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failure of its therapeutic activity against
triclabendazole-resistant liver flukes
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Abstract

Background: The reduced drug accumulation based on enhanced drug efflux and metabolic capacity, identified in
triclabendazole (TCBZ)-resistant Fasciola hepatica may contribute to the development of resistance to TCBZ. The
aim of this work was to evaluate the pharmacokinetics and clinical efficacy of TCBZ administered alone or co-
administered with ivermectin (IVM, efflux modulator) and methimazole (MTZ, metabolic inhibitor) in TCBZ-resistant
F. hepatica-parasitized sheep. Sheep infected with TCBZ-resistant F. hepatica (Sligo isolate) were divided into three
groups (n = 4): untreated control, TCBZ-treated (ir. at 10 mg/kg) and TCBZ+IVM+MTZ treated sheep (10 ir, 0.2 s.c.

resistant F. hepatica.

the resistant status of the Sligo isolate.

and 1.5 im. mg/kg, respectively). Plasma samples were collected and analysed by HPLC. In the clinical efficacy
study, the animals were sacrificed at 15 days post-treatment to evaluate the comparative efficacy against TCBZ-

Results: The presence of IVM and MTZ did not affect the plasma disposition kinetics of TCBZ metabolites after the
i.r. administration of TCBZ. The AUC value of TCBZ.SO obtained after TCBZ administration (653.9 + 140.6 pg.h/ml)
was similar to that obtained after TCBZ co-administered with IVM and MTZ (650.7 + 122.8 ug.h/ml). Efficacy values
of 56 and 38% were observed for TCBZ alone and for the combined treatment, respectively. No statistical
differences (P > 0.05) were observed in fluke counts between treated groups and untreated control, which confirm

Conclusions: The presence of IVM and MTZ did not affect the disposition kinetics of TCBZ and its metabolites.
Thus, the combined drug treatment did not reverse the poor efficacy of TCBZ against TCBZ-resistant F. hepatica.

Background

Triclabendazole (TCBZ, 6-chloro-5(2-3 dichlorophe-
noxy)-2-methyl thio-benzimidazole), an halogenated
benzimidazole (BZD) thiol derivative, shows high effi-
cacy against both the immature and mature stages of
Fasciola hepatica in sheep and cattle, which is a differ-
ential feature compared to other available trematodicidal
drugs [1]. As a consequence of its excellent activity
against the liver fluke, it has been extensively used and
this has inevitably promoted the selection of TCBZ-
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resistant populations, which is now a worrying problem
in several areas of the world [2,3].

Parasites have several possible strategies to achieve
drug resistance, including changes in the target mole-
cule, in drug uptake/efflux mechanisms and in drug
metabolism [4]. At least two mechanisms appear to be
implicated in TCBZ resistance in F. hepatica: increased
drug efflux and enhanced oxidative metabolism [5-7].
TCBZ and its sulphoxide metabolite (TCBZ.SO) are
both substrates of P-glycoprotein (Pgp) [8]. Over-expres-
sion of Pgp has been implicated in the resistance to
macrocyclic lactones (ivermectin (IVM), moxidectin
(MXD)) [9,10], closantel and BZDs in nematodes [11]),
although the exact nature of the role has yet to be
established [12]. Different ex vivo experiments support
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the hypothesis of the involvement of Pgp over-expres-
sion in the resistance of F. hepatica to TCBZ. Higher
levels of TCBZ and TCBZ.SO were observed within
TCBZ-resistant flukes when drug efflux from the para-
site was decreased by IVM [7], a well recognized Pgp
substrate/inhibitor [9,13]. It has been demonstrated that
TCBZ and its main metabolites, TCBZ.SO and TCBZ-
sulphone (TCBZ.SO,) may induce tegumental damage
in liver flukes [14]. Additionally, an increased oxidative
metabolic capacity has been described as complementary
TCBZ resistance mechanism in F. hepatica [5,6). In fact,
co-incubation of TCBZ or TCBZ.SO with methimazole
(MTZ), a flavin monooxygenase (FMO) enzymatic sys-
tem inhibitor, lead to more severe surface morphological
changes in TCBZ-resistant F. hepatica, compared to that
observed after incubation with TCBZ or TCBZ.SO alone
[15].

