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Abstract 

In the realm of animal breeding for sustainability, domestic camels have traditionally been valued for their milk 
and meat production. However, key aspects such as zoometrics, biomechanics, and behavior have often been 
overlooked in terms of their genetic foundations. Recognizing this gap, the present study perfomed genome-wide 
association analyses to identify genetic markers associated with zoometrics-, biomechanics-, and behavior-related 
traits in dromedary camels (Camelus dromedarius). 16 and 108 genetic markers were significantly associated (q < 0.05) 
at genome and chromosome-wide levels of significance, respectively, with zoometrics- (width, length, and perimeter/
girth), biomechanics- (acceleration, displacement, spatial position, and velocity), and behavior-related traits (general 
cognition, intelligence, and Intelligence Quotient (IQ)) in dromedaries. In most association loci, the nearest protein-
coding genes are linkedto neurodevelopmental and sensory disorders. This suggests that genetic variations related 
to neural development and sensory perception play crucial roles in shaping a dromedary camel’s physical charac-
teristics and behavior. In summary, this research advances our understanding of the genomic basis of essential traits 
in dromedary camels. Identifying specific genetic markers associated with zoometrics, biomechanics, and behavior 
provides valuable insights into camel domestication. Moreover, the links between these traits and genes related 
to neurodevelopmental and sensory disorders highlight the broader implications of domestication and modern 
selection on the health and welfare of dromedary camels. This knowledge could guide future breeding strategies, 
fostering a more holistic approach to camel husbandry and ensuring the sustainability of these animals in diverse 
agricultural contexts.
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Background
 Recognized for their sustainability, domestic camels 
(dromedaries or one-humped camels (Camelus drom-
edarius) and Bactrian or two-humped camels (Camelus 
bactrianus)) are increasingly raised for various produc-
tive purposes worldwide. With a notable demand for 
camel milk and meat, efforts and strategies focus on 
growth and milk yield traits. This often sidelines traits 
like zoometrics, biomechanics, and behavior in genetic 
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improvement programs for these animals [1, 2]. There-
fore, standardizing the incorporation of these traits 
into breeding criteria—linked to physical and behavio-
ral performance—will enhance the potential of camels. 
This is especially relevant for camel breeds and popula-
tions used in beauty contests, athletic pursuits (racing 
and riding), and close interaction with humans (assisted 
interventions and routine husbandry practices) [3, 4].

In conservation and/or breeding programs, two 
essential data registries are crucial: phenotypic records 
of the traits of interest and genealogical information 
[5]. Estimating individual breeding values using phe-
notypic and pedigree information is limited for camels 
due to the lack of traditional pedigrees [6, 7]. To over-
come this technical constraint and enhance genetic 
advancement, efforts are being made to reduce genera-
tion intervals [8], which can be achieved by implement-
ing genomics-based selection programs.

Progress in genomic research has provided powerful 
tools forexamining the genetic composition of complex 
traits and developing selection panels based on genetic 
markers. This includes single-gene tests [9] and more 
complex arrays of genetic markers spanning the entire 
genome, which are known to correlate with specific 
traits [10]. Genetic polymorphisms of single candidate 
genes have been proposed in dromedary camels for 
economically relevant traits such as coat colour [11], 
udder and body measurements [12–14], and reproduc-
tive performance [15].

Complex genetic breeding programs can also be 
developed using genome-wide association studies 
(GWAS). For instance, Bitaraf Sani, Zare Harofte [6] 
identified 99 genome-wide significant SNPs associated 
with birth weight, daily gain, and body weight in Ira-
nian dromedaries. Within the same animal population, 
9 significant SNPs located in 16 candidate genes and 
13 significant SNPs located in 24 candidate genes were 
associated with white and black coat color, respectively 
[16]. Additionally, Karimi, Burger [17] found 59 SNPs 
significantly associated with 12 morphometric traits 
and classified 37 candidate genes in Iranian dromedar-
ies. Moreover, 111 SNPs were identified as significantly 
associated with weight-for-age traits in Pakistani drom-
edary camels [18].

