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Abstract

Background: The purpose of this study was to compare the effects of 0.5 fraction of inspired oxygen (FiO,) and
>0.95 FiO, on pulmonary gas exchange, shunt fraction and oxygen delivery (DO,) in dorsally recumbent horses
during inhalant anesthesia. The use of 0.5 FiO, has the potential to reduce absorption atelectasis (compared to
maximal FiO,) and augment alveolar oxygen (O,) tensions (compared to ambient air) thereby improving gas
exchange and DO,. Our hypothesis was that 0.5 FiO, would reduce ventilation-perfusion mismatching and increase
the fraction of pulmonary blood flow that is oxygenated, thus improving arterial oxygen content and DO..

Results: Arterial partial pressures of O, were significantly higher than preanesthetic levels at all times during
anesthesia in the >0.95 FiO, group. Arterial partial pressures of O, did not change from preanesthetic levels in the
0.5 FiO, group but were significantly lower than in the >0.95 FiO, group from 15 to 90 min of anesthesia. Alveolar
to arterial O, tension difference was increased significantly in both groups during anesthesia compared to
preanesthetic values. The alveolar to arterial O, tension difference was significantly higher at all times in the

>0.95 FiO, group compared to the 0.5 FiO, group. Oxygen delivery did not change from preanesthetic values in
either group during anesthesia but was significantly lower than preanesthetic values 10 min after anesthesia in

the 0.5 FiO, group. Shunt fraction increased in both groups during anesthesia attaining statistical significance at
varying times. Shunt fraction was significantly increased in both groups 10 min after anesthesia but was not
different between groups. Alveolar dead space ventilation increased after 3 hr of anesthesia in both groups.

Conclusions: Reducing FiO, did not change alveolar dead space ventilation or shunt fraction in dorsally
recumbent, mechanically ventilated horses during 3 hr of isoflurane anesthesia. Reducing FiO, in dorsally
recumbent isoflurane anesthetized horses does not improve oxygenation or oxygen delivery.

Background

Maximal FiO, values (>95%) have been administered to
horses to maintain or improve the arterial partial pressure
of oxygen (PaO,) and tissue oxygenation since the advent
of inhalant anesthesia [1]. Maximal FiO, concentrations
are used in the belief that their use optimizes arterial O,
content (Ca0,) and O, delivery (DO,) to tissues providing
cardiac output (Q) is maintained [2]. Lower than expected
(subnormal) PaO, values are frequently encountered dur-
ing equine inhalant anesthesia despite the use of maximal
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FiO, [3-6]. Subnormal PaO, values usually develop during
the first 30 to 90 min of anesthesia, continue for the dura-
tion of anesthesia, and resolve within 60 min of recovery
to standing [4]. The 5 mechanisms producing subnormal
PaO, values are decreased FiO,, diffusion impairment, vas-
cular shunting (true shunt), hypoventilation, and ventila-
tion-perfusion mismatching (pseudo shunt) [4]. Decreased
FiO,, diffusion impairment, and vascular shunts are unli-
kely to contribute to subnormal PaO, during inhalation
anesthesia in normal horses. Hypoventilation [arterial
partial pressures of carbon dioxide (PaCO,) >5.92 kPa
(45 mm Hg)] is a common occurrence during equine
anesthesia because virtually all anesthetic drugs cause
respiratory depression. Hypoventilation is easily corrected
by mechanical ventilation [7]. The use of mechanical
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ventilators, mechanical ventilation and increased FiO,
probably reduces the incidence of subnormal PaO, values
however a significant number of horses continue to
experience subnormal PaO, despite normocapnia and
increased FiO, [2,5,6].

The major cause of subnormal PaO, values in
anesthetized horses is ventilation-perfusion mismatching
within the lung parenchyma [8]. Functional residual
capacity and residual volume are reduced in recumbent
horses during inhalant anesthesia [3]. The distribution
of ventilation is shifted to non-dependent areas of lung
and altered by changes in diaphragmatic function and
mechanical ventilation [9-13]. The shifting of the distri-
bution of lung ventilation uncouples ventilation and per-
fusion because lung perfusion remains primarily caudal-
dorsal regardless of body posture [14-16]. Ventilation-
perfusion mismatching is exacerbated by atelectasis
because collapsed alveoli continue to be perfused with
little or no gas exchange. The two primary causes of
atelectasis are compression (from overlying abdominal
contents) and absorption (collapse due to absorption of
the alveolar gas). Compression atelectasis is more pro-
nounced in dorsally recumbent horses compared to
other species due to its long, sloping diaphragm [17].
The development of compression atelectasis can be par-
tially offset or delayed by initiating mechanical ventila-
tion early during the anesthetic period but predicted
PaO, values are not always achieved [2]. Ventilatory
recruitment maneuvers including the use of positive end
expiratory pressure (PEEP) have been investigated in
horses, however improvements are inconsistent and only
occur when PEEP values that compromise Q are
employed [12,18,19].

The relationship between PaO, and hemoglobin
saturation varies with blood temperature, pH and intra-
cellular factors [13,20]. Although equine hemoglobin is
more than 90% saturated at PaO, values greater than
9.2 kPa (70 mm Hg), there is rapid desaturation at
values below 7.9 kPa (60 mm Hg) [13]. One author has
provided data from anesthetized horses demonstrating
that DO, decreases when PaO, decreases, and that
PaO, values less than 5.6 kPa (50 mm Hg) are asso-
ciated with decreases in venous partial pressure of oxy-
gen (PvO,), an indicator of the adequacy of DO, [21].