The interaction between co-administered drugs may
induce changes in the pharmacokinetic behaviour of
either molecule. Increased albendazole sulphoxide
plasma concentrations in lambs after co-administration
of albendazole (intraruminally, i.r.) with IVM (subcuta-
neously, s.c.), was previously reported [16]. Similarly,
after the co-administration to sheep of IVM and TCBZ
by the intravenous (i.v.) route, an enhanced TCBZ.SO
plasma concentration was achieved [17]. On the other
hand, MTZ inhibition of TCBZ oxidative metabolism by
sheep liver microsomes has been reported [18]. How-
ever, MTZ did not affect TCBZ disposition kinetics in
sheep after the administration of both compounds by
the i.v. route [19].

Both modified influx/efflux and enhanced metabolism
may account for the development of resistance to TCBZ
in F. hepatica. As a consequence, it opens up the possi-
bility of modulating drug efflux and metabolism in the
TCBZ-resistant fluke, by co-administering TCBZ with
MTZ and IVM, with the aim of reversing anthelmintic
resistance. Furthermore, in vivo drug-drug interaction
between these drugs may modify the overall disposition
kinetics and pattern of drug distribution of TCBZ to the
liver fluke. The aims of the current work were: a) to
investigate the potential effect of MTZ and IVM on the
plasma concentrations profiles of TCBZ and its metabo-
lites in sheep and b) to study the clinical efficacy of
TCBZ alone or when co-administered with MTZ and
IVM against TCBZ-resistant F. hepatica.

Methods

Chemicals

Pure reference standards (97-99%) of TCBZ and its
TCBZ.SO and TCBZ.SO, metabolites, were provided by
Novartis Animal Health (Basel, Switzerland) (Batch #
AMS 215/102, HI-1025/1 and JG-5161/6, respectively).
MTZ and IVM were purchased from Sigma-Aldrich
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Chemical Company (St Louis, USA). The different sol-
vents (HPLC grade) and buffer salt used for sample
extraction or chromatographic methods were purchased
from Baker Ind. (Phillipsburg, USA).

Animals and Experimental design

Twelve (12) healthy intact male Corriedale sheep (53.8 +
2.6 kg) aged 14-16 months and obtained from a farm
located in an area free of F. hepatica were involved in
this trial. Additionally, the absence of liver fluke infec-
tion was checked by analysis of F. hepatica eggs in
faeces, following routine procedures [20]. Animals were
housed individually during the experiment and for 20
days before the start of the study. Animals were fed on
a commercial balanced concentrate diet. Water was pro-
vided ad libitum. Animal procedures and management
protocols were carried out in accordance with the Ani-
mal Welfare Policy (Act 087/02) of the Faculty of Veter-
inary Medicine, Universidad Nacional del Centro de la
Provincia de Buenos Aires (UNCPBA), Tandil, Argen-
tina http://www.vet.unicen.edu.ar and internationally
accepted animal welfare guidelines [21].

Animals were each orally infected with eighty (80)
metacercariae of a TCBZ-resistant F. hepatica isolate,
named Sligo. For details of the history of the Sligo iso-
late, see previous works [5,22,23]. Sixteen weeks after
infection, animals were randomly distributed into three
experimental groups (n = 4 each): Group I, which repre-
sented the untreated control group; Group 11, in which
animals were treated with TCBZ (Fasinex®, Novartis) by
the i.r. route at 10 mg/kg dose rate; and Group III, in
which animals were simultaneously treated with TCBZ
(Fasinex®, Novartis) by the i.r. route (10 mg/kg) and
IVM (Ivosint®, Biogénesis) by the s.c. route (0.2 mg/kg,
internal face of the thigh). Additionally, animals in
Group III were treated by the intramuscular (i.m.) route
(Semitendinosus muscle) with MTZ (2.5% aqueous solu-
tion) at a dose rate of 1.5 mg/kg [24]. MTZ administra-
tion was performed 30 min after TCBZ/IVM treatment.
Blood samples (5 ml) were taken by jugular venipunc-
tures into heparinised Vacutainers® tubes (Becton Dick-
inson, USA) before administration (time 0) and at 1, 3,
6,9, 12, 18, 24, 30, 36, 48, 72, 96, 120 and 144 h post-
treatment. Plasma was separated by centrifugation at
3000 g for 15 min, placed into plastic tubes and frozen
at -20°C until analyzed by high performance liquid chro-
matography (HPLC).

