on the CMTMR-stained cancer samples were subsequently purified using RNeasy
cells. MiniElute Cleanup Kit (Qiagen, Germany). Finally

The co-culture was maintained for at least 72 h. Then, RNA samples were analyzed using BioAnalyzer (Agi-
the co-cultured cells were harvested by trypsynization lent, USA) to measure the final RNA quality and
and sorted using FACS Aria II (Becton Dickinson, USA)  integrity.

into two tubes: unstained macrophages and stained can- The Quick Amp Labeling Kit (Agilent, USA) was used
cer cells (Figures 1D, E, F and 2). to amplify and label target RNA to generate comple-

mentary RNA (cRNA) for oligo microarrays used in
RNA isolation, validation, amplification, reverse gene expression profiling and other downstream ana-
transcription, labeling and hybridization lyses. The gene expression of each cancer cell line,

The sorted macrophages and cancer cells grown as the  grown under co-culture conditions with macrophages,
co-culture were centrifuged (2500 rpm for 5 min) in  was compared against the gene expression of the same
separated tubes, whereas cancer cells and macrophages  cancer cell line grown as a mono-culture (gene expres-
grown as mono-cultures were washed with PBS and  sion in CMT-U27 cell line grown as a co-culture with
next scraped and centrifuged (2500 rpm for 5 min) in macrophages was compared to gene expression in
separated tubes. The total RNA from the samples was CMT-U27 cell line grown as a mono-culture; gene
isolated using a Total RNA kit (A&A Biotechnology, expression in CMT-U309 cell line grown as a co-culture
Poland) according to the manufacturer’s protocol. Iso-  with macrophages was compared to gene expression in
lated RNA samples were dissolved in RNase-free water. CMT-U309 cell line grown as a mono-culture; gene
The quantity of RNA was measured using NanoDrop  expression in P114 cell line grown as a co-culture with
(NanoDrop Technologies, USA). The samples with  macrophages was compared to gene expression in P114
adequate amounts of RNA were treated with DNasel  cell line grown as a mono-culture; gene expression in
to eliminate a possibility of DNA contamination. The CMT-W1 cell line grown as a co-culture with
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macrophages was compared to gene expression in
CMT-W1 cell line grown as a mono-culture; gene
expression in CMT-W2 cell line grown as a co-culture
with macrophages was compared to gene expression in
CMT-W2 cell line grown as a mono-culture). The gene
expression of macrophages grown as a co-culture with
cancer cell lines was compared against the gene expres-
sion of macrophages grown as the mono-culture. Each
sample was examined in a dye-swap to eliminate the
effect of label factor. Thus, each biological condition
was labelled once by Cy3 and once by Cy5. Taking the
average of two labelled arrays, the dye effect on any

particular gene was cancelled. The hybridization was
performed with canine-specific AMADID Release GE 4
x 44 K microarrays (Agilent, USA) using Gene Expres-
sion Hybridization Kit (Agilent, USA) according to the
manufacturer’s protocol.

Signal detection, quantification and analysis

Acquisition and analysis of hybridization intensities were
performed using DNA microarray scanner (Agilent,
USA). Then, the results were extracted using Agilent’s
Feature Extraction Software with normalization and
robust statistical analyses. Results were analyzed for
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statistical purposes using Feature Extraction and Gene
Spring software (Agilent, USA). The unpaired ¢-test with
Benjamin-Hochberg FDR < 5% (false discovery rate) cor-
rection was applied (with p value cut-off < 0.01). For
further analysis we hierarchically clustered the genes
and chose only those with values within upper and
lower cut-off (100.00 and 20.00, respectively) in each of
the slide. We analyzed only genes that were regulated in
all the examined samples within the group (that is: in all
the cell lines grown with macrophages and in all the
macrophages samples grown with cell lines) whose
expression changed at least 3-fold in each of examined
slide. In this experimental model we examined each of
the sample in duplicate (dye-swap), whereas significant
genes were chosen from five biological repetitions (five
various cell lines). The area of the analyses covered in
this publication has been deposited in NCBI's Gene
Expression Omnibus and is accessible via GEO Series
accession number GSE29339.

Gene function was identified using the PANTHER
pathway analysis software [12] and Pathway Studio soft-
ware (Agilent, USA). PANTHER on-line platform
allowed for wide analysis of the Canis familiaris regu-
lated genes and also for statistical analysis of number of
regulated genes involved in specific pathways or biologi-
cal functions compared to the normal healthy cell of
this specie.

Real-time qPCR

The mRNA sequences of the key genes were obtained
from NCBI database. Primers were designed using PRI-
MERS3 software (free on-line access) and checked using
Oligo Calculator (free on-line access) and Primer-Blast
(NCBI database). Primers’ sequences are listed in Table
1. HPRT and RPS19 genes were used as non-regulated,
reference genes for normalization of target gene

Table 1 Primers used for real-time qPCR
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expression [13,14]. Quantitative RT-PCR was performed
using fluorogenic Lightcycler Fast Strand DNA Sybr
Green (Roche) and the Light Cycler (Roche). The results
were analyzed using comparative Ct method [15]. Rela-
tive transcript abundance of the gene equals ACt values
(ACt = Ctreference _Ct'areet) Relative changes in transcript
are expressed as AACt values (AACt = ACteontrol condi-
tions_Atho-culture ConditionS)' The experiment was con-

ducted in triplicates.

Immunohistochemistry (IHC)

The cells were cultured on Lab-Tek (Nunc Inc., USA) 4-
chamber culture slides and were fixed with ethanol after
24 hrs.

The samples were incubated in the Peroxidase Block-
ing Reagent (Dako, Denmark) for 10 min at room tem-
perature prior to the antibody incubation. After 30 min
incubation in 5% bovine serum albumin (Sigma
Aldrich, Germany), the rabbit polyclonal MCSF Recep-
tor (other designations: MCSF-R or CSF-1R) obtained
from Abcam (United Kingdom) primary antibodies
were used (diluted in 1% bovine serum). According to
the manufacturer’s instructions the slides were incu-
bated with antibodies at +4°C overnight. For the stain-
ing the EnVision kit (Labelled Polymers consist of
secondary anti-rabbit antibodies conjugated with the
HRP enzyme complex obtained from Dako) was used.
To develop the coloured product, the 3,3’-Diaminoben-
zidine (DAB) substrate was used (Dako, Denmark).
Finally, the haematoxylin was used for nuclei
counterstaining.

