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Hepatic progenitor cells in canine and feline
medicine: potential for regenerative strategies
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Abstract

New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is
important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to
repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of
adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review
describes recent developments in HPC research in dog and cat and compares these findings to experimental
rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the
HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the
potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested
for dogs as first target species for HPC-based trials.
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Introduction
Regenerative medicine is a rapidly developing field in
which diseased tissues are restored or regenerated. This
interdisciplinary field converges biomedical research, tech-
nology and clinical care, and is based on the concept of
employing intrinsic repair mechanisms within the tissue
itself. A hallmark of regenerative medicine is the clinical
use of stem cells, either by manipulation of endogenous
progenitor populations in situ, or by transplantation of
stem cells (autologous or allogeneic). Recent developments
in human stem cell therapy are highly visible and it appears
that this phenomenon is now also entering the veterinary
clinic. In April 2013, Nature published a report in its news
section on the growing use of stem cells in veterinary
medicine. Although popularity has increased, the efficacy
of many stem cell therapies is often unproven. New FDA
regulations in the USA are pending and if stem cells are
defined as a drug, application as a new treatment modality
requires evidence-based veterinary medicine [1].
Regenerative strategies in the liver seem redundant, as

adult hepatocytes are widely known for their large regen-
erative capacity. However, developments in the field of
hepatology make clear that in severe or chronic ongoing
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liver disease, regeneration by hepatocyte replication is
failing or absent [2]. In these specific circumstances liver-
specific stem cells, or hepatic progenitor cells (HPCs),
become activated and attempt to repopulate the liver.
HPCs are a reserve compartment of adult stem/proge-
nitor cells that reside within the liver and are found in
rodents, humans, dogs and cats [3-7]. HPC activation in a
diseased liver section is described as ‘ductular reaction’ or
‘bile duct proliferation’ in a histology report [8,9]. Diag-
nostically, it indicates severe liver disease. In addition, the
presence of progenitor cell markers in hepatocellular car-
cinoma (HCC) is an indicator of malignancy in humans as
well as dogs [10-12]. Conversely, HPCs hold potential as a
therapeutic target since they are committed liver stem
cells, show self-renewal capacity and can differentiate into
hepatocytes and cholangiocytes (Figure 1) [13]. Literature
on HPCs focuses on mouse, rat, and human. There are
few publications on canine HPCs and even fewer on cat
or other species and it is clear that the HPC response is
often referred to as ‘bile duct proliferation’ when observed
in liver histological sections [8,14]. In this terminology
there is no suggestion of the presence and activation of
stem cells, implying that the presence of HPCs in the liver
of dogs and cats is not widely recognized and that there is
no consensus on terminology in veterinary pathology.
An attempt to achieve this consensus in clinical and
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Figure 1 Anatomical location and differentiation capability of hepatic progenitor cells. A. Schematic representation of the anatomical
location of the hepatic progenitor cell (HPC) in the canal of Hering. Upon activation the normally quiescent HPCs will proliferate. Depending on
the disease and the concurrent changes in microenvironment HPCs will differentiate into either hepatocytes or cholangiocytes. PV: portal vein;
BD; bile duct; PA: portal artery; COH: canal of Hering; SD: space of Disse; BC: bile canaliculus; CV: central vein B. Immunofluorescent double
staining of panCK (red) and HepPar-1 (green) with a nuclear counterstaining (DAPI, blue) of a liver section of canine chronic hepatitis. Differentiation
into hepatocytes can be observed where the ductular reaction enters the parenchyma as the intermediate hepatocytes lose panCK immunoreactivity
and become positive for HepPar-1 [7].
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histological diagnosis of liver disease has been made
by the WSAVA Liver Standardization Group.
In this review, we will provide an overview of the role of

HPCs in liver regeneration and will address the most
important cellular and stromal players in HPC biology.
Although current knowledge about HPCs stems primarily
from experimental rodent and clinical human studies, we
will review available literature on HPCs in canine and
feline liver regeneration, and support these with recent
data from our own research. To conclude, we will discuss
the possible use of HPCs for clinical purposes in veterin-
ary regenerative medicine and for future research needs.