The recognition that atelectasis contributes to ventila-
tion-perfusion mismatching, intrapulmonary shunt and
subnormal PaO, values has raised questions about the
use of maximal FiO, [22,23]. Absorption atelectasis is
exacerbated by administering maximal FiO, because O,
is more readily absorbed than other, less soluble, gases
such as nitrogen. Further, studies in humans suggest
that the use of maximal FiO, promotes alveolar damage,
reduces cardiac index, and increases peripheral vascular
resistance [24,25]. The use of 0.5 FiO, could reduce
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absorption atelectasis and augment alveolar O, tensions
(compared to ambient air) thereby improving gas
exchange and DO,. The purpose of this study was to
compare the effects of 0.5 FiO, and >0.95% FiO, on pul-
monary gas exchange, shunt fraction (Qs/Qt) and DO,
in dorsally recumbent horses during inhalant anesthesia.
Our hypothesis was that 0.5 FiO, would reduce ventila-
tion-perfusion mismatching and increase the fraction of
pulmonary blood flow that is oxygenated, thus improv-
ing CaO, and DO,.

Results

All horses completed all phases of the experiment.
Initial flow rates for the 0.5 FiO, group were 3 L/min of
O, and 6 L/min of air. Flow rates required to maintain
0.5 FiO, when the total flow rate was set at 9 mL/kg
bwt/min ranged from 1.8 to 3 L/min for O, and 3 to 4
L/min for air. All horses were administered dobutamine
during each trial (dose range 0.5-1 pg/kg/min). One
horse developed atrial fibrillation 30 min after induction
of anesthesia during the second procedure (>0.95 FiO,).
Atrial fibrillation continued throughout anesthesia and
an electrocardiogram confirmed normal sinus rhythm 1
hr after the horse stood. Blood pressures and heart rates
in this horse were similar to other horses in this treat-
ment group and ranged from 30 to 36 bpm prior to the
onset of atrial fibrillation and from 35 to 56 bpm after
the onset of atrial fibrillation.

There were no changes or differences in right atrial
pressure (RAP), mean pulmonary artery pressure
(MPAP), cardiac output (Q), cardiac index (CI), or sys-
temic vascular resistance (SVR) over time or between
groups (Table 1). Dobutamine-augmented arterial blood
pressures were significantly decreased from preanes-
thetic values in both groups from 15 to 180 min after
induction to anesthesia. Arterial blood pressure was sig-
nificantly higher than preanesthetic values 30 min after
standing in the 0.5 FiO, group but only mean arterial
blood pressure (MABP) was significantly higher in the
>0.95 FiO, group at this interval. There were no differ-
ences between groups. Respiratory rate was controlled
at a rate of 4 - 5 breaths/min during anesthesia. Respira-
tory rate was significantly decreased compared to prea-
nesthetic levels 10 min after anesthesia in both groups.

Arterial partial pressures of O, were significantly
higher than preanesthetic values at all times during
anesthesia in the >0.95 FiO, group (Table 2). Arterial
partial pressures of O, did not change from preanes-
thetic values in the 0.5 FiO, group and were signifi-
cantly lower than the >0.95 FiO, group at the 15, 30,
60, and 90 min measurement intervals (Table 2). Arter-
ial hemoglobin saturations were not different from prea-
nesthetic levels or between groups at any point during
anesthesia in either group but were significantly lower



Table 1 Hemodynamic and patient variables from isoflurane-anesthetized horses (n = 5) breathing 50% or maximal oxygen concentrations

Parameter Fi02 -5 min 15 min 30 min 60 min 90 min 120 min 150 min 180 min +10 min Stand + 30 min
HR 50% 35+2 32+1 39+2 40+ 3 46 £ 3 43 +£2 39+3 39+3 38+4 38+2
(beats/min)
>95% 42 35+ 3 37+3 39+5 39+ 3 42 +3 41 + 4 43 + 4 34+ 4 45
RR 50% 26 + 6 + 0° 5+0° 5+0° 4+ 0° 4+ 0° 4+ 0° 4+ 0° 12+1° 20 +
(breaths/min)
>05% 27 +5 6+ 0° 5+0° 5+0° 5+0° 5+0° 5+0° 5+0° 12 +4° 17 +2
PIP (cmH,0) 50% _ 29+ 4 30+3 31+3 31+3 32+3 32+3 33+3
>95% @ ——— 30+4 29+3 3112 32+3 31+3 32+3 31+3
EtCO2 (kPa) 50% _ 418 £ 0.21 408 +£0.13 418 £0.13 442 +0.18 421 + 004 405+ 0.10 397 £ 011
>95% ——— 392 £033 432+ 030 447 + 0. 62 434 +0.12 421 + 0.09 403 +0.12 382 £0.12
SABP (mmHg) 50% 143 +9 109 + 6° 88 + 5° 107 + 4° 106 + 3° 105 + 2° 100 + 1° 104 + 2° 128+ 5 176 + 8°
>05% 147 +7 106 + 8° 95 + 4° 103 + 6° 103 + 7° 104 + 6° 105 + 4° 102 + 5° 129+ 7 172 £ 10
MABP (mmHg) 50% 110+ 3 82 + 5° 66 + 4° 80 + 2° 85 + 1° 84 + 2° 84 + 37 85+ 1° 109 + 4 138 + 7°
>95% 112+6 82 + 9° 69 + 3° 79 + 5° 80 + 4° 81 + 47 84 + 47 82+ 2° 106 + 4 136 + 6°
DABP (mmHg) 50% 87 +5 69 + 4 54 + 3° 68 + 2 72+3 73+£3 71+ 4 76 £ 2 9 + 3 123 + 11°
>05% 93+6 69 + 8 58 + 4° 66 + 4° 67 + 3° 72+ 4 73+ 4 70 +3 97 + 4 115+ 6
MRAP (mmHg) 50% 14+3 6+2 9+1 10+£2 9+2 12+1 1241 13+2 24 +1 15+3
>95% 13+2 10+2 1341 12+2 11+2 12+3 14+3 14+3 21+ 4 14+3
MPAP (mmHg) 50% 30+4 14 +£1 17+£0 20+ 2 23+2 24+ 3 24+ 2 23+2 36+2 32+3
>95% 31 +2 21+5 23+ 4 26+5 26+5 26+5 26+5 26+ 5 34+5 34+ 4
Q (L/min) 50% 342 £56 254 £28 281 £ 34 315+£28 329 +£38 252 £33 233 £ 24 227 £15 199 + 14 365+ 36
>05% 342 + 36 225+ 1.1 242 +15 301 +£19 261 + 36 252 + 3.1 211 +£09 213+ 09 218+ 15 402 + 39
Cl (L/kg bwt/min)  50% 0056 £ 0010  0.041 + 0004 0.045 £ 0005 0051 £ 0005 0053 + 0005 0.041 + 0005 0038+ 0004 0037+ 00002 0032+0002 0059+ 0.006
>95% 0056 £ 0005 0037 + 0001 0.040 £ 0003 0049 £ 0003 0043 £ 0006 0.041 £ 0005 0035+ 0001 0.035+ 0.001 0.036 £ 0002  0.066 + 0.007
SVR (dyn sec cm™)  50% 248 + 33 249 + 34 172 £ 23 182 + 13 195 + 21 245 + 33 258 + 26 261 + 22 347 + 17 282 + 36
>95% 234 + 13 256 + 26 190 + 25 182 £ 15 227 + 35 227 + 21 268 + 14 256 + 13 318 £ 24 251 + 22