Clinical efficacy study

Fifteen days after treatment all animals were stunned
and exsanguinated immediately. Adult F. hepatica speci-
mens were recovered from the common bile ducts and
the gall bladder of each sheep and counted according to
the World Association for the Advancement of
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Veterinary Parasitology (W.A.A.V.P) guidelines [25]. The
efficacy of each anthelmintic treatment was determined
by the comparison of F. hepatica burdens in treated ver-
sus untreated animals. The following equation expresses
the percent efficacy (% E) of a drug treatment against F.
hepatica (F.h.) in a single treatment group (7) when
compared with an untreated control (C).

%E = (Mean of F.h. in C — Mean of F.h. in T) / (Mean of F.h. in C) * 100

The geometric mean was used as it most accurately
represents the distribution of parasite populations within
each group [25].

Analytical procedures

Plasma sample extraction

TCBZ and its metabolites were extracted from plasma
as previously described [18]. Samples (1 ml) were spiked
with 10 pl of oxibendazole (OBZ) (100 pg/ml), used as
internal standard. After addition of 2 ml of acetonitrile,
samples were shaken for 20 min (multivortex) and then
centrifuged at 2500 g for 15 min. The supernatants were
recovered and evaporated to dryness in a vacuum con-
centrator (Speed-Vac®, Savant, Los Angeles, USA). The
dry extracts were reconstituted in 300 ul of mobile
phase and an aliquot of 50 pl was injected into the
HPLC system.

Drug quantification by HPLC analysis

Experimental and fortified plasma samples were ana-
lysed by HPLC to determine the concentration of
TCBZ and its metabolites following the methodology
previously described [18]. The elution from the sta-
tionary phase (Selectosil C;g column, 5 pm, 250 x 4.6
mm, Phenomenex®, CA, USA) was carried out at a
flow rate of 1.2 ml/min, using a mixture of acetoni-
trile/ammonium acetate (0.025 M, pH 6.6) as mobile
phase. Fifty ul of each previously extracted sample
were injected into a Shimadzu 10 A HPLC System
(Kyoto, Japan), using a gradient pump, UV detector set
at 300 nm, an autosampler and a controller (Shimadzu
Class LC10, Kyoto, Japan). Analytes were identified by
the retention times of pure reference standards. Chro-
matographic retention times were: 4.09 (OBZ), 5.91
(TCBZ.SO), 7.95 (TCBZ.SO,) and 10.36 (TCBZ) min.
Calibration curves for each analyte were prepared by
least squares linear regression analysis, which showed
correlation coefficients between 0.995 and 0.998. The
absolute recovery of drug analytes from plasma was
calculated by comparison of the peak areas from
spiked plasma samples with the peak areas resulting
from direct injections of standards in mobile phase.
Mean absolute recoveries and coefficient of variations
(CV) within the concentration range between 0.1 and
25 pg/ml (triplicate determinations) were 89.2% (CV:
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6.74%) (TCBZ), 87.1% (CV: 6.03%) (TCBZ.SO) and
90.1% (CV: 4.75%) (TCBZ.SO,). Precision (intra- and
inter-assay) was determined by analysing replicates of
fortified plasma samples (n = 5) with each compound
at three different concentrations (0.1, 5 and 10 pg/ml).
CV ranged from 2.54 to 14.6%. The limit of quantifica-
tion (LOQ) was defined as the lowest measured con-
centration with a CV <20% and accuracy of +20% and
an absolute recovery 270%. The LOQ defined for the
three molecules assayed was 0.1 ug/ml. Values below
LOQ were not included in the pharmacokinetic
analysis.