The role of HPCs in liver regeneration
Seventy percent of the liver consists of mature hepatocytes
located in the parenchyma. These adult hepatocytes are
normally quiescent, but enter the cell cycle when the liver
is damaged. They can restore liver function by compensa-
tory hyperplasia, an efficient and well-orchestrated physio-
logical response [15]. The large replicative potential has
designated hepatocytes as a stem cell of the liver in the
past [16], but their lack of differentiation potential does
not render them true stem cells [17]. This process of liver
regeneration has been thoroughly investigated by using
the partial hepatectomy (PHx) model in rodents as well as
in dogs, and has revealed the involvement of a plethora of
growth factors and cytokines [2,18-21]. Previous work by
our group demonstrates that in canine liver disease the
primary molecular pathways associated with liver regener-
ation (e.g. the hepatocyte growth factor (HGF) signaling
pathway) are highly comparable with those in rodents and
humans [22-24]. For the cat, the underlying molecular
mechanisms of disease and regeneration have not been
described.
Upon acute severe or chronic hepatic injury, hepatocyte

replication is impaired or exhausted. This impairment in
hepatocyte replication is linked to an increase in HPC
activation [2]. For example, in biopsies of human patients
with severe acute liver damage it was shown that more
than 50 percent hepatocyte loss results in a lower prolifer-
ative activity of the remaining hepatocytes, when com-
pared with less severe hepatic injuries. This was associated
with a pronounced HPC response, and positively cor-
related with symptoms of liver failure [25]. Hepatocyte
senescence occurs in chronic liver disease, which is char-
acterized by increased p21 expression (cell cycle inhibitor)
and shortened telomeres in the hepatocytes [26,27]. A
report from Liu et al. showed that when hepatocytes from
a cirrhotic donor rat were transplanted into a non-cir-
rhotic host liver, the cells engrafted but showed decreased
metabolic function and delayed proliferation due to repli-
cative senescence [28]. This phenomenon of hepatocyte
senescence was also observed in a mouse model of fatty
liver disease and a marked progenitor cell response was
observed in the affected animals when compared to their
wild type controls [29].
Hepatocyte senescence in chronic liver disease has not

been investigated in the dog and cat. However, immuno-
histochemical stainings for PCNA or Ki67 in various ca-
nine liver diseases show prominent proliferation of
hepatocytes after experimental PHx and mild acute
hepatitis, with moderate proliferation in chronic hepa-
titis. Conversely, HPC response was pronounced in
chronic hepatitis, moderate in mild acute hepatitis and
non-existent after PHx (Figure 2) [6,30]. The response
pattern of HPCs to various types of liver disease in the
dog appears to be comparable to human pathology and
rodent experimental findings, and recent studies suggest
a similar comparison for feline HPC response [6,7,31],
[Unpublished observations section: Valtolina et al.]. In
all species, HPC response correlates with the severity of
disease and is localized at the site of disease activity
[6,25,32,33]. The current consensus is that the HPC pool
is a reserve compartment in the liver that contributes to
regeneration when hepatocytes do not replicate suffi-
ciently to restore liver mass and function.

The hepatic progenitor cell
HPCs are present in healthy adult liver tissue and can be
found in small numbers in the Canal of Hering, the smal-
lest ramifications of the intrahepatic biliary tree, which
connect to the intralobular canaliculi. These structures are
located close to the portal area and are lined by both
cholangiocytes and hepatocytes [34]. This is the most
commonly described HPC niche, although there is still
debate about the exact origin of the HPC. A number of
studies state a possible biliary origin of HPCs [35-37];
other studies in humans describe extrahepatic peribiliary
glands as the prime location for HPCs [38,39]; and a few
publications even speculate on a hematopoietic origin of
HPCs, which is also highly debated [40-44]. For this re-
view we assume an HPC niche within the Canal of Hering,
as described in mouse, rat, human, and dog [3,4,7,45].
HPCs can be histologically characterized by a combination
of their specific morphology upon activation (ductular
reaction, DR) and by marker expression. Many classic
HPC-markers, such as keratin (K)7 and K19, have a
shared expression with cholangiocytes, which underlines
the significance of combining the interpretation of marker
expression with histological evaluation. Other reported
markers include CD133 and EpCAM, which are also ex-
pressed in other stem cells such as hematopoietic or
embryonic stem cells (for a review, see [46]). HPCs are
epithelial cells that can display mesenchymal characte-
ristics, depending on their activation status (e.g. need for
migration capacity). This is reflected in the expression of
CD29 (integrin β1) and CD44 (hyaluronic acid receptor
and co-receptor for hepatocyte growth factor), proteins



Figure 2 The first and second line of defense in canine liver regeneration. In liver sections proliferation is visualized by PCNA or Ki67
immunohistochemistry. K7 was used as a marker for hepatic progenitor cells. In healthy liver, both hepatocytes and HPCs are quiescent, indicated
by a few hepatocytes that stain for PCNA and only a few K7 positive cells close to the portal area (indicated with arrow, asterisk indicates bile
duct). After partial hepatectomy (PHx), liver regeneration occurs through hepatocyte proliferation (many PCNA positive hepatocytes indicated by
arrows) but the HPC remains quiescent (few K7 positive cells). In chronic hepatitis the proliferative capacity of hepatocytes is exhausted indicated
by a few Ki67 positive hepatocytes and a prominent ductular reaction (K7 positive, indicated by arrows) [6,30].
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involved in cell-matrix interactions and potentially critical
for cell migration. When reviewing HPC marker expres-
sion, interspecies differences emerge. Therefore, it is ne-
cessary to evaluate appropriate markers in the species of
interest and, in rodents, to consider the model used [47].
In Table 1 we provide an overview of available literature
on HPC markers in mouse, rat, human, dog, and cat. It is
important to take into account that the HPC niche can be
dynamic during its various states of quiescence, prolife-
ration and differentiation, which is reflected by marker
expression. Some markers (such as CD133 and Lgr5)
are expressed by only a subset of cells or only upon
activation [48,49].