Data are presented as mean * standard error of the mean. HR, heart rate; RR, respiratory rate; PIP, peak inspiratory pressure; EtCO,, end-tidal CO,; SABP, systolic arterial blood pressure; MABP, mean arterial blood

pressure; DABP, diastolic arterial blood pressure; MRAP, mean right atrial pressure; MPAP, mean pulmonary artery pressure; Q, cardiac output; Cl, cardiac index; SVR, systemic vascular resistance. Time points: -5, 15,
30, 60, 90, 120, 150, and 180 represent min prior to and after induction of anesthesia; +10 min represents 10 min after disconnection from the anesthesia machine; and Stand +30 min represents 30 min after the
horses stood in recovery.

a Within a treatment, value is significantly different than the -5 min value for this variable.
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Table 2 Blood variables from isoflurane-anesthetized horses (n = 5) breathing 50% or maximal oxygen concentrations

Parameter Fi02 -5 min 15 min 30 min 60 min 90 min 120 min 150 min 180 min +10 min Stand + 30 min
pHa 50% 7446 + 0016 7448 + 0014 7461 + 0011 7429+ 0008 7409 + 0014 7414 + 0016 7424 + 0012 7412 +0016 7375+ 0022 7425+ 0011
>05% 7428 + 0013 7461 £ 0031 7437 0032 7424+ 0027 7431 +0021 7424 + 0018 7432+ 0014 7441 +0017 7386+ 0031 7438 + 0005
Pa0, (kPa) 50% 1206+ 092 1215+ 124° 1255+ 098° 1373 +01.16° 1348 +139° 1255+ 154 1089+ 143 1029 + 148 560 + 024 1200 + 035
>95% 1207 + 053 3603 +4.02°° 3213 +478%° 3647 + 593*° 3418 +524°° 3137 +632° 2920+ 612 2861 +634 592 + 037 1039 + 1.07
Arterial Hb (g/dl)  50% 132+ 17 124 + 04 120 + 05 141 +02 138 + 0.2 135 + 05 130 + 0.7 128 + 05 126 + 03 118 + 05
>95% 120 + 05 119 + 04 130 + 06 137+ 08 137 +03 136 + 04 137 £ 07 13307 122+ 06 115+ 03
PaCO, (kPa) 50% 484 +038 479 +030 463 +020 508 + 0.08 553+ 036 526 + 025 511+010 5524032  676+053° 559+ 023
>95% 536+ 023 457 + 045 525 + 037 537 + 038 539 + 03] 551+016  557+018  542+026  670+076 576+ 020
PaHCO; (mmol/L)  50% 26 + 1 26 +0 26+ 1 26+ 0 26 + 1 25+ 1 25+ 1 26 + 1 27 +1 27 +1
>95% 27 + 1 25+ 1 27 +1 26 + 1 27 +0 27 +1 28+ 1 28+ 1 28+ 0 29+ 1
Sa0, (%) 50% 963 + 05 958 + 0.8 %4 + 04 9.4 + 05 9.2 + 04 956 + 09 947 +13 934+ 18 815+ 1.7° 9.5 + 0.2
>95%  96.8 + 0.3 978 + 0.1 976 + 0.1 976 + 0.2 976 + 0.1 975+ 02 974 + 03 970 + 0.7 84.0 + 2.2° 95.1 + 09
pHv 50% 7402+ 0010 7418 0011 7433 +0008 7408 + 0008 7400 = 0011 7398 + 0011 7397 + 0013 7392 + 0012 7347 + 0015 7.387 + 0.008
>95% 7399 + 0006 7422 + 0027 7408 + 0027 7401 + 0024 7397 0020 7398 + 0016 7402 + 0015 7407 + 0016 7352 + 0019 7.397 + 0.004
PvO, (kPa) 50% 444 + 041 444 + 009 461 +0.12 555 + 022 564 + 0.14 534+027  495+033  485+029  372+018 374+ 021
>95% 411 +0.10 496+ 0.11 508 + 0.16 588 + 0.34° 579 + 043° 571 +048°  543+035  532+034  373+019  359+026
Vlactate (mmol/L)  50% 05 =0 11 +0.1 12+ 0.1 1340, 14 +01° 14+01° 15+01° 15+01° 14+01° 11402
>95% 05 + 0.1 12401 14+ 0.1 14 +01° 13+0.] 14+ 0.1 15 +0.1° 15+ 0.1° 14 +0.1° 12 +05

