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Abstract
Probiotics are becoming increasingly popular as eco-friendly alternatives in aquaculture. However, there is limited 
research on their impacts on the reproductive efficiency of Red Tilapia (Oreochromis niloticus x O. mossambicus) 
broodstock. Therefore, this experiment aimed to explore the combined effects of selective probiotics Bacillus 
subtilis and B. licheniformis (BSL; 1:1) added to water on blood hematology, serum metabolites, gonadal histology, 
reproductive performance, and reproductive associated genes in Red Tilapia broodstock. Tilapia broodfish weighing 
140–160 g were stocked in four treatment groups: control (T0), and the other three groups were added different 
levels of BSL to the water as follows: T1 (0.01 g/m3), T2 (0.02 g/m3), and T3 (0.03 g/m3), respectively. Results 
indicate that BSL administration significantly improved RBCs, hemoglobin, hematocrit, MCH, and MCHC, with the 
highest improvement seen in the T3 group (P < 0.05). BSL added to the fish water significantly enhanced serum 
protein fractions (total protein, albumin, and globulins), while AST, ALT, ALP, creatinine, uric acid, and glucose were 
significantly diminished in a dose-dependent way (P < 0.05). Adding 0.02–0.03 g/ m3 of BSL resulted in higher 
antioxidant status (superoxide dismutase and catalase) compared to other groups (P < 0.05). Testosterone levels 
were higher in T3 than in other groups (P < 0.05). All female hormones (LH, FSH, estradiol, and progesterone) were 
substantially augmented by the addition of BSL. Additionally, the BSL groups exhibited higher GSI, HSI, VSI (male 
only), egg diameter (mm), mean number of fry/fish, and mean fry weight (g) compared to the control group 
(P < 0.05). Expression of reproductive-associated genes (vasa, nanos1a, nanos2, dnd1, pum1, AMH, and vtg) were 
significantly up-regulated in the gonads of fish in the 0.03 g/m3 treatment. The histological gonadal structure 
exhibited that BSL improved gonad maturation in both genders of Tilapia fish. Overall, adding a mixture of B. 
subtilis and B. licheniformis (0.03 g/m3 water) can accelerate reproductive performance in Red Tilapia through up-
regulation of reproductive genes and enhance the health profile.
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Introduction
Aquaculture’s sustainability depends on the effective uti-
lization of aquafeeds and the implementation of robust 
aquaculture health management practices. Aquaculture 
contributes to approximately 50% of the world’s total fish 
production, solidifying its position as the fastest-growing 
sector within the industry [1, 2]. Moreover, it plays a sig-
nificant part in providing sustainable income opportuni-
ties and contributing to global food security [3]. In Egypt, 
there are numerous fish species that inhabit its water 
resources. The country’s diverse aquatic ecosystems sup-
port a wide variety of fish, including Nile tilapia, cat-
fish, and mullet [4]. These fish play a crucial role in the 
local economy and provide a vital source of protein for 
the population. The aquaculture industry in Egypt is an 
important sector that contributes to the country’s food 
security and economic development. However, local pro-
duction rarely meets domestic demand, leading the coun-
try to rely on imports to cover the shortage [2]. Tilapias 
are a globally farmed group of fish, with a production 
of approximately 6.7 million tons in 2023. This industry 
is valued at over 14.1 billion US dollars [5]. As omnivo-
rous fish, tilapias can host both beneficial and harmful 
bacteria in their gastrointestinal tract, culture water, and 
sediment. Some examples of bacteria found in the gas-
trointestinal tract of Nile Tilapia fish include Lactobacil-
lus farciminis, Lactobacillus coryniformis, Lactobacillus 
brevis, Lactobacillus collinoides, Bacillus sp., and others. 
Bacillus sp., P. Fluorescens, L. brevis, and L. collinoides 
are commonly abundant in the fish’s gut [3, 6].

Probiotics have emerged as a promising alterna-
tive strategy for preventing infectious diseases [7, 8]. In 
aquaculture, probiotics offer numerous benefits, such 
as improving water quality, enhancing digestion, and 
boosting fish growth and immune response [9–11]. Pro-
biotics can enhance feed efficiency in aquatic animals by 
increasing the activity of digestive enzymes and main-
taining a healthy balance of intestinal microbes. This 
leads to better nutrient absorption and utilization, as well 
as improved reproductive system function [12, 13]. Pro-
biotic supplementation also increases appetite and the 
digestibility of organisms [9]. B. subtilis and B. licheni-
formis bacteria are important probiotic additives for 
maintaining the normal growth and functions of aquatic 
animals’ by providing vitamins, nutrients, and produc-
ing digestive enzymes. These factors positively effects on 
feed utilization, nutritional absorption, and growth per-
formance [14]. Bacillus spp. have various positive ways, 
such as promoting better nutrient utilization, produc-
tion and secretion of exogenous enzymes, and enhanc-
ing gut microbiota to support intestinal physiological 

functions [10, 15, 16]. Therefore, fishes fed with different 
Bacillus species have shown improve growth indices [17]. 
Additionally, altering the harmful intestinal microbiota 
composition to favour a greater proportion of beneficial 
bacterial communities can support adaptive and innate 
functions and promote intestinal integrity in the host [3].