However, the genetic basis of other functional traits of 
economic relevance, such as athletic performance and 
behavioural features, remains unexplored [19]. From an 
evolutionary perspective, identifying genomic regions 
associated with specific phenotypic traits can help dis-
entangle the effects of early domestication and historical 
selective breeding on camel health and welfare, based on 
the biological functions of the associated genes (‘domesti-
cation syndrome’ hypothesis) [20].

The present study performs genome-wide association 
studies to identify genomic regions that may regulate 
the expression of traits such as zoometrics, biomechan-
ics, and behaviour in dromedary camels. The results 
will complement the list of genetic variants previously 
reported to be associated with morphometric traits 
in dromedaries [17] afterscreening a larger number of 
animals and a higher-density SNP array. They will also 
serve to explore the genomic basis of biomechanical and 
behavioural traits in this livestock species for the first 
time. Overall, the insights gained from this research will 
inform future breeding programs, guide conservation 
efforts, and enrich our understanding of the genomic 
features of early domestication and modern selection in 
camels.

Results and discussion
Altogether, the results from the present study are consist-
ent with the well-documented concept of ‘domestication 
syndrome’ in mammals. This term refers to a set of mor-
phological, physiological, and behavioral traits that result 
from genetic changes associated with domestication. 
Specifically for Old World camels, Fitak, Mohandesan 
[21] detected recent, positive selection for 107 candi-
date genes linked to neural crest deficiencies and altered 
thyroid hormone-based signaling in camel species. Such 
candidate genes underlie traits collectively recognized 
within the just-referred ‘domestication syndrome’. Upon 
examination, we found that none of the candidate genes 
identified in our study have been reported as genes under 
positive selection in the dromedary camel populations 
in existing literature [22–24]. Hence, our study contrib-
utes novel insights into candidate genes that may be rel-
evant for understanding the effects of domestication and 
modern selection in dromedaries. Furthermore, the fact 
that none of our candidate genes have been reported as 
under positive selection in previous studies highlights 
the genetic diversity among dromedary camels inhab-
iting at different locations and suggest that different 
populations may experience unique selective pressures 
or adaptations. In turn, we emphasize the importance 
of examining different camel populations to understand 
their specific evolutionary trajectories.

Genotypic clustering reflects intergroup differentiation 
and slight introgression
Principal Component Analysis (PCA) based on 50  K 
genotypes revealed that raising farm is a significant clus-
tering criterion for study dromedary camels (Fig. 1; PC1 
and PC2 explained 16.5% and 8.4% of genetic variation, 
respectively). For example, farms 2 and 3 are the largest 
reserves of Canarian dromedaries, and they are geneti-
cally connected through the exchange of living animals 
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for breeding purposes. At these farms, dromedaries are 
sorted into subgroups based on their sex, age, and pheno-
typic characters. Farm-specific breeding programs might 
have led to the selection of distinct genetic lines, thereby 
causing the observed genetic differentiation between ani-
mals within Farm 2 and 3. Additionally, environmental 
factors and selective pressures unique to each farm could 
also contribute to the genetic divergence observed within 
these subpopulations. These farms are the primary source 
for living animals of Farm 1 [25, 26] and the rest of Europe. 
In contrast, Farm 4’s genetic connection with the others 
is less frequent, which may explain its relatively unique 
genetic structure. Such genetic differentiation among 
Canarian camel’s breeding farms coincide with the results 
of previous researches aimed at studying phenotypic 
diversity for camel zoometrics on the same study popula-
tion [27]. Instead, the factor ‘farm’ did not have a signifi-
cant discriminatory effect on camel biomechanical and 
behavioral performance [28, 29]. Camel gait is a highly 
conserved ancestral trait [30]. Concerning behavior, this 
trait tends to be evolutionarily conserved across popula-
tions [31], especially when environmental conditions and 
management practices are relatively uniform across farms. 
Since behavioral traits are often influenced by essential 
genetic factors mostly linked to survival and adaptation, 
they can remain stable despite genetic differentiation.

This clustering patternalso serves to explain the pheno-
typic diversity encountered in the study sample. Descrip-
tive statistics (minimum (Min), maximum (Max), mean, 
and standard deviation (SD)) for the 12 phenotypes 

recorded in 120 dromedary camels are presented in 
Table  1. High variability, particularly for body morpho-
metrics and Intelligence Quotient, was noted. Both envi-
ronmental pressures and functional specialization at 
domestic scenarios significantly influence the morphol-
ogy and psyche of the animals [32]. However, physical 
performance traits showed little variation, likely due to 
the conserved nature of camel trait [30].