Data are presented as mean + standard error of the mean. pHa, arterial pH; PaO,, arterial partial pressure of oxygen; Arterial Hb, arterial hemoglobin; PaCO,, arterial partial pressure of carbon dioxide; PaHCO3,
arterial bicarbonate; SaO,, arterial oxygen saturation; pHv, venous pH; PvO,, venous partial pressure of oxygen; vLactate, venous lactate. Time points: -5, 15, 30, 60, 90, 120, 150, and 180 represent min prior to and
after induction of anesthesia; +10 min represents 10 min after disconnection from the anesthesia machine; and Stand +30 min represents 30 min after the horses stood in recovery.

a Within a treatment, value is significantly different than the -5 min value for this variable.
b Within this time point, value is significantly different than other treatment
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than preanesthetic levels at the 10 min postanesthetic
measurement interval in both groups. Venous partial
pressure of oxygen was increased compared to baseline
from 60 to 120 min in the >0.95 FiO, group but there
were no differences between groups. Venous lactate
concentrations were increased compared to preanes-
thetic concentrations from 90 to 180 min during
anesthesia and 10 min after anesthesia in the 0.5 FiO,
group and at 60, 150, and 180 min during anesthesia
and 10 min after anesthesia in >0.95 FiO, group. There
were no differences in venous lactate concentrations
between groups (Table 2).

Arterial O, content (CaO,), venous O, content (CvO,),
and oxygen extraction ratio (O,ER) did not change during
the experiment (Table 3). Oxygen consumption (VO,)
decreased after induction to anesthesia, becoming signifi-
cant from 60 to 180 min in the 0.5 FiO, group and at 15
min in the >0.95 FiO, group. Oxygen consumption was
not different between groups. Alveolar to arterial O, ten-
sion differences (P(5_,)O,) were significantly increased dur-
ing anesthesia compared to preanesthetic values in both
groups and tension differences in the >0.95 FiO, group
were significantly higher than in 0.5 FiO, group at all mea-
surement intervals. Oxygen delivery did not change from
preanesthetic levels during anesthesia in either group but
was significantly lower than preanesthetic levels 10 min
after anesthesia in the 0.5 FiO, group. Shunt fraction
increased in both groups during anesthesia and was signif-
icant at 60, 90, 150, and 180 min in the 0.5 FiO, group
and from 15 to 150 min in the >0.95 FiO, group. Shunt
fraction was significantly increased in both groups 10 min
after anesthesia. Shunt fraction was not different between
groups at any time point. Alveolar dead space ventilation
(V4/V,) was increased after 3 hr of anesthesia in both
groups compared to 15 min after induction.

Horses stood at 96+/-13 min and 91+/-10 min in the
>0.95 FiO, and 0.5 FiO, groups, respectively (Table 4).
Times to first movement, extubation, first attempt to
sternal recumbency, sternal recumbency, first attempt to
stand, and standing were not different between groups
(Table 4). Median number of attempts to stand was 1
and median recovery score was 3 in both groups.

Discussion
The use of 0.5 FiO, in dorsally-recumbent isoflurane-
anesthetized horses did not reduce Qs/Qt or Vd/Vt
compared to >0.95 FiO,. Arterial partial pressures of O,
and Ps_,O, were higher in horses breathing >0.95 FiO,
but DO, was not different between groups during 3 hr
of anesthesia or after anesthesia. Reduction of FiO,
from >95% to 50% did not improve pulmonary gas
exchange or oxygenation.

The results of this study support the hypothesis that the
development of Qs/Qt mismatching from compression
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atelectasis is the most likely cause of impaired arterial
oxygenation during inhalant anesthesia in the horse [8].
Shunt fraction, P(5_,O,, and Vd/Vt increased in both
groups after induction to anesthesia in our study. Our
results differ from two previous reports that found a
greater Qs/Qt in horses that breathed >0.95 FiO, com-
pared to horses that breathed air during intravenous
anesthesia [8] and an increase in Vd/Vt when >0.85 FiO,
was compared to 0.35 FiO, in spontaneously breathing,
halothane-anesthetized horses [26]. In agreement with
our results, the administration of varying helium-oxygen
mixtures did not change Qs/Qt but resulted in progres-
sive increases in POy and PaO, as FiO, increased
[27]. Differences between our results and those of others
may be due to the FiO, selected (0.5 versus 0.2 to 0.35),
the effects of intravenous and different inhalant anes-
thetics (isoflurane versus no inhalant or halothane), the
duration of anesthesia, the mode of ventilation (con-
trolled ventilation versus spontaneous ventilation), or
body position (dorsal recumbency versus lateral recum-
bency). Positive pressure ventilation and inhalant anes-
thetics alter the distribution of ventilation in the
anesthetized horse but most have accepted this limitation
of the two techniques in the interest of normalization of
PaCO, and the maintenance of consistent anesthetic
depth [9-12]. Body position is a primary determinant of
oxygenation in anesthetized horses with dorsal recum-
bency consistently associated with larger decrements in
pulmonary function and gas exchange [2,9,28,29]. The
cause for the decrements in pulmonary function has clas-
sically been attributed to a gravity-dependent shift in
blood flow and a shift in ventilation to less dependent
lung zones [30]. This description has been challenged by
several studies that have demonstrated that only small
shifts in blood flow occur in anesthetized horses after
changes of body position [15,29,31]. We purposefully
selected overweight horses and placed them in dorsal
recumbency for an extended period in order to maximize
the potential for changes in FiO, to improve gas
exchange and reduce hypoxemia [5,32-34].