Cells, signals and stroma in the HPC niche
An essential feature of stem cell biology is the niche, or
micro-environment, in which stem cells reside. It con-
sists of neighboring cells, extracellular matrix (ECM)
components and soluble and bound growth factors and
cytokines that govern self-renewal and maturation/dif-
ferentiation status [68]. The composition of the HPC
niche is well defined and adapts during specific types of
liver disease [44,69]. A number of cellular niche compo-
nents have been described, and below we discuss the
hepatic stellate cell, the macrophage and the ECM.

Hepatic stellate cells
Hepatic stellate cells (HSCs, or previously called Ito
cells) are found in the space of Disse and can transform
into myofibroblasts upon injury-induced activation.
Quiescent HSCs are important in vitamin A storage
(mainly as retinol-containing lipid droplets) and func-
tion as liver resident antigen presenting cells [70,71].
Activated HSCs produce ECM components such as
collagen and are the main contributors to fibrosis develop-
ment in chronic liver disease [72]. Interestingly, HSCs
are also an essential mediator of the HPC response
and the primary source of HGF, which stimulates hepato-
cyte and HPC proliferation and liver regeneration [73,74].
HSCs may also play a role in directing the differentiation
of HPCs, and co-culture studies of HSCs and HPC-like
cells indicate that this is probably mediated by both
soluble and membrane-bound factors or matrix com-
ponents [75].



Table 1 Comparison of HPC marker expression across species

Marker Mouse Rat Cat Dog Human

A6 [3,50]

ABCG2/BCRP1 [47] [47] [7] [7,48]

AFP [47,51,52] [53] [48,54-56]

Alb [57] [54,55,58]

Dlk/Pref-1 [59] [47]

c-kit [60] [48,56]

CD24 [50]

CD29 [51] [53] [54]

CD34 [60]

CD44 [49] [51] [53] [48,54,55]

CD45 [60]

CD73 [54]

CD90 [52,60] [54]

CD133/PROM1 [49,57,59,61] [51] [53] [48]

CLDN3 [55]

chrom-A [32,33]

EpCAM [50,57,59] [45,51] [55,62]

FN14 [59] [51] [53]

GPC3 [52]

Hedgehog proteins Schotanus (unpublished data) [55]

HNF4α [45] [53]

ICAM1 [55]

K7 [36,57] [32,63] [31] [6,7,53] [6,7,25,32,33,48,64,65]

K8 [33,54]

K18 [33,54]

K19 [3,37,57,59] [32,45,51,52,63,66] [6,53] [6,25,32,33,48,55,56,58,64,67]

Lgr5 [49]

MPK [47]

NCAM [32,48,55]

NES [54]

Nope [50]

OPN [37] [53]

OV6 [32,45,66] [32,33]

Sca1 [59]

SOX9 [36,37,49,59,61] [53]

vimentin [54]

References are indicated per marker per species. Expression was measured at mRNA and/or protein level and was reported for adult liver.
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Macrophages
Macrophages in the liver are a second important niche
component. Macrophages are activated upon hepatocyte
damage and are integral to the local immune response
[76]. Cytokines (e.g. TWEAK) produced by this inflam-
matory cell can modulate HPC behavior over large dis-
tances in the tissue [77,78]. HPC migration through the
parenchyma was significantly decreased in mice depleted
for macrophages with clodronate and subsequently
subjected to liver injury [79]. Boulter et al. corroborated
this finding by reporting a pivotal role of both activated
myofibroblasts and macrophages in murine HPC dif-
ferentiation. Mediated by Wnt and Notch signaling, re-
spectively, macrophages are involved in the specification of
hepatocyte differentiation upon hepatocellular injury and
myofibroblasts promote biliary differentiation of HPCs [80].
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These data support previous studies on the involvement of
Wnt and Notch signaling in human clinical HPC activation.
In human samples of acute hepatitis, a parenchymal liver
disease, the activated HPC niche showed increased Wnt
signaling. Active Notch signaling in the activated HPC
niche was mainly observed in biliary-type diseases [48].