Each slide was photographed 10 times using Olympus
microscopy BX60. The colorimetric intensity of the
CSE-1R expression reflected as IHC-stained antigen
spots (brown colour) were counted by a computer-
assisted image analyzer (Olympus Microimage™ Image

Gene symbol

Forward primer

Reverse primer

Optimum annealing temp. (°C) Optimum annealing time (sec)

ccz CTCCAGTCACCTGCTGCTAT ~ CACAGCTTCTTTGGGACACT 60 4
CccLs CCAGGTCTTCTCACCATTTG AGATAATACCGGGCTTGGAG 60 5
CD163 ATGTCCAGTGTCCAAAAGGA  CATGTGATCCAGGTCTCCTC 61 6
CSFIR TGCAGTTTGGGAAGACTCTC  TGTGGACTTCAGCATCTTCA 60 4
HIF1 GATTGCAGCTCCATCTCCTA  TCCTTTTCCTGCTCTGTTTG 58 5
IL18 GATATGCCCGATTCTGACTG  GCCTGGAACACTTCTCTGAA 60 9
MMP9 CGACTACGACCAGGACAAAC  AAGCCCCACTTCTTGTCTCT 61 8
VEGF-C CAGCAACACTACCACAGTGC  CTCCAGAATTTGAGGCAAAA 61 5
Wnt7b GCGGAGGGCTGTGTATAAGA  GTCCCCTACTTTGCGGAACT 59 5
HPRT AGCTTGCTGGTGAAAAGGAC  TTATAGTCAAGGGCATATCC 59 6
RPST19 CCTTCCTCAAAAAGTCTGGG  GTTCTCATCGTAGGGAGCAAG 61 10

Primers sequences used in this study and their annealing optimal temperature and time. The mRNA sequences of key genes were obtained from NCBI database.
Primers were designed using PRIMER3 software (free on-line access) and checked using Oligo Calculator (free on-line access) and Primer-Blast (NCBI database).
Primers sequences are listed in Table 1. HPRT and RPS19 genes were used as non-regulated reference genes for normalization of target gene expression [3,9]
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Analysis, software version 4.0 for Windows, USA). The
antigen spot colour intensity is expressed as a mean
pixel optical density on a 1-256 scale.

Confocal microscopy

The co-culture of cancer cells with macrophages was
conducted as described above. The cancer cells grown
as mono-culture and as a co-cultures were stained using
Orange CellTracker fluorescent dye CMTMR, as
described above. Cancer cells and macrophages grown
as mono-cultures, as well as the co-culture were fixed
with 70% ethanol (10 min) and washed three times in
PBS. Cells were permeabilized with 0.5% Triton X-100/
PBS (10 min), washed with PBS twice and incubated for
1 hr at room temperature with: mouse monoclonal anti-
CD64 FITC-conjugated (Becton Dickinson, USA) anti-
bodies (20 ul per 10° cells) and mouse monoclonal anti-
CD14 FITC-conjugated (LifeSpan Biosciences, USA)
antibodies (10 ul per 10° cells) according to the manu-
facturer’s instructions. The cells were then washed three
times with PBS and the coverslips were mounted on
microscope slides using ICN mounting medium.

The cell imaging was performed by confocal laser
scanning microscope FV-500 system (Olympus Optical
Co, Germany). The combination of excitation/emission
were: Argon 488 nm laser with 505-525 nm filter for
FITC and HeNe 543 nm laser with 610 nm filter for
CMTMR staining. The pictures were gathered separately
for each fluorescence channel. The cells were examined
using the Fluoview program (Olympus Optical Co.,
Germany).

Wound-healing assay

To assess the ability to migration of cancer cells grown
as a co-culture with macrophages, we applied a wound-
healing test. The cancer cells (grown as the co-culture
with macrophages and normal control cells) were sepa-
rately seeded in multi-well plates and then (after 24 hrs
when the cells were confluent), using a pipette tip
(100 ul) a straight scratch has been made, simulating a
wound. The images were captured at the beginning and
at regular intervals (after 2, 4 and 6 hrs) during cell
migration to close the wound. The images then were
compared to quantify migration rate of the cells. This
method is particularly suitable for studies of cell-cell
interaction on cell migration [16]. The pictures has been
analyzed using a computer-assisted image analyzer
(Olympus Microimage™ Image Analysis, software ver-
sion 4.0 for Windows, USA).

Invasion assay

BD BioCoat Matrigel™ invasion chambers (BD Bios-
ciences, USA) pre-coated with BD Matrigel matrix were
used according to the manufacturer’s protocol. The assay
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insert plates were prepared by rehydrating the BD Matrigel
Matrix coating with phosphate buffered saline for two hrs
at 37°C. The rehydration solution was carefully removed,
2.5 x 10° of control cancer cells or cancer cells grown as
co-culture with macrophages (at the ratio of 10:1) was
added to each apical chamber and 0.75 ml RPMI-1640
containing chemoattractant (10% FBS) was added to the
basal chamber. Uncoated insert plates, included as invasion
controls, were used without rehydration. Assay plates were
incubated for 22 hrs at standard culturing conditions. 2.5
pg/ml Calcein AM were added to 20 pl DMSO and then,
10 pl was transferred to 12 ml Hanks Buffered Saline Dis-
pense. 0.5 ml Calcein solution was then transferred into
each well of 24-well plate. The medium from insert was
removed and multiwell inserts were transferred to the plate
containing 0.5 ml/well calcein. Plates were incubated an
hour at standard culture conditions. The fluorescence of
invaded cells was measured with excitation wave length
485 nm and emission wave length Em 530 nm using Tecan
Infinite 200 Reader (Tecan, Switzerland).

3D culture

Cancer cells were treated with trypsin and resuspended
in culture medium. 35 mm culture plates (Corning Inc.,
USA) were coated with 100 pl of growth factor reduced
Matrigel (BD Biosciences, USA) and left to solidify for 30
min. at 37°C. The cells were then plated at a concentra-
tion of 10* cells/ml. The growth of cells on Matrigel was
observed every day under phase-contrast microscope.

Statistical analysis

The analysis for statistical purposes was conducted
using Prism version 5.00 software (GraphPad Software,
USA). The two-way ANOVA, ANOVA + Tukey HSD
(Honestly Significant Difference) post-hoc test and ¢-test
were applied. The p-value < 0.05 was regarded as signifi-
cant whereas p-value < 0.01 and p-value < 0.001 as
highly significant.