Similar to others we confirmed that >0.95 FiO, is
associated with greater PaO, and P(5_,)O, values than
the those produced by 0.2 to 0.5 FiO, and that CaO,
and DO, may not be markedly different if arterial
hemoglobin remains fully saturated [23,26,27]. Step-wise
increases in FiO, to titrate PaO, and CaO, have been
proposed [27] but such an approach requires multiple
gas sources, the ability to determine FiO, and frequent
sampling of arterial blood for arterial blood gas analysis.
The differences in PaO, and PO between the two
groups in the face of no difference in calculated Qs/Qt
is a function of the sigmoid shape of the oxyhemoglobin
saturation curve and highlights the importance of
considering both PaO, and CaO, when assessing the



Table 3 Oxygen variables from isoflurane-anesthetized horses (n = 5) breathing 50% or maximal oxygen concentrations

Parameter FiO2 -5 min 15 min 30 min 60 min 90 min 120 min 150 min 180 min +10 min Stand + 30 min
Ca0, (mL/dL) 50% 179 + 2.1 167 + 05 164 + 0.7 193 + 03 187 + 03 183 + 07 174 + 1.1 169 + 10 144+ 04 162 +06
>95% 164+ 07 170+ 05 183+ 10 194 +12 194 + 06 191 07 192 + 1.1 186 + 12 143+08 154 +06
CvO, (mL/dL) 50% 130+17  131+06 132+ 05 169 + 06 166 + 03 155 + 09 149 £ 15 141413 99+ 07 102 + 07
>95% 113 +05 143 +05 151+ 10 165+ 14 164 + 12 159+ 123 154 + 13 147 +13 9.7 +08 93+ 12
O,ER (%) 50% 27 + 4 2+2 1943 12+3 11 +1 15+ 3 15+ 4 1743 3243 37+ 4
>95% 31+ 1 16 + 2 18 + 4 15+ 3 16 + 4 1745 20+ 3 21 +3 3243 40+ 6
VO, (ml/kg bwt/min)  50% 2.9 + 1 15+ 02 14+ 02 1.1 +02° 1.1 +01° 10 +01° 09 + 0.1 10 +01° 14+ 0.1 35+ 05
>95% 28+ 02 10+ 0.1° 13+02 14402 11 +02 12402 13+0.1 13£0.1 16 + 0.1 40+ 08
C(a-v)0, (mL/dL) 50% 487 +079 361 + 040 3.20 + 0.59 234 + 049 212 + 029 277 + 048 253 + 056 273 + 038 452+ 028 593 + 065
>95% 512+ 032 275+ 040 328 + 065 2.86 + 049 3.00 + 0.74 3.18 + 084 3.75 + 052 3.83 + 046 461+ 051 608 + 080
Pa0,-10, ratio 50% 064 +005 027 +003  028+002*  030+002  029+003  027+003  023+003° 0224003  030+001° 064+ 002
>95% 064 + 003 041 + 005 036 + 005 041 + 007 038+ 006"  035+007%  032+007% 032+007% 032+002° 055006
P(A-a)0, (kPa) 50% 184+ 109 2751 +207°° 2712+ 100°° 2652 £ 1.05*° 2679 + 129°° 2785 + 123*° 3026 + 160°° 2981 + 144°° 599 + 067 099 + 020
>95% 120 + 031 4593 +390°° 5107 +451°° 4677 + 597°° 4922 + 526*° 5208 + 638> 5436 + 631°° 5533 + 648°° 574+ 090 240 + 104
DO, (ml/kg bwt/min)  50% 1082 + 359 684 + 0.60 744 + 084 9.82 + 0.85 991 + 094 748 + 107 6.71 + 1.00 6.24 + 061 462 +026° 947 + 078
>95% 916+ 100 626 + 0.24 7.24 + 049 955 + 0.89 834 + 1.19 791 + 103 6.65 + 0.50 647 + 044 511+ 041 1020+ 1.19
Qs/Qt (%) 50% 13 +2 28+ 4 30+5 39+ 8° 40 + 6° 36+ 4 40 + 4° 40 + 3° 43 + 4° 941
>05% 9+ 1 35 + 4° 36 + 6° 36 + 4° 38 + 5° 37+ 4° 33+ 3° 32+3 38 + 5° 12 +2
Vd/Vt (%) 50% <~ ——— 119 + 44 117 +13 176 + 15 194 + 26 194 + 3.1 205 + 24 272 + 39° _ _
>95% ——— 136 + 3.2 177+ 19 164 + 22 187 + 38 234 +23 276 + 23 292 +2.2° _ _

Data are presented as mean + standard error of the mean. CaO,, arterial oxygen content; CvO,, venous oxygen content; O,ER, oxygen extraction ratio; VO,, oxygen consumption; C(a-v)O,, oxygen content difference;
Pa0,-10, ratio, arterial oxygen tension to inspired oxygen tension ratio; P(A-a)O,, alveolar arterial oxygen tension difference; DO,, oxygen delivery; Qs/Qt, shunt fraction; Vd/Vt, alveolar dead space. Time points: -5, 15,
30, 60, 90, 120, 150, and 180 represent min prior to and after induction of anesthesia; +10 min represents 10 min after disconnection from the anesthesia machine; and Stand +30 min represents 30 min after the

horses stood in recovery.