Extracellular matrix
A third critical component of the HPC niche is the
extracellular matrix (ECM) and its specific composition.
In particular, laminin has been shown in both mouse
models and human fibrotic liver disease to play an im-
portant role in HPC biology. A laminin matrix develops
in many liver diseases and consistently surrounds the
ductular reaction. The deposition and remodeling of
laminin is required for HPC proliferation and migration
and it maintains the undifferentiated state of the HPCs.
It is only when the HPCs ‘escape’ from the laminin matrix
and enter the parenchyma that differentiation occurs
[44,81,82]. HPCs express markers such as CD29 and CD44,
clearly indicating that they have the molecular make-up to
communicate with their ECM [59,83]. Interestingly, ECM
remodeling is modified by HSCs and macrophages through
expression of matrix metalloproteinases (MMPs) and tissue
inhibitors of metalloproteinases (TIMPs), and is associated
with the extent of ductular reaction and fibrosis [76,84].
Several studies suggest a direct relation of HPCs with in-
creased fibrosis development and remodeling [85,86].
To date, there are only a few publications on HPC niche

components in dog. An immunohistochemistry study eva-
luated the inflammatory infiltrate and fibrosis in samples
of canine chronic hepatitis, and recorded an increased
amount of ‘bile duct proliferation’ in cases with marked
Figure 3 Cellular and stromal components of an activated hepatic pr
stainings of liver sections of canine chronic hepatitis and feline chronic neu
activated stellate cells are visualized using αSMA staining and macrophage
In canine and feline liver disease there is clear colocalization of activated HPC
observations section: Valtolina et al.].
inflammation and more advanced stages of fibrosis. A
positive correlation was found between the stage of fibro-
sis and the number of myofibroblasts and bile duct prolif-
eration [87]. The location and characteristics of quiescent
canine HSCs and portal myofibroblasts were characterized
in healthy liver. HSCs were found in the space of Disse as
previously described for other species [88]. A subsequent
study focused on samples of canine chronic hepatitis and
lobular dissecting hepatitis and reported a positive cor-
relation between the presence of tenascin-C, a specific
component of ECM, and stage of fibrosis, degree of in-
flammation and the number of K7 positive cells [89].
These findings confirm HPC activation upon severe liver
disease in the dog and suggest an association with stellate
cells and/or myofibroblasts, but do not exactly specify the
HPC niche components.
A publication on the relation between HPCs, HSCs,

fibrosis and disease severity in healthy and diseased liver
samples describes the presence of activated HSCs in
close vicinity to the ductular reaction in all types of liver
disease studied. In liver disease with fibrosis, HPC acti-
vation was most pronounced and both HPCs and HSCs
localized to the primary site of injury [6]. This was sub-
stantiated by a second study, using immunofluorescent
double stainings to evaluate HPCs and their niche in dif-
ferent types of liver disease (Figure 3). Activated stellate
cells, characterized by positive alpha-smooth muscle actin
(αSMA), were predominantly present in fibrotic liver dis-
eases, such as lobular dissecting hepatitis and chronic
hepatitis. HSCs colocalized with the prominent ductular
reaction and this colocalization was also seen for laminin
at the site of disease activity where it consistently surrounded
the ductular reaction. Total macrophage numbers were
ogenitor cell niche in dog and cat. Immunofluorescent double
trophilic cholangitis. PanCK or K19 was used as a marker for HPCs,
s using MAC387 staining. Nuclei were counterstained with DAPI (blue).
s with hepatic stellate cells, macrophages and laminin. [53, Unpublished
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significantly increased in chronic hepatitis and lobular dis-
secting hepatitis. Although macrophages were identified
throughout the parenchyma, they appeared to cluster at
the injury site; periportal in acute hepatitis and in the
fibrotic septa in chronic hepatitis [53].
To our knowledge no literature available for cats on the

interaction or co-occurrence of HPCs, HSCs, macro-
phages and/or ECM. In light of the similar presence of
HPCs in liver disease in cats, one would also expect a
highly activated and comparable HPC niche in these ani-
mals [14,31]. Recent unpublished data indeed show similar
involvement of HSCs, macrophages and laminin in the fe-
line HPC niche (Figure 3) [Unpublished observations sec-
tion: Valtolina et al.].

HPC activation in different types of liver disease in man,
dog and cat
In the following section, the HPC response is described
as it occurs in various forms of hepatitis, biliary disease
Figure 4 Hepatic progenitor cell activation in liver disease in dog and
types of liver disease in dog and cat. HPCs are activated in acute and chron
ductular reaction depends on type and severity of disease. Canine extrahep
representative biliary diseases. The lower panel shows K19 positive hepatoc
section: Valtolina et al., Van Sprundel et al.].
and liver tumors. Figure 4 shows a representative se-
lection of diseased canine and feline liver sections
stained for K19.