Probiotic mechanisms include actions to inhibit patho-
gen growth, production of various ingredients (e.g., 
organic acids, bacteriocins, and volatile compounds), 
competition for adherence sites and nutrients [18, 19], 
and enhancement of innate immune responses (e.g., 
respiratory burst activities, lysozyme enhancement) and 
interactions with natural killer cells, leukocytes, and 
phagocytes [11, 19]. An appropriate and balanced diet 
not only provides the principal and necessary compo-
nents for better fish growth but also commonly includes 
feed supplements such as herbal extracts, probiotics, 
and symbiotics to boost the immune system and growth 
rate [17]. Probiotic addition has been shown to enhance 
antioxidant capacity, digestive enzymes, and immune 
function in Nile tilapia fish [6, 8, 20]. Additionally, both 
serum and mucosal surfaces’ immunoglobulin M (IgM) 
levels have been found to play an essential role in defend-
ing against numerous pathogenic organisms that infect 
cultured fish [21, 22]. One important attribute of Bacil-
lus species is their ability to form spores, which allows 
them to withstand the heat generated during feed pallet-
ization [16, 17, 23]. These spores also enable the bacteria 
to survive the adverse environment of the fish’s stomach 
and colonize the intestines, where they can multiply and 
produce various beneficial digestive enzymes such as 
amylase, lipase, and protease [23–25]. Additionally, pro-
biotics’ molecular mechanism of action involves influenc-
ing the expression and regulation of different genes [15, 
26, 27]. Therefore, the authors of the current study dis-
covered that increasing levels of B. subtilis and B. licheni-
formis have many substantially beneficial consequences 
on the physiology, blood health and reproductive perfor-
mance of red tilapia. With this backdrop, the experiment 
was conducted to determine the effect of graded levels of 
water probiotics, B. subtilis and B. licheniformis on hema-
tological variables, reproductive ability, and expression of 
reproductive-related genes in Red Tilapia broodstock (O. 
niloticus x O. mossambicus).

Materials and methods
Fish and experimental design
This experiment was performed at the Fish Research 
Centre, Arish University, North Sinai, Egypt. Adult male 
and female hybrid red tilapia (O. niloticus x O. mossambi-
cus) weighing 140–160 g were housed in concrete tanks 
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with a volume of 3 × 4 × 0.8  m³. A total of 480 fish were 
used in this experiment. The fish were divided into four 
groups, with each treatment consisting of 120 fish (three 
tanks, 40 fish in each tank). The fish were stocked in trip-
licates at a ratio of 1 male to 3 females per cubic meter, 
with a total density of forty fish per tank (around 860 g/
m3). The fish were acclimated to the trial culture condi-
tions for fifteen days. Air stones were provided in the 
tanks throughout the trial, and a light cycle of 12 h light 
and 12  h dark was maintained. Four treatments were 
included: a control group (T0), and three groups (T1, T2 
and T3) with varying levels of B. subtilis and B. licheni-
formis added to the water. The treatment fish groups 
(2.5% of the total biomass) were labeled as follows: T0 
(0 g/m3), T1 (0.01 g/m3), T2 (0.02 g/m3), and T3 (0.03 g/
m3). The fish were fed an extruded diet from ALLER 
AQUA FEED (https://www.aller-aqua.com/) with 30% 
crude protein, 5.2% crude fat, 5.8% total ash, and 4.8% 
crude fiber. Each morning, before the first feeding, the 
fish feces and waste were siphoned, and approximately 
10% of the pond water was replaced with dechlorinated 
water of similar temperature. Every day, the doses of B. 
subtilis and B. licheniformis were adjusted according to 
the rate of water changes. At the end of the experiment, 
the fish from each tank were collected, tallied, weighed, 
and the weights and survival rate were documented. The 
fishpond was then cleaned, and the fish were prepared 
for the spawning period. Thirty ripe females and ten ripe 
males were placed in the culture tanks for 20 days. Dur-
ing this period, the reproduction capability and spawning 
performance were measured.