a Within a treatment, value is significantly different than the -5 min value for this variable.
b Within this time point, value is significantly different than other treatment.
c With a treatment, value is significantly different from the 15 min value for this variable.
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Table 4 Recovery variables of isoflurane-anesthetized
horses (n = 5) breathing 50% or maximal oxygen
concentrations

Parameter FiO2 > 95% FiO2 50%
Time to first movement (min)? 48 + 7 575
Time to extubation (min)? 31+7 34+6
Time to first attempt to sternal 73 +£17 67 +6
recumbency (min)*

Time to sternal recumbency (min)? 88 + 13 76 £ 9
Time to first attempt to stand (min)? 94 + 14 84 +9
Time to standing (min)? 9 + 13 91 + 10
Number of attempts to stand” 1(-3) 1(1-5)
Median Recovery Score® 3(1-4) 32-7)

a Data are presented as mean * standard error of the mean.
b Data are presented as median (range).

significance of changes in the ranges of PaO, and Qs/Qt
routinely encountered in the anesthetized horse [35].

The incidence of subnormal PaO, values and hypoxe-
mia in dorsally recumbent anesthetized horses is a
recurring problem during equine anesthesia and has
been associated with body shape, body weight, low pulse
pressures, emergency case status, and male gender
[5,6,33,34]. It has been suggested that the application of
controlled ventilation immediately after induction to
anesthesia is more likely to maintain PaO, during
anesthesia but controlled ventilation may decrease Q
and thus DO, [2,21]. Additional proposed methods of
improving oxygenation in anesthetized horses include
PEEP, inhalation of aerosolized bronchodilators such as
albuterol, selective mechanical ventilation of dependent
lung regions and breathing helium-oxygen mixtures
[18,27,36,37]. Positive end expiratory pressures of at
least 10 cm of water may improve CaO, without chan-
ging Qs/Qt but Q is reduced unless fluids and cardiac
inotropes (ex. dobutamine) are administered [17,18].
Aerosolized albuterol is reported to increase PaO, but
its effects are inconsistent in the authors’ and other’s
experience regarding efficacy and consistency of effect
[36,38]. Selective mechanical ventilation combined with
selective PEEP consistently increases DO,, however it
requires a surgical procedure (tracheostomy) and multi-
ple ventilators [37].

The lowest individual PaO, measurements in our
study ranged from 6.32 to 13.55 kPa (48 to 103 mm Hg)
in the 0.5 FiO, group and from 9.21 to 42.1 kPa (70 to
320 mm Hg) in the >0.95 FiO, group. All horses in 0.5
FiO, group had PaO, values below 13.16 kPa (100 mm
Hg) at some time during the anesthetic period and 2 of
5 horses had PaO, values below 7.89 kPa (60 mm Hg).
Only one of 5 horses in the >0.95 FiO, group had a
PaO, below 13.16 kPa (100 mm Hg). All horses in both
trials had PaO, values below 7.89 kPa (60 mm Hg) ten
minutes after discontinuation of anesthesia but CaO,

Page 7 of 11

did not change from preanesthetic levels and was not
different between groups at any time suggesting there
was no apparent advantage with either technique.
Further, recent studies in laterally recumbent isoflurane
anesthetized horses have determined that breathing
>0.95 FiO, for 90 min does not affect erythrocyte mem-
brane dynamics or structure, blood viscosity or muscu-
lar perfusion and that breathing room air (0.21 FiO,)
decreases skeletal muscle oxygenation [39].

The results of our study, although limited by a rela-
tively small sample size, are similar and consistent with
those of others [23,26]. One of our horses developed
atrial fibrillation, which could have influenced the devel-
opment of V/Q and our results. The range of HR and Q
for the horse that developed atrial fibrillation was simi-
lar in both trials so we do not believe that it affected
our results since the development of atrial fibrillation in
the absence of cardiac disease, is not necessarily asso-
ciated with the deterioration of hemodynamics [40]. We
did not have the capability of performing the multiple
inert gas elimination technique which would have
allowed potential differentiation between pulmonary
units with low and high V/Q and shunt [23,41,42].
Regardless, the ability to more precisely identify V/Q
matching and shunt would not have changes our results.
Decreases in atelectasis, Qs/Qt, and PO, are inter-
esting but unless they result in improvements in PaO,,
Ca0,, and DO,, their impact is suspect. The risks of
inhaling >0.95 FiO, are well documented in other spe-
cies [43-45] but we could find no reports of pathology
associated with the use of >0.95 FiO, in horses anesthe-
tized for clinically relevant durations. To the contrary,
isoflurane anesthetized horses breathing >0.95% O, for
90 min demonstrated minimal damage from reactive
oxygen species and no alterations in muscular perfusion
[39]. The use of submaximal FiO, requires additional
equipment and more stringent monitoring thus increas-
ing expense. In the absence of evidence of benefit, the
authors do not recommend the use of submaximal 0.5
FiO, in anesthetized horses.