Results

Sorting of the co-cultured cells

Flow cytometry had easily distinguished the CMTMR-
stained cells from the unstained macrophages (Figure
1D, E) and allowed a further proper sorting of each
population (Figure 1F). The co-culture was maintained
for at least 72 h. The differential staining prolonged for
such period of time (Figure 1E, F and see also confocal
microscopy results) showed no detrimental effect on
proliferation and plating efficiency. The fluorescence
intensity of the stained cancer cells after the 3-days co-
culture with macrophages was the same as that of the
control cancer cells grown as a mono-culture (Figure
1E, F; see also confocal microscopy results). Similar cul-
ture conditions had previously been described [17].
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Our FACS sorting isolated a 97-99% pure population
on postsort, with a positive result comparable to other
reported data available [5]. Sorting purity was also
assessed using fluorescence microscopy (showing no
stained cells in macrophages tube and no unstained
cells in cancers tube).

Monocyte differentiation

The morphological assessment of the monocytes culture
(obtained from the sorted CD64-positive monocytes)
using confocal microscopy confirmed that after the 72
hrs they were partially differentiated into macrophages
(Figure 3) despite no stimulation with growth factors.
These results are consistent with the data available on
the subject, showing that the 3-day monocyte culturing
leads to their partial differentiation toward the macro-
phages phenotype [10,11]. The colonies were stained
using anti-CD14, and anti-CD64 antibodies (Figure 3).
Analysis of stained cells and image contrast obtained
with Nomarski Interference Contrast (representative pic-
tures are shown at Figure 3) showed that all the macro-
phages expressed CD14 antigen as well as CD64 what

A 7 CD14

Figure 3 Monocytes differentiation toward macrophages after
72 hrs of culture. The pictures of CD64-positive monocytes sorted
from mononuclear blood cells and cultured for 72 hrs showing their
partial differentiation toward macrophages. (A) Macrophages grown
as a mono-culture were stained using anti-CD64 FITC-conjugated
antibodies (Becton Dickinson, USA). (B) Macrophages grown as a
mono-culture were stained using anti-CD14 FITC-conjugated
antibodies (LifeSpan Biosciences, USA). Cells were pictured by
confocal laser scanning microscope FV-500 system (Olympus Optical
Co, Germany). The cells were examined using the Fluoview program
(Olympus Optical Co., Germany).
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can also confirm monocyte differentiation towards
macrophages [18].

Global gene expression analysis

The Gene Spring (Agilent, USA) hierarchical clustering
depicted similar gene expression in each of the dye-
swap experiments (Figure 4) what indicates that all
microarray samples were successfully labelled, hybri-
dized, scanned and that they are highly reproducible.
The unpaired ¢-test with Benjamin-Hochberg FDR < 5%
(false discovery rate) correction (with p value cut-off <
0.01) and further PANTHER analysis revealed 43 up-
regulated and 4 down-regulated genes in cancer cells
grown in co-culture with macrophages with values
within upper and lower cut-off (100.00 and 20.00,
respectively) in each of the slide (Table 2). Only the
genes whose expression had changed at least 3-fold in
each of the examined slide were chosen for further ana-
lyses. These up/down-regulated genes were common for
each cell line examined individually, when compared
with the same cell line grown as a mono-culture.

The unpaired ¢-test with Benjamin-Hochberg FDR <
5% (false discovery rate) correction (with p value cut-
off < 0.01) and further PANTHER analysis revealed 30
up-regulated and 25 down-regulated genes in mono-
cytes/macrophages grown as co-culture with cancer
cells with values within upper and lower cut-off
(100.00 and 20.00, respectively) in each of the slide
(Table 3). Only the genes whose expression had chan-
ged at least 3-fold in each of examined slide were cho-
sen for further analyses. These differentially expressed
genes were common for macrophages grown with each
cell line individually in comparison to macrophages
grown as the mono-culture.

Over- representation of pathways in cells grown under
co-culture conditions

The PANTHER binomial statistics tool allowed us to
statistically determine over-manifestation of PANTHER
pathways classification categories.

The 15 significantly over-manifested (p < 0.05) path-
ways were observed in cancer cells grown as a co-cul-
ture (Table 4). Most of the up-regulated genes in cancer
cells lines were involved in the stimulation of 1. inflama-
tion mediated by chemokine and cytokine signaling
pathways, 2. Toll receptor signalling pathway (7 genes, p
= 9.44E-06), and 3. B cell activation (7 genes, p = 6.8E-
05).

Other important over-manifested pathways are apop-
tosis signaling pathway (6 genes, p = 3.86E-04), interleu-
kin signaling pathway (6 genes, p = 8.86E-03) and PDGF
signaling pathway (5 genes, p = 3.99E-02). The down-
regulated genes in the cancer cells were not involved in
any significantly over- manifested pathways.
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Figure 4 Hierarchical clustering of gene expression in canine
mammary cancer cell lines and macrophages grown as a co-
culture. Gene Spring (Agilent, USA) diagrams of gene expression
clustering of (A) canine mammary cancer cell lines grown as a co-
culture with macrophages and (B) macrophages grown as a co-
culture with cancer cells in both microarray experiments (dye-
swaps) shows highly repeatable results. Each row represents a single
gene, and each column an experimental sample (from the left: at A.
panel: CMT-U27, CMT-U309, P114, CMT-W1 and CMT-W2 cell lines
grown with macrophages; at B. panel: macrophages grown with
CMT-U27, CMT-U309, P114, CMT-W1 and CMT-W?2 cell lines). In each
sample, the ratio of the abundance of transcripts of each gene to
the mean abundance of the gene’s transcript, among all the
samples is represented by the colour: green squares, transcript
levels below the mean; red squares, transcript levels greater than
the mean. Colour saturation reflects the magnitude of the ratio
relative to the mean for each set of samples. Dendrogram
represents similarities in the expression patterns between
experimental samples.

The up-regulated genes in the macrophages were
involved in 18 over-manifested pathways (Table 5):
angiogenesis (13 genes, p = 1.17E-04), p53 pathway
feedback loops2 (6 genes, p = 2.16E-04), Wnt signaling
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pathway (17 genes, p = 2.90E-04). Other important
pathways are: inflammation mediated by chemokine and
cytokine signaling pathway (12 genes, p = 0.09E-03) and
FGF signaling pathway (6 genes, p = 4.05E-02).