Acute hepatitis
In human hepatology, severe acute parenchymal liver
failure is most often caused by viral infections (e.g.
hepatitis A, B, E) and ingestion of toxic substances (e.g.
acetaminophen, Amanitum mushrooms) [90,91]. Massive
hepatocyte loss triggers an HPC response, and is most ap-
parent in human subjects suffering from acute submassive
necrosis [25,64]. This response will rapidly develop and
already after 24 hours a prominent ductular reaction can
be observed. Proliferation is followed by differentiation,
during which the ductular reactions give rise to ‘hepato-
cyte-like cells’ (also identified as intermediate hepatocytes)
that spread into the parenchyma [32].
In the dog and cat, acute liver injury most often pre-

sents as (mild) acute hepatitis and is characterized by
cat. K19 immunohistochemistry of liver sections from different
ic hepatitis and in biliary disease. The extent and location of the
atic cholestasis and feline neutrophilic cholangitis were selected as
ellular carcinoma in dog and cat. [6,11, Unpublished observations
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inflammation and apoptosis/necrosis. Fulminant hepatitis
is rarely diagnosed in the veterinary clinic. Etiology is not
always known but numerous causative agents have been
described. Similar to human hepatology, viral infections
can cause acute hepatitis (e.g. canine adenovirus I, canine
or feline herpesvirus) and ingestion of toxic substances
(iatrogenic or accidental) can result in considerable hepa-
tocellular damage (e.g. Amanitum mushrooms, Cyano-
phyceae algae, acetaminophen, and benzodiazepines) [9].
The involvement of the HPC compartment in canine and
feline acute hepatitis has been described in only very few
studies. For canines, a ductular reaction has been observed
localized to the site of injury (primarily periportal in acute
hepatitis), accompanied by intermediate cells (recognized
among others by submembranous K7 staining), suggesting
early differentiation [7]. In addition, colocalization of acti-
vated HPCs and HSCs has been observed [6]. Ijzer et al.
published the only paper specifically describing HPC be-
havior in liver disease of six cats with acute or fulminant
hepatitis. In the periportal areas, there was evidence of an
extensive ductular reaction, branching into the paren-
chyma, containing mitotic figures [31].

Chronic hepatitis
In humans, chronic hepatitis results in morbidity and
mortality world-wide. Important causes are viral infections
(e.g. hepatitis C), alcohol abuse, and autoimmune disease
[92]. In human chronic hepatitis, the HPC compartment
is activated when hepatocyte replication becomes exhaus-
ted. A ductular reaction develops and expands with
disease severity [33,65,67].
In veterinary medicine, chronic hepatitis is seen pre-

dominantly in dogs and infrequently in cats [93,94].
Fibrosis is the histological hallmark and is accompanied
by inflammation and hepatocyte apoptosis/necrosis. Re-
generation will occur to some extent; in cirrhosis this is
represented by hyperplastic nodules of newly formed
hepatocytes which emerge between the fibrotic septa [9].
HPCs and their niche are activated and a clear ductular
reaction develops at the site of disease activity, which
is usually in and adjacent to the fibrotic septa. HSCs
are also strongly activated, differentiate into myofibro-
blasts, and are found at the site of fibrosis surrounding the
activated HPCs [6,7]. Chronic hepatitis in dogs is perhaps
best characterized as a degenerative process with unsuc-
cessful regenerative attempts in most cases.

Fatty liver disease
Human non-alcoholic steatohepatitis (NASH) and fatty
liver disease ((NA)FLD) are increasingly common hepatic
disorders associated with obesity and insulin-resistance
[95]. Storage of large quantities of fat and subsequent
inflammation can ultimately result in liver fibrosis, cirrho-
sis and HCC. Human FLD is associated with increased
oxidative stress and inhibition of hepatocyte replication. A
strong HPC response is observed, which correlates
with disease severity and fibrosis [96]. A recent study
by Nobili et al. showed similar results in pediatric
NASH and NAFLD and revealed adipokine signaling
in activated HPCs, suggesting an active (or reactive) role
in the steatosis process [97].
In cats, one of the most common hepatic parenchymal

diseases is hepatic lipidosis, a fat storage disease. Hepa-
tocytes accumulate fat vacuoles, microscopically appre-
ciated as micro- or macrovesicular steatosis [98,99]. In
sections of feline hepatic lipidosis a ductular reaction
was observed, which extended into the periportal paren-
chyma and was associated with intermediate hepatocytes
[31]. Awareness about the existence of feline HPCs
during hepatic lipidosis and the appropriate terminology
describing their histological appearance are currently
lacking [98]. Since they possibly share a common eti-
ology of metabolic dysfunction, the histological simi-
larity of feline lipidosis to human NASH and NAFLD
at the tissue level is currently under investigation. It
appears that these fat-storing hepatic diseases have a
comparable histopathological reaction pattern to inflam-
mation and fibrosis [Unpublished observations section:
Valtolina et al.].