Overall, the structure of the study animal population 
suggests that human-driven selection of dromedary cam-
els maintainsassortative mating for size and behavior 
akin to natural populations [33]. Under the condition of 
gregarious animal species, assortative mating is crucial 
for optimizing energy investment towards reproduction-
and survival in arid environments.

Linkage disequilibrium pattern supports the suitability 
of the study population and SNP array density for accurate 
high‑resolution genomic mapping
The LD decay plot is shown in Fig.  2. Moderate LD 
(r2 = 0.20) is present at 100  kb between markers. This 
finding aligns with the LD patterns described by Bah-
bahani [34], where similar distances for moderate LD 
(r2 = 0.25) were observed. Differences in LD patterns may 
arise from variations in sample size, genomic coverage, 
and genotyping methods.

Assuming a size for camel genome of 2.2 Gb, achiev-
ing saturation of the genome with an average resolution  

Fig. 1  Principal components analysis (PCA) results displaying the clustering of 120 Canarian dromedary camels raised at 4 farms according to their 
50 K genotypes
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of 100  kb would necessitate 22,000 fully informative 
SNPs. It means that a minimum of 22,000 SNPs are 
required to cover the genome and capture LD infor-
mation for genome-wide association studies in cam-
els [35]. Our study exceeds this threshold, with 49,632 
SNPs retained after quality control, and all 120 animals 
included in the analysis.

Variations in camel body morphometrics might correlate 
to increased prevalence and incidence of sensory 
and cognitive impairments
Seven SNPs at genome-wide level (Fig.  3) and twenty-
nine SNPs at chromosome-wide level were significantly 
associated with zoometrics-related traits in dromedary 
camels. Twenty-three different candidate genes were 
identified (Table  2). None of these genes overlap with 

Table 1  Descriptive statistics (minimum (Min), maximum (Max), mean, and standard deviation (SD)) for the zoometrics, biomechanics 
and behaviour traits recorded in 120 dromedary camels

Phenotype category Trait/unit of measurement Min Max Mean ± SD

Zoometrics Length (cm) 48.22 80.98 70.46 ± 5.03

Heigth (cm) 54.93 77.03 64.66 ± 3.96

Width (cm) 26.79 41.78 36.01 ± 2.72

Perimeter/girth (cm) 52.06 83.77 72.02 ± 5.18

Biomechanics Acceleration (coefficients of the cubic regression model) -0.06 0.05 0.00 ± 0.02

Velocity (coefficients of the cubic regression model) -0.06 0.05 -0.01 ± 0.02

Displacement (coefficients of the cubic regression model) -0.10 0.07 -0.04 ± 0.05

Spatial position (coefficients of the cubic regression model) -0.31 -0.06 -0.22 ± 0.07

Behaviour Copying styles (intensity of response) 1 5 2.88 ± 0.68

General cognition (intensity of response) 1 5 3.99 ± 0.52

Intelligence (intensity of response) 1 5 4.00 ± 0.58

Intelligence Quotient (IQ) (points) 92.04 137.97 102.36 ± 8.17

Fig. 2  Linkage disequilibrium (LD) decay plot depicted from pairwise LD values (r2) against genetic distance (Kb) between genomic markers 
across dromedary camel genome
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those reported previously in other studies that inves-
tigated the genetic basis of growth and morphometric 
traits in dromedaries [17, 18, 36]. Although future func-
tional studies will allow for a more precise confirmation 
of gene functions in dromedaries, we rely on previous 
association studies in multiple species (mammals and 
zebrafish), considering that genome-wide association 
signals are enriched in orthologous genes associated in 
other species, as suggested by Gualdrón Duarte, Yuan 
[37].