Over-representation of genes involved in particular
biological processes in cells grown under co-culture
conditions

The PANTHER binomial statistics tool allowed us to
statistically determine over-manifestation of PANTHER
biological processes classification categories. The most
important biological processes in cancer cells grown as
a co-culture were: macrophage activation (21 genes, p =
6.24E-11), cell motion (28 genes, p = 7.49E-06), mam-
mary gland development (5 genes, p = 2.17E-03), cell-
cell adhesion (19 genes, p = 5.06E-03), angiogenesis (11
genes, p = 9.51E-03).

The most important biological processes in macro-
phages grown as a co-culture were cell-matrix adhesion
(10 genes, p = 3.92E-03) and cell-cell adhesion (28
genes, p = 5.79E-03).

The results were confirmed at mRNA level using real-time
qPCR analysis

For the purposes of the microarray data validation, we
have selected 9 genes that may play the most important
role in cancer cells-macrophages interactions: CCL2,
CCL3, CD163, CSF1R, HIF1, 11-18, MMP9, VEGE-C,
and Wnt7b. Real-time qPCR results showed similar
trends in gene expression modulations as were observed
in microarray studies. The real-time qPCR confirmed
the CCL2, CCL3, CD163, CSF1R, MMP9, HIF1, VEGE-
C up-regulation in cancer cells grown as a co-culture
with macrophages. The analysis also confirmed down-
regulation of CCL2, IL18, and up-regulation of Wnt7b
genes in macrophages grown under co-culture condi-
tions with cancer cells (Table 6).

Confocal microscopy and IHC analysis revealed myeloid-
lineages markers expression in cancer cells following the
co-culturing with macrophages

The microarray analysis revealed that the co-culturing of
cancer cells with macrophages initiated the myeloid-spe-
cific antigens expression in cancer cells. Thus, to con-
firm this data the confocal analysis was conducted. The
expression of two monocytes/macrophages-specific anti-
gens was assessed: CD14 and CD64. The cancer cells
grown as mono-culture did not show expression of both
antigens (Figure 5A, B left panel), whereas the strong
expression of these two markers was detected when the
cancer cells were co-cultured with macrophages (Figure
5A, B right panel). The confocal observations also
showed that macrophages co-exist closely with the can-
cer cells, even forming cell fusions.
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Table 2 Up/down-regulated genes in canine mammary cancer cell lines grown as co-culture with macrophages

No. Fold change Gene symbol Gene name

1 13.25 ANPEP Aminopeptidase N

2 13.83 ATP6VOET V-type proton ATPase subunit e 1

3 14.98 C5AR1 C5a anaphylatoxin chemotactic receptor
4 14.86 [ C-C motif chemokine 2

5 1523 CcCL3 C-C motif chemokine 3

6 14.28 cCL4 C-C motif chemokine 4

7 13.99 CCL5 C-C motif chemokine 5

8 1391 ccL8 C-C motif chemokine 8

9 13.03 CCR1 CCR1

10 13.66 CCR5 C-C chemokine receptor type 5

" 14.47 CD163 Soluble CD163

12 1355 CD40 Tumor necrosis factor receptor superfamily member 5
13 14.89 CD80 CD80

14 14.31 CD86 CD86

15 1338 COx17 Cytochrome ¢ oxidase copper chaperone
16 13.62 CSF2 Granulocyte-macrophage colony-stimulating factor
17 1353 CSF3 Granulocyte colony-stimulating factor

18 13.68 CSFIR Colony stimulating factor receptor 1

19 13.09 CTsC Dipeptidyl-peptidase 1 light chain

20 15.06 CTSK Cathepsin K

21 15.92 CTSS Cathepsin S

22 135 CXCR7 C-X-C chemokine receptor type 7

23 13.26 DLA-64 DLA-64

24 13.26 EMR1 EMR1

25 1331 FTH1 Ferritin heavy chain

26 13.1 FTL Ferritin light chain

27 15.25 ILTA Interleukin-1 alpha

28 15.07 IL1B Interleukin-1 beta

29 1345 IL6 Interleukin-6

30 156 IL8 Interleukin-8

31 13.09 MMP9 Matrix metalloproteinase-9

32 14.83 MX1 Interferon-induced GTP-binding protein Mx1
33 1334 NPC2 Epididymal secretory protein E1

34 13.19 OOEP Oocyte-expressed protein

35 136 PLA2G7 Platelet-activating factor acetylhydrolase
36 1323 PSAP Pulmonary surfactant-associated protein A
37 14.84 PSMB8 Proteasome subunit beta type-8

38 13.57 PSMB9 Proteasome subunit beta type

39 13.74 PTGES Prostaglandin E synthase

40 1335 SLAMF1 Signaling lymphocytic activation molecule
41 13.34 SYK SYK

42 14.64 TLR2 Toll-like receptor 2

43 13.55 TLR4 TLR4

44 13.11 RXRB Retinoic acid receptor RXR-beta

45 1317 SLC5A3 Sodium/myo-inositol cotransporter

46 13.06 MSX2 Homeobox protein MSX-2

47 15.17 KRT13 Keratin 13

The list of up- (1) and down- (]) regulated genes in canine mammary cancer cell lines grown as co-culture with macrophages. The unpaired t-test with Benjamin-
Hochberg FDR < 5% (false discovery rate) correction (with p value cut-off < 0.01) (Gene Spring, Agilent, USA) and further PANTHER analysis were conducted
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Table 3 Up/down-regulated genes in macrophages grown as a co-culture with canine mammary cancer cells

No Fold change Gene symbol Gene name

1 15.78 ABCC5 ABCC5

2 13.17 ANXA2 Annexin A2

3 1322 ASPM Abnormal spindle-like microcephaly-associated protein homolog
4 130 BGN Biglycan