Canine lobular dissecting hepatitis
Lobular dissecting hepatitis (LDH) is unique only to
dogs, and displays extraordinary clinical behavior and
histology. LDH has an acute disease progression but is
histologically characterized as a chronic hepatitis, due to
the occurrence of extensive fibrosis. Interestingly, in
LDH a massive and unrivalled expansion of the HPC
pool is seen dispersed throughout the parenchyma
[6,9,89]. When the HPC niche was studied in detail
using laser-microdissection, expression of self-renewal
and progenitor markers was present, but markers of
hepatocyte differentiation were absent. This is indicative
of a strong proliferative response that is not followed
by appropriate differentiation. Recent work showed that
pre-existent liver fibrosis impaired liver regeneration upon
partial hepatectomy in mice. Impaired liver regeneration
was associated with increased HPC proliferation and
de novo fibrogenesis. Interestingly, suppression of the
HPC response attenuated fibrogenesis and restored
regeneration by mature hepatocytes [100]. Perhaps in
LDH the high amount of fibrosis somehow interferes
with the maturation/differentiation of the cells in the
ductular reaction, suggesting a disturbed niche biology
[53]. Further research is needed to clarify the poten-
tial contribution of HPCs to fibrosis progression and
their potential negative contribution to liver regeneration.
LDH could be a very interesting disease to investigate this
phenomenon [85,86].
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Biliary disease
In human biliary disease, a local regenerative response
results in bile duct proliferation, most probably com-
prising of both HPC activation and proliferation of pre-
existing bile duct cells [32]. As markers for HPCs often
overlap with cholangiocyte markers, it can be challen-
ging to ascertain the specific origin of newly formed bile
ducts. However, in the case of biliary cirrhosis specific
stainings suggested HPCs to be the cell of origin to
repopulate and regenerate injured bile ducts [101].
Canine biliary diseases include extrahepatic cholestasis
and destructive cholangitis. These diseases present with an
activated HPC niche but are not often diagnosed [53,102].
In felines, biliary disease is frequently seen, most com-
monly lymphocytic and neutrophilic cholangitis, and are
associated with inflammatory cell infiltrates [94,103,104].
Lymphocytic cholangitis is a chronic disease that results in
portal fibrosis and bile duct proliferation [14,102]. In a
large cohort of feline liver biopsies Gagne et al. observed
bile duct proliferation in 26 out of 27 cats with lympho-
cytic cholangitis. Both the extent of bile duct proliferation
and the degree of fibrosis were positively correlated with
the severity of the inflammatory infiltrate. In 10 out of 11
cats with neutrophilic cholangitis, an acute biliary dis-
ease, bile duct proliferation was observed [94]. Similar
to humans and dogs it is likely that bile duct proliferation
in cats involves both cholangiocytes and HPCs.

Liver tumors
An emerging research area focuses on the association
between HPCs and liver tumors, both in man and dog.
This association is plausible, as HPCs have self-renewal
capacity and migratory potential, which is required for
invasion and metastasis [105]. However, the presence of
HPC features within a liver tumor can be explained by
more than one theory. First, HPCs are described as a
possible cell of origin for hepatocellular carcinoma (HCC)
and cholangiolocellular carcinoma (CLC, a specific type of
cholangiocarcinoma), although no one has yet directly
shown this lineage relationship [10,106-109]. Second, the
presence of HPC markers in HCC is compatible with
the possible dedifferentiation of resident hepatocytes
that undergo malignant transformation, resulting in
the expression of immature markers like K19 on HCCs
[106,110].
There is clinical evidence that expression of HPC

markers in human HCC is a negative prognostic indicator,
as these tumors show a higher recurrence rate and short-
ened patient survival [10,111]. In dogs, the presence of
progenitor (K19) and malignancy (glypican-3) markers
was evaluated immunohistochemically, and related to a
histological grade and a staging score (including local or
distant metastasis). The occurrence of K19 positive HCCs
was 12%, which resembles the prevalence in humans. This
K19 positive subset was poorly differentiated and more
likely to metastasize, suggesting that K19 may be a malig-
nancy marker in canine HCC [11]. However, for both dog
and human it is still unclear whether HPCs are the cell of
origin in these types of liver cancer. For liver tumors in
cats, an association with HPC characteristics is under
investigation by our group [Unpublished observations
section: Van Sprundel et al.]. Patnaik et al. demonstrated
in a retrospective study of 47 feline liver tumors that the
majority of neoplasms were epithelial and primarily of
biliary origin [112]. Further research is required to under-
stand whether HPC markers are a prognostic indicator in
feline liver tumors.
Ultimately, while further studies are required to reach

a definitive answer on the cellular origin of liver tumors,
the association between HPC markers and malignancy is
now widely acknowledged.

