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Abstract

BiolVled Central

Background: Cattle twins are well known as blood chimeras. However, chimerism in the actual
hematopoietic progenitor compartment has not been directly investigated. Here, we analyzed fetal
liver of chimeric freemartin cattle by combining a new anti-bovine CD34 antibody and Y-
chromosome specific in situ hybridization.

Results: Bull-derived CD34* cells were detected in the liver of the female sibling (freemartin) at
60 days gestation. The level of bull-derived CD34* cells was lower in the freemartin than in its male
siblings. Bull (Y*) and cow hematopoietic cells often occurred in separate clusters. Around clusters
of Y*CD34* cells, Y*CD34- cells were typically observed. The thymi were also strongly chimeric at
60 days of gestation.

Conclusion: The fetal freemartin liver contains clusters of bull-derived hematopoietic
progenitors, suggesting clonal expansion and differentiation. Even the roots of the hematopoietic
system in cattle twins are thus strongly chimeric from the early stages of fetal development.
However, the hematopoietic seeding of fetal liver apparently started already before the onset of

functional vascular anastomosis.

Background

Cattle twins are well known as blood chimeras [1]. Vascu-
lar anastomosis occurs in about 92% of cases, from the
10- to 15-mm crown-rump stage or 30-35 days gestation
[2-5]. The blood is thus effectively mixed between the
fetuses for most of the 280-day gestation. Postnatally, the
twins permanently share composite blood types. This sug-
gests that hematopoietic stem cells (HSCs) are exchanged
and successfully engraft in the recipient [6]. However,
direct assessment of chimerism in the hematopoietic pro-

genitor compartment has not been possible due to techni-
cal limitations.

Donor-derived cells can be readily identified in a cow
born as a twin to a bull, as only bull cells contain a Y chro-
mosome. Such chimeric females are usually nonfertile
and are called freemartins [7]. We have previously used
genomic in situ hybridization to analyze the fates of bull-
derived cells in freemartin tissues [8]. Recently, we pro-
duced an antibody against the bovine sialomucin CD34
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for identification of cattle hematopoietic progenitors [9].
Here, we combine these tools to directly observe bull-
derived hematopoietic progenitors in the liver of an early
fetal freemartin.

Results and Discussion

Fetal liver and thymus were obtained from triplet fetuses
in a superovulated cow. The developmental age of the
fetuses was 60 days gestation [5]. At this stage of mamma-
lian development, the fetal liver is the major hematopoi-
etic organ [10-13]. The sex of the fetuses was determined
by Y-chromosome-specific in situ hybridization (Y-ISH) to
nonhematopoietic tissues. Two of the fetuses were male
(Fig. 1a; note the positive endothelial cells), while one
was confirmed as a chimeric female (Fig. 1b).

The liver of the freemartin fetus was then analyzed by
combining Y-ISH and anti-CD34 immunofluorescence
(Fig. 2). Livers from normal nonchimeric male and female
fetuses were used as positive (Fig. 1a) and negative (Fig.
1c) controls, respectively. Double positive (Y+CD34+)
cells were frequently observed in the freemartin liver, indi-
cating the presence of bull-derived hematopoietic progen-
itors. Y* and Y- cells often occurred in separate clusters,
suggesting local clonal expansion (Fig. 2a,d). Around
Y+*CD34+ clusters, Y*CD34- cells were typically observed
(Fig. 2b,c). These probably represent differentiating cells
derived from the Y* progenitors. Alternatively, these may
be nonhematopoietic stromal cells.

In the freemartin liver, 22 + 4.1% of CD34+ cells were Y
chromosome positive, while the proportions in the livers
of the male siblings were 31 + 5.4% and 38 + 6.7% (Table
1). The freemartin liver thus contained significantly less
double positive cells (p = 0.004 and p < 0.001, respec-
tively). The difference between the two bull fetuses was
not statistically significant. The thymus of the freemartin
fetus also contained high numbers of Y* cells. Here, the
differences between animals were less pronounced than
in the liver and masked by interlobular variation. There is
a strong correlation between levels of bull-derived white
blood cells in freemartin calves and their twin brothers
([14], and our unpublished results). The vascular anasto-
moses in multiple pregnancies enable lymphohematopoi-
etic tissues like the liver, thymus and the bone marrow of
each fetus to be populated from a common circulatory
pool of progenitor cells. The relatively low level of bull-
derived CD34+ cells in the female fetus in the current
study is compatible with the seeding of liver beginning
prior to the establishment of a functional anastomosis,
which normally occurs at around 30 to 35 days of gesta-
tion [2-5]. Alternatively, a portion of the immigrant cells
could reach the liver directly by migrating through the tis-
sues via a nonvascular route. The interlobular variation in
the level of bull-derived cells in the thymus probably
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Y-chromosome specific in situ hybridization to fetal bovine
liver. Dark nuclear spots represent Y chromosomes. A: Chi-
meric male. B: Chimeric female (freemartin). C: Normal
female (from another pregnancy). Erythrocytes were stained
with diaminobenzidine.

reflects corresponding fluctuation in the early circulatory
pool of migratory lymphoid progenitors. The interlobular
differences are no longer apparent in twin calves and juve-
nile animals ([14], and our unpublished results) as thy-
mus continuously accepts new lymphoid progenitors.