5 15.83 CAV1 Caveolin-1

6 14.04 CAV2 Caveolin-2

7 1347 CCL20 CCL20

8 13.15 COLTA1 Collagen alpha-1(l) chain

9 14.51 CSF2 Granulocyte-macrophage colony-stimulating factor

10 14.28 CXcL10 C-X-C motif chemokine 10

11 14.06 EGFR EGFR

12 14.66 FzDé Frizzled-6

13 14.29 GATA6 GATA6

14 13.79 IL12A Interleukin-12 subunit alpha

15 13.63 IL13RA2 Interleukin-13 receptor alpha-2 chain

16 1539 MMP3 Stromelysin-1

17 14.58 MYC Myc proto-oncogene protein

18 13.51 OAT OAT

19 16.54 PFKM 6-phosphofructokinase, muscle type

20 13.86 PTPLA Protein-tyrosine phosphatase-like member A

21 13.36 RADS1 DNA repair protein RAD51 homolog 1

2 14.86 RHPN2 Rhophilin-2

23 13.05 RPL23 60S ribosomal protein L23

24 13.1 RPS17 40S ribosomal protein S17

25 1354 RPS18 40S ribosomal protein S18

26 14.87 UACA Uveal autoantigen with coiled-coil domains and ankyrin repeats
27 15.11 Wnt5b wingless-type MMTV integration site family member 5b
28 13.78 Wnt7a wingless-type MMTV integration site family member 7a
29 14.51 Wnt7b wingless-type MMTV integration site family member 7b
30 14.11 YEST Proto-oncogene tyrosine-protein kinase Yes

31 13.63 ANPEP Aminopeptidase N

32 1327 APOE Apolipoprotein £

33 1573 C5AR1 C5a anaphylatoxin chemotactic receptor

34 15.24 CCL13 C-C motif chemokine 13

35 1333 CcCL2 C-C motif chemokine 2

36 1336 CCR1 CCR1

37 1373 CCR5 C-C chemokine receptor type 5

38 1366 CD86 CD86

39 131 CTSK Cathepsin K

40 13.08 CXCR7 C-X-C chemokine receptor type 7

41 1384 DHDH dehydrogenase

42 14 EDNRB Endothelin B receptor

43 1414 HTR7 HTR7

44 1347 IL18 Interleukin-18

45 13.15 IL1B Interleukin-1 beta

46 131 KCNJ2 Inward rectifier potassium channel 2

~
~

1361 MMP9 Matrix metalloproteinase-9




Krél et al. BMC Veterinary Research 2012, 8:16
http://www.biomedcentral.com/1746-6148/8/16

Page 11 of 20

Table 3 Up/down-regulated genes in macrophages grown as a co-culture with canine mammary cancer cells

(Continued)

48 14.72 MYH7 Myosin-7

49 14.19 OR04A01 olfactory receptor

50 1364 PDPN Podoplanin

51 13.04 SLC11A1 Natural resistance-associated macrophage protein 1
52 13.08 SLC46A2 Thymic stromal cotransporter homolog

53 14.09 SLC8AT1 Sodium/calcium exchanger 1

54 13.15 TLR2 Toll-like receptor 2

55 131 TLR4 Toll-like receptor 4

The list of up- (1) and down- (|) regulated genes in macrophages grown as co-culture with canine mammary cancer cells. The unpaired t-test with Benjamin-
Hochberg FDR < 5% (false discovery rate) correction (with p value cut-off < 0.01) (Gene Spring, Agilent, USA) and further PANTHER analysis were conducted

IHC analysis also confirmed acquisition of macro-
phage’s marker by cancer cells after co-culture. The
expression of CSF-1R antigen was significantly higher (p
< 0.05) in all the cancer cell lines after co-culturing with
macrophages (Figure 6, Table 7). Thus, the co-culture
conditions induced or increased macrophage antigens
expression by cancer cells.

Migration assay

The wound healing assay showed that in all of the can-
cer cell lines the co-culturing with macrophages
increased their migratory abilities (Figure 7). CMT-U27
cells grown with macrophages completely closed the
wound (100%) in 6 hrs, whereas CMT-U27 control cells
after 6 hrs closed 71.5% of the wound. Similarly, CMT-
U309 and P114 cells (grown with macrophages) after 6
hrs almost completely closed the wound (99.2% and

99.9%, respectively), whereas control cells closed only
49% and 54% (respectively) of the wound. CMT-W1
cells grown with macrophages completely closed the
wound after 4 hrs, whereas CMT-W1 control cells after
6 hrs (after 4 hrs 64% of the wound was closed). CMT-
W2 cells grown with macrophages closed 80% of the
wound after 6 hrs, whereas control cells closed only
52% of the wound.

Invasion assay and 3D culture

Invasion assay showed that not all of the cancer cells
have migratory abilities. Only CMT-W1 and CMT-W2
control cells migrated throw the Matrigel (Figure 8A,
B). The co-culturing of these cells for 72 hrs with
macrophages significantly increased their migratory abil-
ities (Figure 8A, B). The fluorescence intensity related to
the CMT-W1 control cells migration was 17.57, whereas

Table 4 Genes involved in over-manfested cellular pathways in canine mammary cancer cells grown as a co-culture

with macrophages

Pathway number of genes P-value
Inflammation mediated by chemokine and cytokine signaling pathway 21 1.81E-11
Toll receptor signaling pathway 7 9.44E-06
B cell activation 7 6.80E-05
Purine metabolism 3 1.04E-04
T cell activation 8 1.60E-04
Acetate utilization 2 6.87E-04
Apoptosis signaling pathway 6 3.86E-03
Adenine and hypoxanthine salvage pathway 2 8.65E-03
Interleukin signaling pathway 6 8.68E-03
Plasminogen activating cascade 2 1.19E-02
5-Hydroxytryptamine degredation 2 2.19E-02
Lysine biosynthesis 1 248E-02
Salvage pyrimidine deoxyribonucleotides 1 3.69E-02
PDGF signaling pathway 5 3.99E-02
Methylcitrate cycle 1 4.89E-02

The list of over-manifested cellular PANTHER pathways in cancer cells grown as co-cultures with macrophages. The binomial test for each PANTHER pathway was

used
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Table 5 Genes involved in over-manifested cellular pathways in macrophages grown as a co-culture with canine

mammary cancer cells

Pathway number of genes P-value
Angiogenesis 13 1.17E-04
p53 pathway feedback loops 2 6 2.16E-04
Wnt signaling pathway 17 2.90E-04
Alzheimer disease-presenilin pathway 9 1.04E-03
Cadherin signaling pathway 9 1.55E-03
p53 pathway 8 1.63E-03
Plasminogen activating cascade 3 2.84E-03
TGF-beta signaling pathway 8 5.07E-03
Inflammation mediated by chemokine and cytokine signaling pathway 12 9.09E-03
Arginine biosynthesis 2 1.29E-02
Alzheimer disease-amyloid secretase pathway 5 1.77E-02
Alpha adrenergic receptor signaling pathway 3 2.68E-02
Metabotropic glutamate receptor group | pathway 3 3.95E-02
FGF signaling pathway 6 4.05E-02
Succinate to proprionate conversion 1 4.16E-02
PLP biosynthesis 1 4.16E-02
Endothelin signaling pathway 5 4.29E-02
Muscarinic acetylcholine receptor 1 and 3 signaling pathway 4 4.67E-02

The list of over-manifested cellular PANTHER pathways in macrophages grown as co-cultures with canine mammary cancer cells. The binomial test for each

PANTHER pathway was used

to the CMT-W1 cell line grown with macrophages was
38.08 (p < 0.001). The fluorescence intensity related to
the CMT-W2 control cells migration was 38.00, whereas
to the CMT-W2 cell line grown with macrophages was
80.75 (p < 0.05).