Conclusion

The purpose of breathing increased FiO, during equine
anesthesia is to partially offset the loss of the adaptive
mechanisms that are initiated by hypoxemia in awake
horses such as increases in ventilation, Q and contrac-
tion of the spleen [3]. These mechanisms are obtunded
or eliminated during inhalant anesthesia in horses. Our
study suggests that decreasing FiO, to 0.5% from maxi-
mal levels does not improve pulmonary gas exchange or
DO, during inhalant anesthesia in horses. Further stu-
dies investigating the benefits of alternative gas mixtures
(ex. helium- O,) and modes of ventilation in conjunc-
tion with changes in FiO, are warranted.
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Methods

Horses

Five mature horses (one Thoroughbred, one Quarter-
horse, three Standardbreds; two geldings, three mares)
with a mean body weight of 614 kg bwt (range 578 to
638 kg bwt) were studied. All horses were maintained
on pasture and were judged to be overweight based on
subjective evaluations of body conditions and round-bel-
lied appearances [33]. The experimental protocols and
procedures were approved by the Institutional Animal
Care and Use Committee of The Ohio State University
and all horses were treated in compliance with NIH
Guidelines for the Care and Use of Laboratory Animals.

Study Design

The study was conducted as a random-ordered 2-way
cross-over. A complete blood count (CBC) and serum
biochemistry analysis were performed before and 24 hr
after each trial. Food, but not water, was withheld for
approximately 12 hr before each trial. All horses under-
went two separate 3-hour anesthetic episodes separated
by at least 10 days. Each horse was randomly assigned
to breathe either 100% O, to attain >0.95 FiO, (Group
1) or O, blended with medical grade air to attain 0.5
FiO, (Group 2).

Each horse was confined in a stockade and the hair
over the left and right jugular veins was clipped. The
skin was surgically prepared for aseptic placement of
intravascular and intracardiac catheters. Lidocaine (2%,
1 ml/site) was injected subcutaneously at two sites over
the right jugular vein and one site over the left jugular
vein. A 14-gauge Teflon catheter was percutaneously
placed in the left jugular vein for administration of anes-
thetic drugs and isotonic electrolyte solutions (10 mL/kg
bwt/hr). Two 8F catheter introducers (Catheter introdu-
cers CL-07811, Arrow International Inc.) were percuta-
neously placed in the right jugular vein to facilitate the
placement of two catheters: 1) A 7-French specialized
thermistor and balloon tipped quadruple lumen catheter
(Thermodilution balloon catheter AI-07067, Arrow
International Inc.) was positioned so that its distal tip
was in the pulmonary artery; and 2) a 110 cm polyethy-
lene (PE) 240 catheter (Intramedic PE-240 tubing, Bec-
ton Dickinson and Company) was positioned so its
distal tip was in the right atrium. A 20-gauge 1.25 inch
catheter (Surflo catheter, Terumo Medical Corporation)
was percutaneously positioned in either transverse facial
artery or a 19 gauge through the needle catheter (Intra-
cath, Parke, Davis & Company) was inserted into a sub-
cutaneously relocated carotid artery. These procedures
facilitated the determination of systolic arterial blood
pressure (SABP), diastolic arterial blood pressure
(DABP), mean arterial blood pressure (MABP), and col-
lection of samples of heparinized blood samples for the
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determination of arterial pH (pHa) and blood gas analy-
sis (PaO,; PaCO,). Heparinized samples of venous blood
were anerobically obtained from the pulmonary arterial
catheter for determination of venous pH, venous partial
pressure of oxygen (PvO,), and venous partial pressure
of carbon dioxide (PvCO,). Proper positioning of all
catheters was confirmed by attaching each catheter to a
pressure transducer (TruWave Disposable Pressure-
Transducer, Edwards Lifesciences LLC) and visualizing
their characteristic pressure waveforms (Datascope Pass-
port Model EL, Datascope Corp.). The scapulohumeral
joint was considered the zero pressure reference point.
One mL of iced injectate (5% dextrose)) solution/15 kg
bwt was rapidly injected via the right atrial catheter (PE
240 catheter) for determination of cardiac output (Q; L/
min) by thermodilution (Cardiomax III, Columbus
Instruments). The value for Q was at each time point
was determined by an average of three Q determina-
tions. A base-apex electrocardiogram was used to deter-
mine heart rate (HR) and rhythm. The quadruple lumen
thermodilution catheter facilitated the determination of
Q and MPAP. The PE 240 catheter was used for the
administration of iced injectate for Q determinations
and for measurement of MRAP. Respiratory rate (RR)
was determined by observing chest excursions in stand-
ing horses and movement of the anesthetic machine
ventilatory bellows during anesthesia.

Horses were allowed to stand in the stockade undis-
turbed for 10 min following catheter placement. Then,
baseline heart rate (HR; beats/min), respiratory rate (RR,
breaths/min), Q (L/min), CI (L/kg bwt/min), SABP
(mmHg), MABP (mmHg), DABP (mmHg), MPAP
(mmHg), and MRAP (mmHg) were measured. Baseline
arterial and venous blood samples were obtained anae-
robically for determination of hemoglobin levels, oxygen
saturation levels, pH and blood gas analysis (PaOs;
PaCO,; PvO,; PvCO,), and lactate determination (ABL
725 Radiometer America). Packed cell volumes were
determined by centrifugation and total protein levels
were determined by refractometry (Clinical refract-
ometer J-351, Jorgensen Laboratories Inc). Horses were
moved to a padded induction stall and xylazine (1.0 mg/
kg bwt, IV) was administered for sedation 5 min after
sample collection. Ketamine (2.2 mg/kg bwt) and diaze-
pam (0.1 mg/kg) bwt) were administered as an IV bolus
five min after xylazine administration. Once recumbent,
horses were positioned in lateral recumbency and a 26
mm diameter ID orotracheal tube was placed in the tra-
chea. Horses were positioned in dorsal recumbency and
appropriately padded. The endotracheal tube was con-
nected to a circle anesthetic machine (Model 2800, Mal-
lard Medical, Inc.) primed with the fresh gas mixture to
be tested and 3% isoflurane (ISO). An initial total fresh
gas flow rate of 9 L/min was delivered for 15 min and
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was then reduced to a total of 9 mL/kg bwt/min for the
remainder of the anesthetic period. Anesthesia was
maintained at an end-tidal ISO concentration of 2%.
Controlled ventilation (initial tidal volume 15 mL/kg
bwt, initial respiratory rate 6 breaths/min) was immedi-
ately instituted and adjusted to maintain PaCO, between
40 and 45 mmHg. Inspired and expired concentrations
of O,, CO,, and ISO were determined using a side-
stream gas analyzer (Poet IQ2 8500Q, Criticare Systems,
Inc.). Dobutamine (1 - 5 pg/kg bwt/min) was adminis-
tered as needed to maintain MABP between 70 and 90
mm Hg.