HPCs in regenerative medicine
For severe parenchymal or biliary liver diseases, defini-
tive and curative treatment options are currently lacking
in both human and veterinary medicine. In humans, the
final treatment option is a liver transplantation, but
many patients die while on the waiting list (for actual
data on US organ transplants see UNOS website [113]).
Moreover, not all grafts remain viable after transplant-
ation (e.g. due to rejection), warranting extensive im-
munosuppression or a second transplantation if possible.
In dog and cat, liver transplantation is not performed.
Since the etiology of liver disease is often not known,
current therapy in veterinary medicine is restricted to
symptomatic treatment and the use of corticoids
[114-117]. To be able to improve patient survival and
disease outcome, new curative therapies for advanced
liver disease are required. Hepatocyte transplantations
have been studied most extensively and have been per-
formed in human patients with metabolic liver disease
[118-120]. The use of hepatocytes does, however, not
solve the problem of donor-shortage. Additionally, hepa-
tocytes cannot be expanded to reach sufficient numbers
for transplantation [121] which also inhibits the estab-
lishment of cell banks. The development of ’humanized
livers’, where murine or porcine host livers are used as
an in vivo bioreactor to grow (human) hepatocytes, are
potential ways to bypass this problem [122-124], but
further research is needed to explore its potential for
therapeutic use. Especially for veterinary medicine this
approach could raise ethical questions. HPC-based treat-
ment modalities could avoid the problems encountered
when using hepatocytes for transplantation. HPCs can
self-renew, generating a stable pool of progenitors, and
can differentiate into newly generated hepatocytes or cho-
langiocytes which restore liver function [13,125]. There
are two regenerative strategies that could be employed in
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the (veterinary) clinical use of HPCs and we will briefly
discuss them in the light of previous studies (Figure 5).
The first option would be to target a patient’s own

HPC population in vivo by specific drugs or small mole-
cules. This elegant approach is quick, minimally invasive,
does not carry risk of rejection, and has the potential to
be relatively cost-effective. The goal would be to activate
a patient’s own HPC pool and to boost proliferation
and/or differentiation depending on the type of liver dis-
ease. A prerequisite is that the essential signals required
to mount an HPC response are known, and that these
signals are specific to HPCs and do not, for example, ac-
tivate HSCs and cause excessive fibrosis. Additionally,
one needs to consider that overstimulation of the HPC
pool might have unexpected and undesirable side effects.
HPCs have the capacity of regenerating the liver but in
many diseases this is too little and too late. Possibly in
these cases specific pathological or molecular characteris-
tics somehow interfere with HPC proliferation or differen-
tiation. Therefore, any signal that is found to benefit the
HPC response must be reviewed in a clinical and disease-
specific perspective. This highly promising but very chal-
lenging approach is currently unexplored in all species.
Once these signals are unraveled this approach may be-
come a primary focus for the development of new hepatic
regenerative treatments.
Figure 5 Application of hepatic progenitor cells in regenerative medi
progenitor cells in veterinary medicine. In vivo targeting of a patient’s endo
elegant approach. Another option is ex vivo expansion of HPCs in culture, p
cell transplantation. Upon differentiation HPCs can also be used for disease
inborn error of metabolism it is possible to study mechanisms of disease a
The second option is to use differentiated HPCs as a
cell source for transplantation, either autologous or allo-
geneic. Technically it is possible to harvest autologous
HPCs from a liver biopsy, expand them in culture and
differentiate them into hepatocytes for transplantation
purposes. In case of inherited metabolic disease, gene
correction could be applied before transplantation. HPCs
can be cultured in vitro upon isolation from primary
canine liver tissue as shown by Arends et al. [126]. Using a
plate-and-wait method, they were able to grow colonies of
canine HPCs from the non-parenchymal fraction of a
digested liver sample within a few weeks. Unfortunately,
in cases of urgent clinical needs, this culture method as an
autologous source for transplantation would not be feas-
ible. In chronic cases, however, this would be an option
and would circumvent rejection issues. Optimization of
culture conditions of primary HPCs is needed in addition
to characterization of cells in culture, most importantly,
self-renewal and differentiation capacity and stability. A
promising recent development is the discovery of Lgr5
positive cells in injured mouse livers that can be FACS
sorted or isolated as ‘ducts’ and form organoids upon 3D
culturing [49,127]. These cells rapidly expand, have the
capacity to differentiate into hepatocytes, and can be kept
in culture for more than a year, while maintaining their
genomic integrity. An important caveat in clinical HPC
cine. Schematic representation of the potential use of hepatic
genous HPC population with small molecules would be the most
otential differentiation into hepatocytes and subsequent use in clinical
modeling. For example, by culturing HPCs from a patient with an
nd to perform drug discovery screens.



Figure 6 Translational medicine in veterinary and human
hepatology. In HPC biology inter-species differences and similarities
can be found. When reviewing HPC markers, niche characteristics
and HPC response in health and disease, dogs share many similarities
with man. Furthermore, dogs can bridge the gap between experimental
rodent studies and human clinical application. Human medicine
could benefit from its canine counterpart by appreciating the dog
as a target species as well as a large animal model for the development
of new therapies.