To confirm the ability of these cell lines to matrix
invasion, we have assessed their growth characteristics
on Matrigel matrix (Figure 8C). After 22 hrs of culturing
(similarly as in the invasion assay) on Matrigel CMT-
U27, CMT-U309 and P114 cell lines formed colonies,
whereas CMT-W1 and CMT-W2 cell lines formed

branching structures (Figure 8C) what indicated their
invasive phenotype. The culture was maintained for 1
week, showing that after 5 days also P114 cell line
formed slight branches.

Discussion

It has been evident over the last few years that macro-
phages play an important role (via various factors) in
tumour cell invasion of the normal surrounding tissues,
cancer proliferation and metastasis to local and distant
sites [19]. All the interactions within the tumour are

Table 6 Fold change of genes randomly selected for confirmation of microarray results

Wnt7b IL18 ccL2 CcCL3 CD163 CSF1R HIF1 MMP9 VEGF-C
MQ co-culture with CMT-U27 v.s. monoculture 12.08 AN 15838
MQ co-culture with CMT-U309 v.s. monoculture 1227 15 191
MQ co-culture with P114 v.s. monoculture 1145 163 183
MQ co-culture with CMT-W1 v.s. monoculture 16.67 11429 1227
MQ co-culture with CMT-W2 v.s. monoculture 161 1625 1133
CMT-U27 co-culture with MQ v.s. monoculture 1407.3 11.93 158.08 12299 19.1 17116 128.1
CMT-U309 co-culture with MQ v.s. monoculture 116124 11.01 148.67 11298 114 1207.9 112
P114 co-culture with MQ v.s. monoculture 1931.0 1126946 11799 164.1 1.7 1713 119
CMT-W1 co-culture with MQ v.s. monoculture 13338 110113 111.87 19.3 13.0 1209.8 17.7
CMT-W2 co-culture with MQ v.s. monoculture 1109.9 151.09 131.25 183 15.0 11473 1304

Fold change of genes randomly selected for confirmation of microarray results in macrophages grown as a co-culture with canine mammary cancer cell lines
(versus macrophages grown as a monoculture) and in canine mammary cancer cell lines grown as a co-culture with macrophages (versus canine mammary

cancer cell lines grown as a monoculture)
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mono-culture of cancer cells

... Composite
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examined using the Fluoview program (Olympus Optical Co., Germany).

Figure 5 Macrophage-specific antigens expression in cancer cells in the co-culture conditions. Representative pictures obtained using
confocal microscopy showing CD64 (A) and CD14 (B) expression (green fluorescence) in CMT-W2 canine mammary cancer cell line (stained
using CMTMR) grown as a mono-culture (left panel) and as a co-culture with macrophages (right panel) for 72 hrs. Macrophages are marked by
arrows. Cell imaging was performed by confocal laser scanning microscope FV-500 system (Olympus Optical Co, Germany). The cells were

MQ-cancer cells co-culture

intricately complex and a better understanding of them
would require some further exploration of the underly-
ing molecular processes.

In this article, we demonstrated that co-culturing of
canine mammary cancer cells and macrophages initiate
a dynamic ‘chemical conversation” between the tumour
cells and macrophages. They also start to behave as one
organism. Many of the previous studies have been con-
ducted using cancer cells and macrophages grown with-
out direct contact in trans-well inserts or modified
Boyden chambers [10], however there are also very few

reports on direct co-culturing of macrophages and can-
cer cells [20-22]. Despite that direct co-culturing of
macrophages and cancer cells (with cell-cell contact)
can be a good experimental model, because it reflects in
vivo conditions more vividly (where all the cells have
direct contact) than co-culturing where the cells can
contact via soluble factors only, direct co-culturing
brings about the risk of macrophages contamination by
cancer cells owing to macrophages taking up fragments
of cancer cells. To assess the possible risk of artificial
sorting of macrophages (that digested red-stained cancer
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CMT-W?2 cell line grown as mono-culture

CMT-W2 cell line grown as co-culture with macrophages

e

CSF1R

Optical Density
(Arbitrary Units)

Figure 6 CSF1R expression in canine mammary cancer cell lines in control conditions and after the co-culture with macrophages. (A)
The graph of mean optical density of CSF1R (and SD) in canine mammary cell lines (CMT-U27, CMT-U309, P114, CMT-W1 and CMT-W2) grown
in control conditions (ctrl) and as a co-culture with macrophages (+MQ). (B) Representative pictures of CSFIR expression in CMT-W2 cell line (in
control conditions and after co-culture with macrophages) obtained using Olympus BX60 microscope (at the magnification of 200x). The CSF1R
is reflected as brown colour. Ten pictures in each slide were analyzed. The colorimetric intensity of the IHC-stained antigen spots was counted
by a computer-assisted image analyzer (Olympus Microimage™ Image Analysis, software version 4.0 for Windows, USA) and the antigen spot

Cell line - . y g

significant and marked as *.

colour intensity is expressed as mean pixel optical density on a 1-256 scale. The statistical analysis was performed using Prism version 5.00
software (GraphPad Software, USA). The unpaired t-test was applied to analyze the optical density in cell lines. p < 0.05 was regarded as

cells) as cancer cells (CMTMR-positive group) we
checked our post-sort population using fluorescence
microscopy (no red-stained cells in macrophages tube
and no unstained cells in cancer cells tube have been
seen, data not shown). Our co-culture has also been
assessed using confocal microscopy (Figures 5 and 9). It
showed that cancer cells were perfectly bright stained
with CMTMR (whole cytoplasms was regularly red-
stained). These cells also showed green-stained pattern
due to the macrophages-specific antigen expression.
Thus, we confirmed that we sorted the population of
cancer cells showing macrophages-specific antigens. We
have also observed very few macrophages with very
small amount of red dye in their phagosomes which
probably were digested fragments of cancer cells (Figure
9), but we observed attentively only the macrophages
without any red dye. During cell sorting we only took
cells with high PerCP-Area red-signal (Figure 1F) and
gated for sorting only the high-positive cancer cells as
opposed to macrophages with low signal. Even if some
macrophages happen to have red dye in phagosome,
they would have been somewhere between these two
gates or qualified as macrophages. Bearing in mind that
the possibility of contamination of macrophages RNA
samples by cancer RNA is even less, as macrophages

produce ribonucleases [23] that immediately degrade
any digested (unstable) RNA molecules. Moreover, the
possibility that macrophages can take up cancer cells
during in vitro culturing is as likely as in a naturally
occurring tumour in vivo, but researchers run a risk
because the problem is extremely interesting and
requires investigation [24,25].