PVRIG, STAG3, GAL3ST4, TRAPPC14, and LAMTOR4 
genes affect width and perimeter/girth measurements in 
dromedary camels. These genes are lassociated with vari-
ous conditions in humans, mice and zebrafish. They are 
linked to neurodegenerative and neuropsychiatric pro-
cesses, which can affect eye size and morphology, cause 
microcephaly, and lead to abnormal ciliogenesis, cilia 
instability, reduced thigmotactic behavior, decreasedlo-
comotor activity, and hyperactivity. They are also related 
to immune response, including lymphadenomegalia and 
T-cell function. Regarding reproductive performance, 
they are associated withinfertility, abnormal embryo size, 
and embryonic/preweaning lethality. Additionally, these 
genes are connected to cell cycle regulation and skeletal 
structure, impacting bone density and rib morphology 
[38–43].

Four (ZCCHC8, RSRC2, KNTC1, and U6) and seven 
(TENM2, LYN, RPS20, SNORD54, MOS, KCNV2, and 
PUM3) additional genes regulate width and perimeter/
girth measurements, respectively. ZCCHC8, RSRC2, 
KNTC1, and U6 genes are linked to neoplastic pro-
cesses, decreased reproductive performance, narrow eye 
opening, motor neuron diseases, retinitis pigmentosa, 
poikiloderma with neutropenia, and recessive intellectual 

disability in humans and mice [38, 44–47]. Instead, those 
genes that are specifically associated with perimeter/
girth measurements in our study, are widely recognized 
for their implication on morpho-functional alterations 
at sensory-neural tissues and organs, neoplastic pro-
cesses, immune structures, and pigmentation in humans 
and animal models. Concretely, TENM2, KCNV2, and 
PUM3 genes are associated with abnormalities at retina 
ganglion, cone-rod distribution, eye size, visual cortex, 
superior colliculus, and lateral geniculate nucleus in 
humans, mice, and zebrafish [48–50]. The just-referred 
structures play essential roles in normal visual processing 
and orienting motor responses, visuospatial attention, 
and perceptual decision-making. LYN gene is related 
to a wide range of neoplastic processes in humans [45] 
and immune dysfunctions in mice [51, 52]. In addition, 
abnormal pigmentations at the skin, epidermis, ear, and 
tail, as well as decreased exploratory behaviour, are phe-
notypes associated to genomic variability in RPS20 gene 
in mice [53, 54]. Interestingly, the association of RPS20 
gene with perimeter/girth measurements in dromedary 
camels provides further evidence to support the cor-
relations previously found between body morphomet-
rics (height at withers, chest girth, and hump girth) and 
weight, leadership behaviour, and coat pigmentation in 
dromedary camels by Iglesias Pastrana, Navas González 
[25]. MOS gene, however, has been mostly associated to 
reduced reproductive performance and cell cycle altera-
tions in mice [55, 56].

Lastly, phenotypic variability for length measurements 
was found to be controlled by other seven candidate 
genes (PCDH15, NFASC, SAMD12, SPAG16, POU2F2, 
ZNF574, and GRIK5). PCDH15, NFASC, SAMD12, 
POU2F2, and GRIK5 genes are associated with decreased 

Fig. 3  Manhattan and Q-Q plots displaying the results of the genome-wide association study for zoometrics-related trait ‘Length’ in dromedary 
camels. Negative log10 P-values (y-axis) of the associations between SNPs and length phenotypes are plotted against the genomic location of each 
SNP marker (x-axis). Blue line represents the threshold of genome-wide significance after correction for multiple testing (q-value = 0.05)
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general behaviour activity, quality of musculoskeletal 
movement and balance (propioception), visual and hear-
ing capacity, and inmmune function, as well as increased 
prevalence of neurodevelopmental disorders with cen-
tral and peripheral motor dysfunction (i.e., hemorrhagic 
brain, abnormal synaptic transmission and postsynaptic 
currents, syndromic intellectual disability, and increased 
startle reflex and thermal nociceptive threshold) in 
humans, mice, rats, and zebrafish [57–65]. A missense 
variant in PCDH15 gene is also responsible for the unex-
pectedly low number of homozygous haplotype carriers 
for two different Holstein haplotypes that are related to 
insemination success and neonatal survival in cattle [66]. 
On the other hand, SPAG16 gene is linked to decreased 
reproductive performance [67–69] and increased preva-
lence of ciliary dyskinesia (PCD), a X-linked disorder 
that mainly affects respiratory tissues [70], in humans, 
mice, and cattle. ZNF574 gene is a hub gene of adipose 
tissue metabolism in cattle [71] and tumor regulation in 
humans [72–74].