Kruitwagen et al. BMC Veterinary Research 2014, 10:137 Page 11 of 15
http://www.biomedcentral.com/1746-6148/10/137
transplantation are the costs associated with the expan-
sion of HPCs in culture. In veterinary medicine this must
be balanced against the amount a pet owner is willing to
pay for treatment. The costs will be highly influenced by
the number of patients that could benefit from a new ther-
apy [128]. In a UK study, the prevalence of chronic hepa-
titis in a dog population from first opinion practices was
12% [129], supporting an economical niche to develop
new therapeutics for veterinary liver disease. The fact that
treatment of dogs may serve as pre-clinical studies for
human drug development could provide an economically
interesting approach for pharmaceutical industries. The
predicted doubling frequency of end stage liver disease in
man worldwide shows the medical and economic rele-
vance to design new therapies for human liver disease
[113]. As stem cell-based therapies are being developed
for multiple organs and diseases, advances are likely to be
made in the near future [128].
When planning the use of HPCs for cell transplantation,

three variables are essential: cell number, engraftment
potential and differentiation state. The cell number admi-
nistered may be critical for functional recovery of a
damaged liver. An indication of the number necessary
can be derived from hepatocyte transplantation studies.
Jorns et al. provided a concise literature overview of
hepatocyte transplantations in various species, including
human, which may be most relevant for application in vet-
erinary medicine [130]. The number of transplanted cells
depends on the infusion rate and injection route, and can
be divided over multiple sessions. It is accepted that for
correction of a genetic metabolic disease, 2-5% repopula-
tion is sufficient to correct the phenotype [13]. Generally,
billions of hepatocytes are used for intraportal delivery in
human. Engraftment potential of hepatocytes may be very
different than that of stem cells. In addition, the host
environment of the diseased liver, and thus the type of
disease, determines successful engraftment and therefore
the number of cells needed for functional recovery. Fi-
nally, the differentiation status of the HPCs is important
for the success of transplantation. The stage of maturation
may determine homing and engraftment ability of HPCs.
For example, undifferentiated HPCs have the capacity to
migrate [33,79]. On the other hand, a cell in a more differ-
entiated state with developing hepatocyte characteristics
might pose an attractive clinical application in cases of
acute liver failure.
With respect to HPC transplantation, metabolic diseases

will probably be the first to be addressed in both dog and
human. In dogs, transplantation of hepatocytes has been
reported in a number of studies, mostly in Dalmatians as
a model for metabolic disease (hyperuricosuria) [131-133].
In these types of diseases, improvement of the phenotype
can be accomplished by providing a relatively low number
of cells from a healthy donor, or upon genetic correction
of autologous cells. The COMMD1 deficient dog pre-
senting with copper storage disease resulting in chronic
hepatitis, provides an excellent model for clinical HPC
transplantation trials [134,135]. Such studies will reveal im-
portant information on efficacy and safety of HPC trans-
plantation and will facilitate translation of this therapeutic
strategy to the veterinary and human clinic. Diseases with a
more complex pathophysiology, such as chronic hepatitis
involving fibrosis and remodeling of tissue architecture, will
be more challenging. These types of diseases will require a
multimodal approach targeting not only hepatocyte re-
generation but also fibrosis resolution and modulation of
inflammation. Current developments in anti-fibrotic ther-
apies and the co-transplantation of mesenchymal stem cells
or macrophages to modulate inflammatory responses may
aid the development of new regenerative therapies for
chronic and severe liver diseases in man and dog [136,137].

Conclusions
There is much promise in the use of HPCs in regenera-
tive therapies for both human and veterinary medicine.
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Fundamental studies in toxic and genetic rodent models,
together with (comparative) histo-pathological studies in
humans have determined HPCs to be clinically relevant.
In canines, important molecular and cellular reaction
patterns in particular liver diseases are reported, and
characterize HPCs and their niche. Overall, HPC marker
expression in dogs is comparable to that of humans, as
is response to injury and the cell types involved in
modulating HPC response. This suggests that the thera-
peutic potential of these cells is similar in dog when
compared to man, and opens up the potential for devel-
oping new strategies for currently untreatable canine
liver diseases (Figure 6).
On the other hand, there is still much to be conducted

in feline hepatology. As with canine investigations, studies
on cat liver disease and pathology would benefit from
focusing on the molecular mechanisms of disease and
regeneration in comparison to human and canine models,
including the presence and characteristics of feline HPCs.
In addition, feline lipidosis and cholangitis, diseases that
are rare in dogs, may provide important models for
human steatohepatitis and biliary disease.
We conclude that humans and dogs share many simi-

larities with respect to liver disease and HPC biology,
especially since dogs have spontaneous liver disease that
equally requires treatment. With the emergence of regen-
erative medicine, veterinary and human medicine have the
unique opportunity to advance potential therapies and
technologies together. In particular, human medicine
could greatly benefit from HPC-based trials in dogs.
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