The present microarray analysis of five various canine
mammary cancer cell lines and canine macrophages
grown together, revealed significant changes in genes
expression in comparison to the same cells grown as
mono-cultures.

Under co-culture conditions the cancer cells express
the macrophages-specific antigens, e.g. CD14, CD64,
CD163, CSF1R (Table 3, Figures 5, 6 and 9). According
to subject literature, CD163 is expressed not only by
normal monocytes/macrophages but also by neoplasms
[26,27]. CD163-positive cancers had more severe histo-
logical aberrations due to genomic instability. Thus, it is
hypothesized [26] that tumour cells express atypical
genes (specific for macrophages) due to genomic
instability. This may be caused by the presence of var-
ious proteins secreted by macrophages and changes
induced by them on the microenvironment. Another
theory explaining why cancer cells may exhibit myeloid

Table 7 CSF1R expression at protein level in canine mammary cancer cell lines

Cell line CMT-U27 CMT-U27 CMT-U309 CMT-U309 P114 P114 CMT-W1 CMT-W1 CMT-W2 CMT-W2
ctrl +MQ ctrl +MQ ctrl +MQ ctrl +MQ ctrl +MQ
Mean Optical Density 9540 106.60 81.28 102.30 77.99 107.20 114.50 135.40 119.10 132.00
(Arbitrary Units)
SD 4.99 223 559 135 582 412 15.77 4.86 6.34 487

The CSF1R expression in canine mammary cancer cell lines grown as mono-culture (ctrl) and as co-culture with macrophages (+MQ). Results are presented as
mean optical density + SD
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P114 cell line grown
as mono-culture

P114 grown as co-culture
with macrophages

A.

regarded as highly significant and marked as ** and ***, respectively.

Figure 7 Wound healing assay of canine mammary cancer cells grown in control conditions and as a co-culture with macrophages. (A)
Representative pictures of migration (wound closing) of P114 cell line grown as a mono-culture and co-culture with macrophages at 0, 2, 4 and
6 hrs after the scratch was made. (B) The graphs of % of wound closure after the 2, 4 and 6 hrs of migration. The pictures were taken using
phase-contrast microscopy (Olympus). The statistical analysis was performed using Prism version 5.00 software (GraphPad Software, USA). The
one-way ANOVA was applied to analyze the results. p < 0.05 was regarded as significant and marked as *, whereas p < 0.01 and p < 0.001 were
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cells-specific antigens is that the cells fuse, forming
hybrids that adopt phenotypic features of both parental
cells [28]. Cancer cells may fuse spontaneously with sev-
eral types of somatic cells [29-32]. Some authors suggest
that the result of cancer-myeloid cell fusion is the
hybrid with a metastatic phenotype [33-39]. The tumour
cells that express myeloid antigens may also exhibit
other phenotypic characteristics of macrophages, such
as capabilities of cell rolling, spreading, dissociation, dia-
pedesis, migration and matrix invasion. The metastatic
cancer cells have all these capacities because the process
of metastasis requires a coordinated steps promoting
angiogenesis, controlling adhesion, proteolysis and moti-
lity. Our confocal imaging and IHC examination has
proven that under co-culture conditions expression of
macrophages markers (CD14, CD64, CSFIR) in almost

all of the cancer cells was initiated. Moreover, migration
and invasion assays showed that the presence of macro-
phages in cancer microenvironment triggers migration
in all of the cancer cell lines. The co-culturing of
macrophages increased invasion in the cell lines that
show high invasive abilities in control conditions. The
ability of CD163 receptor (and perhaps other macro-
phage-specific antigens) to trigger the production of
pro-inflammatory mediators [40,41] may be a key factor
that brings changes to the cancer cell biology and sti-
mulates it to cytokines/chemokines/growth factors pro-
duction for further myeloid cell attraction.

Our microarray analysis of cancer cells grown with
macrophages revealed the over-manifestation of genes
activity which are involved in macrophages-cancer cells
‘conversation’. We found up-regulation of the highly potent
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Figure 8 Invasion of canine mammary cancer cell lines and growth characteristics in Matrigel matrix. (A) The graph of fluorescence
intensity related to invasion of canine mammary cancer cell lines (CMT-U27, CMT-U309, P114, CMT-W1 and CMT-W2) grown as a mono-culture
(ctrl) and as a co-culture with macrophages (+MQ). The statistical analysis was performed using Prism version 5.00 software (GraphPad Software,
USA). The unpaired t-test was applied to analyze the results. p < 0.05 was regarded as significant and marked as * whereas p < 0.001 was
regarded as highly significant and marked as ***. (B) Pictures of highly invaded CMT-W1 and CMT-W2 cells (green fluorescence) obtained using
Olympus BX60 microscope examined in control conditions and after co-culturing with macrophages. (C) Growth characteristics of CMT-U27,
CMT-U309, P114, CMT-W1 and CMT-W2 cell lines (phase contrast micrographs) grown on Matrigel matrix for 24 hrs.

macrophage attracting factors: CCL2 (MCP-1), CCL3
(MIP-1a.), CCL4 (MIP-1B) and CCL5 (RANTES) as well as
CCR5 in cancer cells grown as co-culture with macro-
phages. Recent studies have demonstrated that CCL2 acts
directly (via CCR5) in an autocrine manner on several
human carcinomas regulating the migration and invasive
properties of tumour cells [42,43]. Furthermore, CCL3-
CCR5 axis can increase the MMP-9 expression contribut-
ing to angiogenesis, ECM degradation and metastasis. Our
gene expression analysis seems to support both hypotheses,
as besides CCL2, CCL3 and CCR5 up-regulation, we also
observed increased expression of MMP-9 in cancer cells
grown under co-culture conditions with macrophages.