Pharmacokinetic analysis

The concentration versus time curves for TCBZ meta-
bolites in plasma for individual animals were fitted with
the PKSolutions™ computer program/programme (Sum-
mit Research Service, Ashland, USA). Pharmacokinetic
analysis of the experimental data was performed by
non-compartmental analysis. The first order absorption
rate constant (k,,) or the first order metabolite forma-
tion rate constant (kg (h™") were calculated by the resi-
dual method [26]. The elimination half life (T1/2el) and
absorption (T1/2ab) or metabolite formation (T1/2for)
half lives were calculated as In2/f and In 2/k, respec-
tively, where 8 represent the terminal slope (h!). The
observed peak concentration (C,,,) and time to peak
concentration (T,,,,) were read from the plotted con-
centration-time curve of each analyte. The area under
the concentration time-curve (AUC) was calculated by
the trapezoidal rule [26] and further extrapolated to infi-
nity by dividing the last experimental concentration by
the terminal slope (B).Statistical moment theory was
applied to calculate the mean residence time (MRT) for
metabolites in plasma, as follows:

MRT = AUMC / AUC

where AUC is as defined previously and AUMC is the
area under the curve of the product of time and the
plasma drug concentration versus time from zero to

infinity [26].

Statistical analysis of the data

Pharmacokinetic parameters are presented as mean *
SD. The Student’ t-test was used for the statistical com-
parison of the pharmacokinetic data obtained from both
treatments groups. AUC, Cmax, MRT, T1/2el and T1/
2for values were log-transformed before statistical analy-
sis. Untransformed Tmax values were compared by
non-parametric test (Mann-Withney Test). Fluke counts
in each experimental group were compared by non
parametric test (Kruskal-Wallis test). In all cases a value
of P <0.05 was considered statistically significant.



Ceballos et al. BMC Veterinary Research 2010, 6:8
http://www.biomedcentral.com/1746-6148/6/8

Results

TCBZ.SO and TCBZ.SO, were the only analytes recov-
ered in plasma after the i.r. administration of TCBZ
alone or co-administered with IVM and MTZ in TCBZ-
resistant F. hepatica-infected sheep. High concentrations
of both TCBZ metabolites were measured in plasma up
to 144 h post-treatment (in both treated groups). The
comparative mean (+SD) plasma concentration profiles
of TCBZ.SO and TCBZ.SO, obtained after the i.r.
administration of TCBZ alone or co-administered with
IVM and MTZ are shown in Figure 1 (TCBZ.SO) and
Figure 2 (TCBZ.SO,). Table 1 summarizes the plasma
pharmacokinetic parameters obtained for TCBZ.SO and
TCBZ.SO, after the i.r. administration of TCBZ alone
or co-administered with IVM and MTZ to F. hepatica-
infected sheep. The presence of IVM and MTZ did not
affect the plasma disposition kinetics of TCBZ metabo-
lites after the i.r. administration of TCBZ. The AUC
value obtained for TCBZ.SO after TCBZ administration
(653.9 £ 140.6 pg.h/ml) was similar to that obtained
after TCBZ co-administered with IVM and MTZ (650.7
+ 122.8 pg.h/ml).

Table 2 shows parasite counts and the clinical efficacy
(%) of TCBZ against TCBZ-resistant F. hepatica, after
its i.r. administration alone or co-administered with
IVM and MTZ. Efficacy values of 56 and 38% were
observed for TCBZ alone and for the combined treat-
ment, respectively. No statistical differences (P > 0.05)
were observed in fluke counts between treated groups
and untreated control, which confirm the resistant sta-
tus of the Sligo isolate.

Discussion

The use of drug combinations is becoming an alterna-
tive tool for therapeutic control of anthelmintic-resistant
parasites. However, it is important to understand the
potential pharmacokinetic/pharmacodynamic interac-
tions between anthelmintic molecules, before drug com-
bination formulations are developed to be introduced
onto the pharmaceutical market.

Consistent with kinetic data previously obtained in
sheep [27], TCBZ.SO and TCBZ.SO, were the main
metabolites recovered in plasma after the i.r. administra-
tion of TCBZ, which has been related to a first-pass oxi-
dation occurring mainly in the liver. TCBZ.SO
accounted for 42% of the total analytes found in sheep
plasma after the i.r. administration of TCBZ. Both
TCBZ metabolites were recovered in plasma for a per-
iod of 144 h post-treatment. The long persistence and
high concentrations of TCBZ.SO and TCBZ.SO, in
sheep plasma compared with other BZD anthelmintics
[28] are explained by the strong binding of both meta-
bolites to plasma proteins [27]. This pharmacological
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property offers some advantage to TCBZ compared to
other benzimidazole compounds in the activity against
blood-feeding adult flukes.