We have previously shown that the Y-ISH method applied
here is extremely specific and sufficiently sensitive [8]. No
false positives were detected in more than 1000 samples
of various tissues from normal females (not shown and
Fig. 1c). A proportion of bull-derived cells are not
detected, as the Y chromosome may be excluded from the
section. In normal bull tissues, generally 40-70% of cells
are labelled depending on the cell type (here, see Fig. 1a).

CD34 is a transmembrane glycoprotein commonly used
as a marker for enrichment of human hematopoietic stem
cells [15]. While the CD34+fraction is heterogenous and
contains also some committed precursors [16], CD34
remains as one of the best known markers for primitive
hematopoietic cells [17]. Recently, bovine CD34+ cells
were shown to be enriched for hematopoietic progenitors
as measured by BFU-E (burst-forming unit - erythroid)
and CFU-GM (colony-forming unit - granulocyte-mono-
cyte) readouts [18]. The polyclonal antibody used in our
study specifically recognizes bovine CD34 [9]. In addi-
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Figure 2
Combined Y-chromosome specific in situ hybridization and anti-CD34 immunofluorescence to fetal bovine liver. A-C:

Y*CD34* cell clusters in the chimeric female (freemartin). D: A Y-CD34* cell cluster in the chimeric female. E: Negative con-
trol without the primary antibody. Arrowheads: Y*CD34* cells. Asterisks: Y-CD34* cells.
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Table I: Quantification of bull-derived CD34* cells in the livers of bovine triplet fetuses. Proportions of Y-chromosome positive (Y*)
cells among liver CD34* cells in the 60-day fetuses are shown, as detected by in situ hybridization. fm = freemartin, n = number of

image fields analyzed.

Fetus n CD34* cells total % Y* (mean * SD) P

fm 7 820 21.8 4.1 <0.01 (bull I)
<0.001 (bull 2)

bull | 7 518 30954 <0.01 (fm)
>0.05 (bull 2)

bull 2 5 586 384+ 6.7 <0.001 (fm)
>0.05 (bull 1)

tion, it labels erythroid cells. These were excluded from
the analysis by pseudoperoxidase staining, as described in
Methods.

Conclusion

This is the first study to directly demonstrate bull-derived
hematopoietic progenitors in fetal freemartin cattle. The
fetal liver contains clusters of bull-derived cells, suggesting
clonal expansion and differentiation. The lower level of
bull-derived hematopoietic progenitors in the freemartin
vs. her bull siblings suggest that the seeding of fetal liver
starts already before the onset of vascular anastomosis.
The level of chimerism in the circulating migratory hemat-
opoietic progenitors thus only partially determines the
level of donor-derived fetal hematopoiesis. Despite this,
the freemartin hematopoietic system is strongly chimeric
already from early stages of fetal development.

Methods

Fetal tissues

Fetuses were obtained at an abattoir from a superovulated
cow. Superovulatory treatment was initiated 11 days after
estrus. The cow was administered intramuscularly (i.m.)
total of 360 mg of NIH-FSH-P1 (FolltropinR-V, Bioniche,
Ireland) divided in decreasing doses at 12 h intervals over
four days. Luteolysis was induced with an i.m. injection of
0.15 mg of dexcloprostenol (Genestran®, 0.075 mg/ml,
Vetcare, Salo, Finland) 60 h after the initiation of the
superovulatory treatment. The cow was artificially insem-
inated 48 and 60 h after the dexcloprostenol administra-
tion.

Animal experiments were approved by the local animal
welfare authorities.

Combined in situ hybridization and immunofluorescence
Combined Y-chromosome specific in situ hybridization
and CD34 immunostaining were performed essentially as
described previously [8].

Here, erythroid cells were first stained by their pseudoper-
oxidase activity using tyramide amplification and the
diaminobenzidine (DAB) substrate (Vector Laboratories),

as described previously [9]. Genomic in situ hybridization
was then performed, using microwave heating, protease
treatment, and a Y-chromosome specific oligonucleotide
probe carrying a digoxigenin label. The hybridized probes
were detected by alkaline phosphatase-conjugated anti-
DIG-F,;, fragments (Roche) and visualized using the NBT/
BCIP chromogen (Roche). CD34 was then detected by
immunofluorescence. The sections were subjected to heat-
induced antigen retrieval and a protease treatment, incu-
bated overnight in the polyclonal anti-bovine CD34 anti-
body, and then incubated in Alexa546-conjugated anti-
rabbit Ig antibody (Invitrogen). Finally, autofluorescence
was quenched by Sudan Black B (Merck).

The sections were examined and photographed using a
Leica DM4000 epifluorescence microscope equipped with
an Olympus DP70 camera. Merged images were prepared
in Adobe Photoshop.

Statistics

Y-chromosome positive and negative CD34+ cells in fetal
livers were counted in merged images of double-stained
tissue sections, using the Cell*P image analysis software
(Olympus). More than 500 CD34+ cells were counted in
each animal. Statistical significance was evaluated using
independent samples ¢ test.

Y-chromosome positive cells were also counted in fetal
thymi. Numbers of Y-chromosome negative cells were
estimated based on cell densities in hematoxylin-eosin
stained serial sections of the same tissues. In total, more
than 2000 thymic cells per animal were included in the
analysis.

Abreviations

BCIP, 5-bromo-4-chloro-3-indolyl phosphate; CD, cluster
of differentiation; DIG, digoxigenin; FSH, follicle stimu-
lating hormone; NBT, nitro blue tetrazolium; SD, stand-
ard deviation
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