Water quality parameters
The water elements such as salinity (g/L), temperature 
(°C), pH, dissolved oxygen (DO, mg/L), total ammonia 
nitrogen (TAN, mg/L), and ammonia (mg/L) were moni-
tored twice a week employing the YSI-556 multi-parame-
ter method (YSI Inc., Yellow Springs, OH, USA) to assess 
water quality.

Blood sampling
Before the final harvest, all fish were fasted for approxi-
mately 12  h. Subsequently,5 fish per tank were anes-
thetized using amino-benzoic acid (120  mg/L, 
Sigma-Aldrich, Germany) for blood sample collection. 
The blood samples were obtained for hemato-biochem-
ical and other physiological parameters. Blood samples 
were captured from the caudal vein using sterilized 
needles and separated into subsamples. The first part 
was stored in heparinized tubes for the hematology 
parameters analysis. While, the second part was stored 
in non-heparinized tubes and left to coagulate at room 
temperature, following the method described by [25] 
for serum separation. The blood was then centrifuged at 

4000  rpm for 10  min to separate the serum, which was 
subsequently stored at -20 °C for further analysis.

Blood hematology assessment
Red blood cells (RBCs) were counted using the method 
described by [28] with a Bright-Line Hemocytometer 
(Neubauer enhanced, Germany). Hemoglobin (Hb) lev-
els were measured calorimetrically, as outlined by [29]. 
Hematocrit (Hct) was calculated following the method 
of [30]. The levels of MCV (mean corpuscular volume), 
MCHC (mean corpuscular hemoglobin concentration), 
and MCH (mean corpuscular hemoglobin) were deter-
mined according to [28].

Serum metabolites assays
The serum total protein fraction (total protein and albu-
min) was determined using kits provided by Diamond 
Diagnostics Company. Globulin concentration was cal-
culated using the difference method between total pro-
tein and albumin. Kidney related biomarkers such as 
uric acid, creatinine, and urea were assess according to 
the method of [31] using kits provided by Biocompare 
company (South San Francisco, United States). Glucose 
levels were determined by the colorimetric glucose oxi-
dase technique of [32]. The activities of ALT (alanine 
aminotransferase), AST (aspartate aminotransferase), 
and ALP (alkaline phosphatase) were measured using an 
automated analyzer (Abbott Alcyon 300, USA) in accor-
dance with the Pars Azmon Kit’s protocol (Pars Azmon, 
Iran). The “hydroxylamine method” was used to deter-
mine superoxide dismutase (SOD) activity [33], while 
the “visible light method” used for catalase (CAT) activ-
ity [34]. Steroid female hormones such as estradiol (E2, 
MBS700179), progesterone (P, MBS2602842), lutein-
izing (LH, MBS283097), and follicle-stimulating (FSH, 
MBS281137) hormones were determined using com-
mercial ELISA kits as explained by [35]. Testosterone (T, 
MBS933475) hormone was assessed using quantitative 
competitive method by ELISA kit. All kits used for ste-
roids hormones were provided by the MyBiosource com-
pany (San Diego, USA).

Organosomatic indices
The total body length (T.L) in centimeters and weight 
(W) in grams were recorded for 30 fish in each group 
(15 males and 15 females). The liver, gut, and gonads 
of 30 fish (5 males and 5 females/ tank) per group were 
removed and weighed. The hepatosomatic index (HSI), 
viscerasomatic index (VSI), and gonadosomatic index 
(GSI) were calculated using the following equations:

	
HIS (%) = 100

{
liver weight (g) /

gutted body weight (g)

}

https://www.aller-aqua.com/
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GSI (%) = 100

{
gonads weight (g) /

gutted body weight (g)

}

	
V SI (%) = 100

{
visceral weight (g) /

gutted body weight (g)

}

Egg diameter, mean number of fry/fish and mean fry 
weight
For 20 days, the spawning performance was monitored. 
Five gravid, spawn-ready females were eliminated from 
all tanks, gently stripped, and then subsamples of around 
ten eggs were randomly selected for determining the 
diameter of eggs (mm) [36]. Each female was returned to 
the appropriate tank after stripping until the end of the 
trial. Females in each tank were checked daily to find eggs 

or fry. The eggs were left in the females’ mouths until 
hatching and complete yolk sac absorption. The fry were 
then gathered from their respective females, counted, 
and weighed; the averages were evaluated following the 
method described by [37] method. By distributing the 
total quantity of fry in the tank by the number of female 
spawns, the mean number of fry per spawning was 
determined.