Sulphoxidation and sulphonation are the main meta-
bolic reactions involved in TCBZ hepatic biotransforma-
tion in sheep. A recent in vitro work showed that both
mixed function oxidases, FMO and cytochrome P-450
(CYP), are involved in such metabolic reactions in sheep
liver [18]. It was demonstrated that TCBZ sulphoxida-
tive metabolism was reduced in the presence of the
FMO inhibitor MTZ and also when the anthelmintic
molecule was incubated in the presence of the CYP
inhibitor piperonyl butoxide (PB) [18]. On the other
hand, in vivo interference with the liver FMO-mediated
and/or CYP-mediated metabolism has been shown to
result in pronounced modifications of the pharmacoki-
netic behaviour of anthelmintically active BZDs metabo-
lites. For example, in sheep, co-administration of
oxfendazole with MTZ [29] increased the concentration
of the active moieties (fenbendazole and oxfendazole) in
the systemic circulation. Furthermore, MTZ and metyra-
pone, a potent inhibitor of the CYP system, improved
the plasma availabilities of albendazole metabolites fol-
lowing the administration of the pro-BZD netobimin to
sheep [30].

The pharmacokinetic interaction between albendazole
and IVM in sheep was recently demonstrated. Higher
albendazole sulphoxide plasma AUC was obtained after
the i.r. administration of ABZ co-administered with
IVM given s.c. to lambs [16]. Moreover, the co-adminis-
tration of TCBZ and IVM by the iv. route to sheep was
correlated with higher peak plasma concentrations of
TCBZ metabolites compared to those obtained following
TCBZ alone [17]. The mechanism implicated in TCBZ-
IVM interaction remains unclear. However, since both
compounds have been described as Pgp substrates
[8,9,14], it could be based on a drug-drug interaction via
a transporter(s)-mediated drug efflux mechanism. Addi-
tionally, considering that IVM [31] as well as TCBZ and
its metabolites [27] are strongly bound to plasma pro-
teins, a drug binding displacement may occur when
TCBZ and IVM are co-administered. Any interaction
between IVM and MTZ has been described in the
literature.

When TCBZ was administered by the i.r. route simul-
taneously with IVM (s.c.) and MTZ (i.m.) (current
experiment), the plasma concentration profile of TCBZ.
SO and TCBZ.SO, were similar to that observed after
the administration of TCBZ alone. In agreement with
our results, the presence of MTZ did not modify the
plasma pharmacokinetic behaviour of TCBZ metabolites
in sheep [19], which indicates that the interaction
between TCBZ and MTZ observed under in vitro condi-
tions is not achieved in vivo. Furthermore, while IVM
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Fasciola hepatica-infected sheep.
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Figure 1 TCBZ.SO plasma concentrations. Comparative mean (+SD) plasma concentration profiles for triclabendazole sulphoxide (TCBZ.SO)
measured after the administration of triclabendazole (TCBZ) either alone or co-administered with ivermectin (IVM) and methimazole (MTZ) to
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modifies the plasma pharmacokinetic behaviour of
TCBZ metabolites after its simultaneous i.v. administra-
tion [17], the presence of IVM (after its s.c. administra-
tion) did not affect the plasma pharmacokinetic
behaviour of TCBZ metabolites (after the i.r. administra-
tion of TCBZ). However, when we analyze the differ-
ences in IVM plasma concentrations according to the
route of administration, we can observe that after its iv.
administration, IVM reaches an initial plasma concen-
tration of 281.2 + 32.6 ng/ml, which was significantly
higher than its peak plasma concentration (21.3 + 13.3
ng/ml) obtained after the s.c. administration at the same
dose rate (Alvarez et al., 2008). It is clear that the route
of administration may influence the drug concentration
profiles over time at the different tissue/fluids. Thus, the
potential drug-drug interaction may be influenced by
the used route of administration of each compound