Developmental dysplasia and heart abnormalities may 
underlie decreased locomotor performance in dromedary 
camels
Twenty-four SNPs at the chromosome-wide level of sig-
nificance were significantly associated with biomechani-
cal traits in dromedary camels (Table 3). Eleven candidate 
genes, which can play potential roles in camels based on 
their known functions in other mammalian species/ani-
mal models (orthologous genes) [37], were identified. 
MIR187, FBXO8, and TTC28 genes affect displacement 
and spatial position measurements. Altered expression of 
these genes correlates with diverse malignancies and the 
regulation of inflammation, cell stemness, insulin secre-
tion, and embryonic development in humans and mice 
[75–77]. Furthermore, the downregulation of MIR187 
gene is linked to intellectual disability and temporal lobe 
epilepsy in humans and animal models [78, 79].FBXO8 
gene is also involved in motor neuron degeneration in 
humans [80]. Additionally, TTC28 gene is associated with 
bone and heart abnormalities in mice [53], and increased 
feed conservation ratio in pig [81].

Acceleration-related traits in dromedaries are con-
trolled by six different genes (PRSS56, CHRND, CHRNG, 
EIF4E2, EFHD1, and GRID1). Loss of PRSS56 gene func-
tion leads to impaired visual acuity in humans and mice 
[82]. CHRND and CHRNG gene mutations cause con-
genital myasthenic and multiple pterygium syndrome/
fetal akinesia in humans, mice, zebrafish, and dogs [83–
87]. Various mutant mice models for EIF4E2 gene served 
to unraveling the role of this gene in the regulation of 
synaptic plasticity and autism spectrum disorder-asso-
ciated behaviors [88]. In addition, Sun, Huang [89] and 

Sun, Yang [90] founded that this gene was also associated 
with the response to exercise in buffalo and protects the 
heart against hypoxia in zebrafish. Similarly, mutant mice 
and wildtype (AB line) zebrafish were used to unravel the 
functional role of EFHD1 gene in axonal morphogen-
esis, cardiac mitoflash activation, protection of cardio-
myocytes from ischemia, and brain general development 
and function [91–93]. GRID1 gene variants are linked 
to schizophrenia, bipolar disorder, intellectual disability, 
and spastic paraplegia in humans [94, 95]Mice lacking 
GRID1 gene suffer from sensorineural hearing loss [96].

Lastly, MYLK4 gen controls velocity traits in drom-
edary camels. MYLK4 gene polymorphisms are related 
to skeletal muscle metabolism and hypertrophic cardio-
myopathy in mice [97, 98]; growth and meat tenderness 
traits cattle [99, 100], goat [101] and pig [102]; energy 
metabolism in muscle in Chinese perch [103]; and milk 
production traits in water buffalo [104].

Embryonic neurogenesis and neurodegeneration 
could shape the behavioural patterns and processes 
of dromedary camels
Behavioural traits in dromedaries were associated with 
nine SNPs at genome-wide level (Fig.  4) and fifty-five 
SNPs at chromosome-wide level of significance (Table 4). 
Thirty-eight novel candidate genes were identified. The 
potential role of these genes in dromedaries is pres-
sumed, until species-specific functional studies do exist, 
basing on the related information existing for ortholo-
gous genes in other multiple species [37].