We found down-regulation of the pro-inflammatory
CD163 in macrophages grown as co-culture with cancer
cells. We also found down-regulation of several key
inflammation cytokines and macrophage activators, such

as: CCL2, CCL13, CCR1, and CCR5; whereas up-regula-
tion of other inflammation cytokines: CXCL10, CSE-2.
Decrease of the expression of these genes in macro-
phages grown with cancer cells as co-cultures may be
induced by hypoxia. Down-regulation of CCL2, CCR1
and CCR5 genes in macrophages under hypoxic condi-
tions has been demonstrated by various authors [44-46].
This phenomenon has a biological explanation, as
decrease of CCL2, CCR1 and CCR5 expression inhibits
chemotaxis signalling what in turn prevents TAMs from
leaving hypoxic areas [47] and triggers their angiogenic
effect (e.g. by CXCL10 chemokine). Up-regulation of
HIF-1 in cancer cells may indicate hypoxic conditions in
co-culture (similarly as in tumour). Hypoxia additionally
regulates angiogenesis by up-regulating VEGF-C in can-
cer cells and it initiates their epithelial-mesenchymal
transition (EMT) [48].
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Figure 9 Co-cultured cells staining characteristics. Pictures of representative cells (canine mammary cancer cells and macrophages) obtained
using confocal microscopy showing CD14 and CD64 expression (green fluorescence) and red-stained cytoplasms of cancer cells (stained using
CMTMR) grown as a co-culture for 72 hrs. Cell imaging was performed by confocal laser scanning microscope FV-500 system (Olympus Optical
Co, Germany). The cells were examined using the Fluoview program (Olympus Optical Co., Germany).

cancer cell cancer cell

macrophage cancer cell

nacrophage

Our gene expression analysis also revealed up-regula-
tion of CSE-2 (GM-CSF) in macrophages grown as co-
culture with cancer cells and CSF-2, CSF-3 and CSF1IR
up-regulation in cancer cells grown together with
macrophages. CSFs are potent factors regulating the sur-
vival and differentiation of macrophages being their che-
moattractants [49]. The CSF-1R expression in normal
mice and humans is limited to macrophages [49]. How-
ever, in many tumours CSF-1R and CSFs are also
expressed in cancer cells. CSF-1R expression at protein
level was also confirmed in this study (Figure 6). For
example, co-expression of CSF-1 and its receptor can be
found in 50% of late stage breast and 70% of endome-
trial cancers [50,51]. During the course of our previous
studies we found the CSF-1R expression in canine mam-
mary cancer cells (Figure 10), as well as in tumour-asso-
ciated macrophages [52]. The results of the studies of
Kirma et al. [53] suggest that the CSFs might have an
autocrine role through CSFIR in epithelial tumour cells
promoting their invasiveness into the surrounding
matrix [54,55].

All genes given above are important to entrap macro-
phages in malignant tumours [56].

In macrophages grown as co-culture with cancer cells
expression of three ligands of Wnt pathway increased
significantly: Wnt5b, Wnt7a and Wnt7b. Although the
Wnt activation has been described by many authors in
various cancer cells [57,58], only one study, so far [5],

described the Wnt activation in macrophages taken
from mice tumours. The authors described mechanism,
by which macrophages stimulate Wnt signalling pathway
in vascular endothelial cells by Wnt7b. This signalling
cascade eventually results in the vascular remodelling.
Thus, the new hypothesis is proposed, that the subpopu-
lation of macrophages, modulating Wnt-signalling is
located along the tumour vasculature to regulate
endothelial cells proliferation and apoptosis [5].

Conclusions

Based on the results of hereby study and the available
literature we conclude that the presence of macrophages
in the cancer environment induces expression of macro-
phage-specific antigens in cancer cells. It may be caused
by macrophage-cancer cell fusion or may be induced by
chemokines. This macrophage-specific gene expression
induces production of the pro-inflammatory mediators
by cancer cells, that stimulate not only further mono-
cytes recruitment from blood vessels and their differen-
tiation into adult macrophages, but also cancer
migration and angiogenesis (Figure 11). Moreover, we
have showed that the presence of macrophages increases
cancer cells migration and invasion. Thus, we suppose
that gaining the macrophages phenotype by cancer cells
constitutes one of the most important elements that
increase their possibility to metastasize. Moreover, the
‘cross-talk’ between these cells leads to up-regulation of
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Figure 10 The expression of CSF1R and CD14 in canine mammary cancer tissues. Pictures obtained using Olympus BX60 microscope
(x200) showing CSF1R (A) and CD14 (B) expression in canine mammary cancer tissues. These macrophage-specific antigens were detected not
only on the monocytes/macrophages, but also on the cancer tissue (reflected as brown colour). Black arrows indicate macrophages, whereas
white arrows indicate brown-coloured cancer cells. Tissue sections were stained using rabbit polyclonal CSF1R antibody and rabbit polyclonal
CD14 antibody (both obtained from Abcam, United Kingdom). For the staining the EnVision kit (Dako, Denmark) was used (Labelled Polymers
consist of secondary anti-rabbit antibodies conjugated with the Horseradish peroxidase HRP enzyme complex). To develop the coloured product,
the 3,3-Diaminobenzidine (DAB) substrate was used. Finally, the haematoxylin was used for nuclei counterstaining. The tissue details, procedure,
and results have been described previously [20].
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Figure 11 Scheme of possible interactions between cancer cells and macrophages. The scheme of possible interactions between the up/
down-regulated genes in canine mammary cancer cell lines and macrophages. Abbreviations: CCL2, C-C motif chemokine 2; CCL3, C-C motif
chemokine 3; CCL4, C-C motif chemokine 4; CCL5, C-C motif chemokine 5; CCR4, C-C chemokine receptor 4; CCR5, C-C chemokine receptor 5;
CSF2 & CSF3, Colony stimulating factor 2 & 3; CXCL10, C-X-C motif chemokine 10; HIF1, Hypoxia inducible factor 1; MMP9, Matrix
metalloproteinase-9.

‘Lmacrophage migration




Krél et al. BMC Veterinary Research 2012, 8:16
http://www.biomedcentral.com/1746-6148/8/16

Wnt genes in macrophages increasing new vessels
formation.
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