Genes expression
cDNA production and total RNA extraction
Samples of testes and ovaries were collected and frozen 
using liquid nitrogen to analyze the expression of various 
reproduction-related genes. Each 50  mg of ovarian and 
testicular tissues was used for RNA extraction with Trizol 
reagent (iNtRON Biotechnology, Inc., South Korea). The 
RNA concentration was determined using a NanoDrop 
method (UV-Vis spectrophotometer, USA). The cDNA 
was synthesized with the Fast HiSenScript TM RH RT 
PreMix cDNA synthesis kit (iNtRON Biotechnology, 
South Korea), and the samples were kept at -20  °C for 
further analysis.

Real time qPCR (RT-PCR)
The specific primer sequences, product sizes, and Gen-
Bank accession numbers of reproduction-associated 
genes, namely vasa, nanos1a, nanos2a, dnd1, pum1, 
AMH, and vtg for both males and females, are listed in 
Table 1. The Elf1α gene served as a housekeeping (refer-
ence) gene for normalizing mRNA expressions. RT-PCR 
was performed using the SYBR Green PCR Master Mix 
to quantify the mRNA expression of the target genes 
(SensiFast™ SYBR Lo-Rox kit, Bioline). The thermocy-
cling settings were as follows: 95 °C for 10 min, followed 
by 40 cycles at 94 °C for 15s, 60 °C for 1 min, and 72 °C 
for 20 s. The mRNA expression levels of each gene were 
normalized and standardized to the mRNA of elf1α tran-
scripts using the 2−ΔΔCT approach [38].

Histological analysis
The testes and ovaries of males and females were freshly 
removed, fixed in neutral formaldehyde (10%) for 24  h, 
then dehydrated with graded ethanol, and immersed 
in methyl benzoate for 24  h. They were then cleared in 
xylene, embedded in purified paraffin wax, and sectioned 
to a thickness of 5–7 μm using an automated microtome. 
The sectioned tissues were stained with hematoxylin and 
eosin and examined under a light microscope (Zeiss) 
using the method described by [39].

Statistical analysis
Results are presented as means ± standard error (S.E.). All 
numerical data were checked for homogeneity of vari-
ance using Levene’s test and for normality of distribution 

Table 1  Sequence of forward and reverse primers used for 
q-PCR analysis
Gene1 Primer sequence Gen. bank acces-

sion no.
prod-
uct 
size

Vasa F:3’-​C​G​A​T​G​A​G​A​T​C​T​T​G​G​T​G​
G​A​T​G-5’
R:3’-​C​A​T​G​A​G​A​T​C​C​C​T​G​C​C​A​
G​C​A​G​A-5’

XM_019351277.2 175 bp

nanos1a F:3’-​T​C​T​C​A​G​G​C​C​A​T​A​C​G​A​A​C​
A​C​C​T​C​G-5’
R:3’-​C​T​C​T​G​A​G​C​C​T​G​T​T​T​G​C​G​
T​C​T​T​C​G-5’

XM_003447766.4 126 bp

nanos2 F:3’-​C​G​G​G​A​A​A​G​T​T​T​T​C​T​G​C​
C​C​C​A​T​C​C-5’
R:3’-​A​G​A​A​C​T​T​G​G​C​C​C​C​T​G​T​
C​T​C​C​A​T​C-5’

XM_005448855.3 140 bp

dnd1 F:3’-​C​A​C​G​G​G​A​C​A​C​G​T​A​T​G​A​
G​G​A​C​A​T​C-5’
R:3’-​A​T​A​T​T​T​G​G​C​A​T​A​C​G​C​A​A​
A​G​C​C​G​C-5’

XM_003454288.4 119 bp

pum1 F: 3’-​G​C​T​A​A​C​T​G​G​T​A​A​G​A​A​G​
T​T​C​T​G​G​G​A​A-5’
R: 3’-​C​G​G​G​A​C​A​C​C​A​T​G​A​T​T​
G​G​C​T​G-5’

XM_013270654.3 135 bp

Amh F: 3’-​A​A​G​C​A​G​C​G​C​A​A​A​C​A​T​
T​A​A​C​A-5’
R: 3’-​G​T​T​C​C​A​G​T​C​C​A​C​A​A​C​
C​T​C​C​A-5’

XM_013275129.3 169 bp

vtg F: 3’-​C​T​T​T​C​C​A​T​C​C​A​G​C​C​A​C​
C​A​A​G-5’
R: 3’-​C​T​G​C​A​G​G​A​G​G​T​T​G​A​T​
G​A​T​G​C-5’