CACNA1E gen was found to be associated with both 
cognition and intelligence-linked traits. Polymorphisms 
in this gen are linked to impaired glucose metabolism, 
motor dysfunction, and heightened fear/depression/anx-
iety-like behaviours in mice and rats [105–107]. Eleven 
other genes (MZT1, BORA, DIS3, PIBF1, KLF5, KLF12, 
GPC5, ABCC4, ERCC5, DST, and CACNA1E) were 
associated with intelligence traits. MZT1, BORA, DIS3, 
PIBF1, and KLF5 are linkedto syndromic intellectual dis-
ability and autism spectrum disorder in humans [108]. A 
homozygous haplotype-related loss-of-function variant 
has been also identified in bovine DIS3, most likely caus-
ing embryonic lethality [109]; and mutations in humans 
DIS3 engrosses the list of risk factors for multiple mye-
loma [110]. PIBF1 additionally regulates embryonic 
development and litter size in mice and sheep [111], and 
is associated with an increased incidence of alterations in 
neural tube closure/morphology and Joubert syndrome 
(varying degrees of physical, mental, and visual impair-
ments) in animal models such as mice and frog [53, 112]. 
KLF5 and KLF12 mutant and wild-type mice are biased 
for the prognosis of cardiovascular diseases given their 
differential inner capabilities of structural remodeling of 
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the heart and blood vessels [113, 114], and the severity of 
clinical pancreatic cancer [115], respectively. GPC5 and 
ABCC4 genes mutations have been confirmed to be func-
tionally implicated in skeletal and growth defects, neural 
tube closure defects, and predisposition to nephrotic syn-
drome in humans, pigs, frogs and zebrafish [116–119]. 
Further shreds of evidence ascertained that non-synon-
ymous mutations in ABCC4 gene ascribe to reproduc-
tive traits in cattle, buffalo, and pig [120], and resistance 
to paratuberculosis in cattle [121]. Heritable disorders 
resulting from mutations in the ERCC5 gene include 
both cancer and neurodegenerative processes (intrac-
ranial malformations and cerebro-oculo-facio-skeletal 
syndrome) in humans and mice [122, 123]. DST gene has 
been also reported to be implicated in hereditary sensory 
and autonomic neuropathies in humans and mice [124].

Lastly, the Intelligence Quotient was regulated by 
twenty-seven genes. Such genes play significant roles 
in the self-renewal, early embryo development, and 
reprogramming of embryonic stem cells in mice [125], 
and predisposition to intellectual disability in rats 
(TEX10) [65]; prevalence and incidence of cardiovas-
cular-renal-hepatic-pancreatic dysplasia in zebrafish, 
mice and humans (INVS and PTPN18) [53, 126, 127]; 
human and mice senescence and premature aging, 
which in turn can be implicated in the development 
of age-related neurodegenerative processes (UBE2E3) 
[128]; incidence of recessive ocular coloboma and neu-
ral tube defects in humans and mice (SALL2) [129, 
130]; olfaction (OR10G2, OR10G3¸OR4E2, and OR4E1) 
[131] and protection against caries (TRAV4) in humans 
[132]; increased risk of motor system dysfunctions 

(i.e., amyotrophic lateral sclerosis and benign heredi-
tary chorea) and several autoimmune diseases in Dros-
ophila, humans and rats (SCFD1) [65, 133, 134]; high 
prevalence of progressive cochleo-vestibular dysfunc-
tion (reduced linear vestibular evoked potential and 
sensorineural hearing loss) in humans, mice and rats 
(COCH) [53, 65, 135]; thigmotaxis, hyperactivity, ver-
tical activity, brain-lung-thyroid syndrome, severe 
intellectual disability, mild fever-sensitive seizure, 
developmental delay, spastic paraplegia, muscular atro-
phy, cardiovascular failure, microcephaly, and short 
stature, in humans and animal models (STRN3, AP4S1, 
PUS7, ATP2A3, ZZEF1 and PXN) [53, 136–140]; regu-
lation of neuronal differentiation and pathogenesis 
of Alzheimer disease in humans, mice and zebrafish 
(ZNF536, U1 and SRPK2) [141–143]; muscle function, 
energy and redox metabolism during exercise in mice 
(SIRT4) [144]; incidence of diet-induced obesity and 
risk of diabetes and atherosclerosis in humans and mice 
(PLA2G1B) [145]; and incidence of abnormalities in 
neurocranium morphology, size and vascular perfusion 
in mice and rats (MSI1) [53, 65].

Conclusions
The interindividual phenotypic variability in zoometrics, 
biomechanics and behaviour-related traits in dromedary 
camels is controlled by polygenic determinants that are 
located on multiple chromosomes. A total of 124 SNPs, 
mapped to 70 different candidate genes involved in syn-
thesizing biological products, have been identified as sig-
nificantly associated with these functional traits. These 
genes primarily regulate various neurodevelopmental 
processes and sensory perception. Our findings enhance 

Fig. 4  Manhattan and Q-Q plots displaying the results of the genome-wide association study for behavioural trait ‘Intelligence Quotient’ 
in dromedary camels. Negative log10 P-values (y-axis) of the associations between SNPs and IQ-related phenotypes are plotted 
against the genomic location of each SNP marker (x-axis). Blue line represents the threshold of genome-wide significance after correction 
for multiple testing (q-value = 0.05)
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the empirical understanding of the genomic features of 
early domestication and modern selection in dromedary 
camels, and will inform future sustainable breeding and 
conservation programs for this species. In particular, the 
integration of gene function analysis, genomics-based 
selection and proper sub-grouping of individuals based 
on phenotypyic similarities (assortative natural behav-
iour) in human-controlled environments will greatly sup-
port efforts to preserve the health and welfare of camels.