The WAAVP guidelines indicate that drug efficacy
should be expressed as highly effective (over 98%), effec-
tive (90-98%), moderately effective (80-89%) or

insufficiently active (less than 80%) [25]. According to
this guideline, the results obtained in the present trial
confirm the high level of resistance to TCBZ for the
Sligo isolate, which has been described previously
[22,23,32]. The experimental evidence, accumulated
after different ex vivo experiments [5-7,15], demonstrate
that altered drug efflux and enhanced metabolism may
contribute to the development of resistance to TCBZ in
F. hepatica. The co-incubation of TCBZ or TCBZ.SO
with IVM results in higher drug accumulation into
TCBZ-resistant F. hepatica compared to that observed
after the incubation of TCBZ or TCBZ.SO alone [7].
Furthermore, the rate of sulphoxidative metabolism of
TCBZ into TCBZ.SO was significantly higher (>40%) in
TCBZ-resistant flukes [6]. This metabolic pathway
described in the resistant flukes was significantly inhib-
ited by MTZ [6]. From the results obtained in the pre-
sent work, we can conclude that the co-administration
of TCBZ with a Pgp substrate/inhibitor (IVM) and a
metabolic inhibitor (MTZ) did not increase the clinical
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Figure 2 TCBZ.SO, plasma concentrations. Comparative mean (+SD) plasma concentration profiles for triclabendazole sulphone (TCBZ.SO,)

measured after the administration of triclabendazole (TCBZ) either alone or co-administered with ivermectin (IVM) and methimazole (MTZ) to
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Table 1 Plasma pharmacokinetic parameters (mean + SD) for triclabendazole sulphoxide (TCBZ.SO) and
triclabendazole sulphone (TCBZ.SO,) obtained after the intraruminal (i.r.) administration of triclabendazole (TCBZ, 10
mg/kg, i.r.) alone or co-administered with ivermectin (IVM, 0.2 mg/kg, s.c.) and methimazole (MTZ, 1.5 mg/kg, i.m.) to
Fasciola hepatica-infected sheep.

PHARMACOKINETIC PARAMETERS TCBZ.SO TCBZ.S0,
TCBZ alone Combined treatment TCBZ alone Combined treatment

Cmax (ug/ml) 14.0 + 0.85 156 £ 146 135+ 1.68 123 +£1.28

Trmax (h) 225+ 755 24.0 £ 490 39.0 + 6.00 420 + 693
AUCq(ug.h/ml) 6539 + 1406 650.7 + 1228 8682 + 2176 893.7 £ 1141
AUCq.o. (Ug.h/ml) 6615 + 1485 657.1 + 1194 9179 + 2706 9456 + 1293

T1/2el (h) 175 + 845 184 + 582 268 + 109 304 + 930

MRT (h) 388 £ 10.5 39.1 £ 503 613 +172 676 £9.71

T1/2for (h) 685+ 2.18 826 £ 1.22 123 £ 2.90 135+ 193

Cmax: peak plasma concentration; Tmax: time to the Cmax; AUC,.: Area under the plasma concentration vs. time curve from 0 to the detection time; AUCq...(ug.
h/ml): Area under the plasma concentration vs. time curve extrapolated to infinity; T1/2el: elimination half-life; MRT: mean residence time (obtained by non-
compartmental analysis of the data); T1/2for: formation half life.
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Table 2 Individual and mean fluke counts and clinical
efficacy (%) against triclabendazole (TCBZ)-resistant
Fasciola hepatica obtained after the administration of
TCBZ alone (10 mg/kg, i.r.) or co-administered with
ivermectin (IVM, 0.2 mg/kg, s.c.) and methimazole (MTZ,
1.5 mg/kg, i.m.) to Fasciola hepatica-infected sheep.

Untreated TCBZ Combined
control alone treatment
19 2 6
1 12 9
14 8 12
9 5 6
Arithmetic 13.25 6.75 825
mean
Efficacy* - 56% 38%

* The efficacy was calculated using geometric means.

efficacy of TCBZ against TCBZ-resistant F. hepatica
compared to the administration of TCBZ alone. This
result may have two potential explanations: a) an alter-
native mechanism of TCBZ resistance may play a criti-
cal role under in vivo conditions, or b) the interaction
between TCBZ-IVM-MTZ under our ixn vivo conditions
does not achieve adequate magnitude at the level of the
fluke to reverse TCBZ resistance. For example, the IVM
concentration (1 pg/ml) used in the ex vivo experiments
[7], is not achieved in bile after the s.c. administration
of IVM (0.2 mg/kg) in sheep.

Conclusions

In conclusion, the presence of IVM and MTZ did not
affect the disposition kinetics of TCBZ and its metabo-
lites. Thus, the combined drug treatment did not reverse
the poor efficacy of TCBZ against TCBZ-resistant F.
hepatica.
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