Values for HR, SABP, MABP, DABP, MPAP, MRAP,
Q, peak inspiratory pressure (PIP; cmH,O), inspired and
expired O, concentrations (%), inspired and peak
expired CO, concentrations (mmHg), end-tidal ISO
concentration (%) and heparinized samples of arterial
and venous blood were anaerobically obtained for deter-
mination of pH, blood gases, hemoglobin, and SO, at
15, 30, 45, 60, 90, 120, 150, and 180 min after induction
to anesthesia. Tidal volume (V; Liters) was measured
using a digital respirometer (Respirometer Model 00-
295, Anesthesia Associates, Inc.) placed between the
endotracheal tube and the breathing circuit. Derived
variables calculated from measured data included: sys-
temic vascular resistance (dynes sec cm™®), cardiac index
(CL; L/kg bwt/min) [46], shunt fraction (Qs/Qt; %),
arterial and venous oxygen content (CaO, and CvO,,
respectively; mL/dL), oxygen consumption (VO,; mL/kg
bwt/min) [46], oxygen delivery (DO,; mL/kg bwt/min)
[46], arterial-mixed venous oxygen content difference (C
(a-v)O2; mL/dL), oxygen extraction ratio (O,ER; %),
alveolar dead space (V4/Vy; %), alveolar arterial oxygen
tension (P5O,; kPa), alveolar arterial oxygen tension dif-
ference (Pa-,)Oo; kPa), and arterial partial pressure of
oxygen/inspired partial pressure of oxygen ratio (PaO,-
10, ratio). Values were calculated according to the fol-
lowing equations:

CI(L/kg bwt/min) : Q/bwt(kg)

SVR (dyne sec/cm’) : (MABP - RAP)/Q x 80
Ca0,(ml/dL) : (1.39 x Hb x Sa0,) + (0.003 x Pa0,) (PaO, in mmHg)
CvO,(mL/dL) : (1.39 x Hb x $vO,) + (0.003 x PvO,) (PaCO, in mmHg)
O,ER(% ) : VO, x 100/DO,

VO, (mL/kg bwt/min) : (CaO; - CvO,) x CI

C(a—v)O2(mL/dL) : CaO; - CvO,

Page 9 of 11

PaO; : InspOsratio : PaO,/InspO;

PAO,(kPa) : [FiO, x (PB - PH,0) — (1.2 x PaC0,)]/7.6
(P(A——a)O2(kPa) : PAO; - PaO,

DO, (mL/kg bwt/min) : CI x CaO,

Qs/Qt(% ) : (CcO; - Ca03)/(CcO; - CvO3y)

Vd/Vt (% ) : [(PaCO; - PETCO,)/PaCO,)] x 100

Horses were transported to a padded recovery stall
and positioned in left lateral recumbency after the 180
min collection interval. One breath/min was delivered
using a demand valve (Equine Demand Valve Model
5040, JD Medical Distributing) until spontaneous venti-
lation resumed. Once spontaneous ventilation resumed,
xylazine (0.2 mg/kg bwt, IV) was administered to pro-
vide sedation during recovery. All data was collected 10
min after the anesthetic machine was disconnected and
30 min after the horse attained a standing position. The
times from disconnection from the anesthetic machine
to the resumption of spontaneous ventilation, first
movement, extubation, first attempt to attain a sternal
position, sternal recumbency, first attempt to stand,
time to standing, and number of attempts to stand were
recorded. The quality of recovery was assessed by at
least two independent observers using a 10 point scale:
1. Stands on first attempt with minimal effort, minimal
ataxia; 2. Stands on first attempt with minimal to mod-
erate effort, mild ataxia; 3. Stands on first or second
attempt with great effort and moderate ataxia. Marked
weight shifting once standing; 4. 2-3 attempts to stand,
moderate effort, slight weight shifting; 5. 2-3 standing
attempts, marked instability once standing; 6. Several
weak attempts, marked instability once standing; 7. Sev-
eral weak attempts, resumes recumbency, minor shifting
of weight once standing; 8. Several weak attempts, falls
easily or resumes recumbency, minor injury to horse; 9.
Several violent attempts, falls or resumes recumbency,
minor injury to horse; 10. Several violent attempts,
resumes recumbency, major injury to horse or personnel.

Statistical Analysis

All numerical continuous data are presented as mean +
standard error of the mean. A 2-way ANOVA with
repeated measures was used to analyse for treatment
effects and interaction. Tukey-Kramer post-test was per-
formed to identify time and within and between treat-
ment differences. Normally distributed recovery data
was analyzed using a 1-tailed paired t-test. Recovery
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score and number of attempts to stand were analyzed
using a Wilcoxon signed rank test. A P < 0.05 was con-
sidered significant.
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