Methods
Phenotype assessment and blood sampling
Between October 2019 and July 2020, one hundred 
twenty Canarian dromedary camels (70 males and 50 
females; reared at 4 different semi-extensive farms (2 
farms in Canary Islands and 2 farms in mainland Spain)) 
were phenotyped for body morphometrics, biomechan-
ics, and behaviour related traits. A total of thirty zoo-
metric measurements were taken from each animal as 
indicated by Iglesias Pastrana, Navas González [146]. 
Zoometric measurements included linear and tridimen-
sional zoometric traits from head, neck, thorax and dor-
sum, hump, rump and tail, extremities, and feet. Such 
measurements were aggregated depending on their geo-
metric nature into four phenotypic categories (length, 
height, width, and perimeter/girth measurements).

Regarding biomechanical performance traits, curve 
estimation regression statistics was applied to the indi-
vidual motion measurements for eleven key kinematic 
variables at ten different anatomic regions, obtained 
through video analyses, to calculate the coefficients of 
the mathematical function that best described locomo-
tor behaviour in dromedary camels (cubic function), 
as described in Pastrana, González [147]. The anatomic 
regions evaluated for their biomechanics were the cra-
nial angle of the scapula, midway between acromion and 
head of the humerus (shoulder joint), olecranon (elbow 
joint), carpus and fetlock (metacarpophalangeal joint) 
on the forelimb, the iliac crest, greater trochanter of the 
femur (hip), stifle (knee) joint, point of the hock (tarsus), 
and fetlock (metatarsophalangeal joint) on the hindlimb. 
Kinematic variables recorded include acceleration, hori-
zontal acceleration, horizontal position, horizontal veloc-
ity, total distance, total horizontal displacement, total 
vertical displacement, velocity, vertical acceleration, ver-
tical position, and vertical velocity. Biomechanical per-
formance traits were then sub-grouped in four different 
phenotypic categories, namely: acceleration, velocity, dis-
placement, and spatial position measurements.

Behavioural traits included four phenotypic categories 
(copying styles, general cognition, intelligence, and Intel-
ligence Quotient (IQ)). First, ‘copying styles’ category 

comprised behavioural-type coping strategies (proac-
tivity and reactivity displayed by leisure dromedaries in 
response to social stressors at man-made environments) 
[28]. Second, ‘general cognition’ category included traits 
such as dependence, trainabiliy, cooperation, emotional 
stability, perseverance, get in/out of stables, and ease at 
handling, Strongly related, the phenotypic category of 
‘intelligence’ is composed by the traits: concentration, 
curiosity, memory, stubbornness, docility, and alertness 
constituted. Copying styles, general cognition, and intelli-
gence were evaluated through the application of an oper-
ant-conditioning problem-solving test. The last category, 
namely ‘Intelligence Quotient’ (IQ), is a psychometric 
construct calculated from the individual performance for 
the general cognition and intelligence related traits [148].

Immediately after individual phenotyping, a blood sam-
ple from each dromedary camel was collected through 
jugular venipuncture in 2 mL vials containing ethylenedi-
aminetetraacetic acid (EDTA) and stored at -20  °C until 
genomic DNA extraction tasks. DNA was extracted using 
the QIAamp® DNA Mini Kit according to the manufac-
turer’s protocol.

Genotyping and standard SNP genotype quality control
High-throughput, high density SNP genotyping array 
was used to generate the sequence data was used to gen-
erate the sequence data (Axiom Camelids Genotyping 
Array (Affymetrix, CA, USA)) as per the manufacturer’s 
instructions. This chip cotainss 62,707 SNPs evenly dis-
tributed across the dromedary camel genome. The data 
related to SNP annotation are included in Supplemen-
tary Table S 1. Standard quality control procedures were 
applied to the SNP genotypes using PLINK v1.9. Mark-
ers with a call rate below 0.90, a minor allele frequency 
(MAF) less than 0.02, a Hardy–Weinberg equilibrium 
p value less than 0.001, and those mapping to sex chro-
mosomes were excluded from the analysis. Additionally, 
individuals with a genotype call rate lower than 0.95 were 
susceptible to being excluded from further analyses. After 
implementing these quality control measures, a total of 
49,632 SNPs and all the animals initially included were 
retained for subsequent analyses. A principal component 
analysis (PCA) was run with PLINK v1.9 to explore the 
genetic population structure.

Linkage disequilibrium
Linkage disequilibrium (LD), the degree of non-ran-
dom association of alleles between loci or correlation 
between genotypes of markers, was estimated for each 
pairwise combination of SNPs using the software Pop-
LDdecay [149]. According to McKay, Schnabel [35], in 
QTL mapping, r2 is favored as the measure of linkage 
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disequilibrium because it quantifies the degree of infor-
mation that one locus (which may be a quantitative trait 
or disease-related and potentially unobservable) can pro-
vide about another locus. Consequently, r2 is useful for 
estimating the number of loci required in association 
studies.

Genome‑wide association study (GWAS) for zoometrics, 
biomechanics, and behaviour‑related traits
Following the methodology of Macri, Luigi-Sierra [150], 
genotype-phenotype association analysis was conducted 
using the Genome-wide Efficient Mixed-Model Associa-
tion (GEMMA) v0.98.1 package [151]. The phenotypic 
information used was the mean quantitative value per 
each categorical phenotype described and animal (length, 
height, width, perimeter/girth, acceleration, velocity, dis-
placement, spatial position, copying styles, general cog-
nition, intelligence, and Intelligence Quotient). For each 
phenotype, a univariate linear mixed model was fitted 
according to the following formula:

where y represents an n-vector of zoometrics-, biome-
chanics-and behaviour-related phenotypes for n = 120 
individuals; W is an n × c matrix (c = number of fixed fac-
tors) that includes a column of 1s and the fixed effects, 
namely, sex (2 levels) and age category (3 levels); α is a 
c-vector denoting the corresponding fixed effects, includ-
ing the intercept; x represents a n-vector of marker 
genotypes; β represents the marker’s effect size (allele 
substitution effect); u is a n-vector of random individual 
effects that are normally distributed, u ~ N(0, λ τ−1 K), 
where τ−1 denotes the residual error variance, λ repre-
sents the ratio between the two variance components, 
and K is a SNP genotypes-derived n × n known relat-
edness matrix. Lastly, ε represents a n-vector of errors, 
and In represents an n × n identity matrix; while MVNn 
depicts the multivariate normal distribution with n 
dimensions. P-values obtained for each association were 
adjusted for multiple testing with the False Discovery 
Rate (FDR) method (q-value). In the context of genome-
wide association studies (GWAS), the q-value represents 
the false discovery rate for a given p-value. It estimates 
the proportion of false positives among the results with a 
p-value less than or equal to the q-value. In other words, 
the q-value helps to control for multiple comparisons and 
reduces the likelihood of reporting false positives, pro-
viding a more accurate measure of statistical significance 
in large-scale studies. Associations with a p-value and 

y = Wα + xβ + u + ε; u ∼ MVNn 0, � τ−1 K ,

and ε ∼ MVNn 0, τ−1 In

q-value below 0.05 were deemed statistically significant. 
Manhattan plots were generated using the “qqman” R 
package. The estimation of the proportion of phenotypic 
variance that can be explained by a specific SNP (PVE) 
was performed using the following formula [152]:

where β represents the SNP variant estimated effect 
size, se(β) represents the β estimate standard error, MAF 
denotes the minor allele SNP frequency, and N is the size 
of the sample. The P lambda function from the R pack-
age QCEWA was used to calculate lambda (λ) inflation 
factors, and quantile-quantile (Q-Q) plots were gener-
ated using the ggqqplot function. The Biomart tool from 
Ensembl was used to retrieve genes located within a 
flanking region of ± 50 kb of the significant SNPs [17].
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