XM_003452574.4 161 bp

elf1α F: 3’-​C​T​G​G​A​C​A​A​A​C​T​G​A​A​G​G​
C​T​G​A​G​C​G-5’
R: 3’-​A​A​G​T​C​T​C​T​G​T​G​T​C​C​A​G​
G​G​G​C​A​T​C-5’

NM_001279647.1 116 bp

1The target genes are vasa, nanos1a, nanos2, dnd1, pum1, AMH, and vtg, while elf1α 
is the housekeeping gene. Elongation factor 1-α (elf1α), vitellogenin (vtg), anti-
Müllerian hormone (AMH), pumilio RNA binding family member 1 (pum1), dead 
end (dnd1), Nanos C2HC-Type Zinc Finger 2 (nanos2), Nanos C2HC-Type Zinc 
Finger 1- a (nanos1a) and DEAD-box RNA helicase Vasa (Vasa)
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using the Shapiro-Wilk test. The data were analyzed 
using SPSS software (Version 26.0; SPSS, Chicago, IL, 
USA) through a one-way analysis of variance (ANOVA) 
to determine statistical significance at a 95% confidence 
level. If the F values from the ANOVA test were found to 
be significant (P < 0.05), Duncan’s multiple range test was 
also used to compare means.

Results
Water quality
The administration of BSL significantly improved water 
quality variables (P < 0.05; Table  2). Total ammonia 
nitrogen (TAN) and NH3 values were reduced in a dose-
dependent manner (P < 0.05) with the most significant 
decrease observed in T3. The pH values were signifi-
cantly lower in the T2 and T3 treatments compared to 
other treatments (P < 0.05). Salinity levels did not vary 
among the groups (P > 0.05). T3 revealed lower dissolved 
oxygen (DO) levels compared to other groups (P < 0.05).

Hematological and biochemical parameters
The impact of various doses of BSL (0.01, 0.02, and 
0.03 g/m3) on hemato-biochemical parameters is shown 
in Table 3. The results show a significant increase in RBC 
counts, Hb, and Hct in T3 (P < 0.05) compared to other 
groups. MCV did not show a significant change (P > 0.05) 
with the addition of probiotics. In contrast, MCH and 
MCHC values were substantially increased (P < 0.05) 
in T3, with MCHC reaching its maximum value in this 
treatment. Besides, the highest values of albumin, total 
protein, and globulin (P < 0.05) were obtained in the B. 
subtilis and B. licheniformis (0.03 g/m3) treatment.

The hepatic function enzymes ALT, AST, and ALP 
were notably affected (P < 0.05) by the addition of BSL, 

with higher levels observed in the untreated group com-
pared to other treatments. The probiotics-treated groups 
shown lower values for ALP, AST, and ALT than the con-
trol group (P < 0.05), indicating improved liver function. 
Similar trends were observed for creatinine, urea, and 
uric acid (P < 0.05), suggesting that probiotics enhanced 
overall fish health. In terms of antioxidant enzymes CAT 

Table 2  Effect of the Bacillus subtilis and B. Licheniformis (BSL, 
mixture 1: 1) on water quality parameters
Parameters Probiotics addition (g/m3)

0.0 0.01 0.03 0.03
Tempera-
ture (°C)

27.16 ± 0.09b 27.57 ± 0.12a 27.16 ± 0.14b 27.31 ± 0.20ab

Salinity 
(g/L)

51.33 ± 6.81 52.33 ± 3.0 52.67 ± 5.51 52.0 ± 2.64

Dissolved 
oxygen 
(mg/L)

7.96 ± 0.062ab 8.17 ± 0.12a 7.70 ± 0.18b 7.35 ± 0.20c

pH 8.16 ± 0.006a 8.17 ± 0.06a 8.13 ± 0.02b 8.13 ± 0.015b

Total 
ammonia 
nitrogen 
(mg/L)

0.86 ± 0.039a 0.68 ± 0.07b 0.53 ± 0.06c 0.43 ± 0.03d

Ammonia 
(NH3,mg/L)

0.08 ± 0.03a 0.06 ± 0.04b 0.04 ± 0.02c 0.03 ± 0.03c

* The values are reported as means ± SE. Data in the same row with different 
superscripts indicate significant differences (P < 0.05), determined using ANOVA 
Post Hoc (Duncan test)

Table 3  Effect of the B. subtilis and B. Licheniformis levels (0, 
0.01, 0.02, 0.03, g//m3) added to the water on blood hematology 
and serum metabolites parameters (mean ± SD) of Red Tilapia 
Oreochromis spp
Param-
eters1

Probiotics addition (g/m3)
0.0 0.01 0.02 0.03

Hematological indices
RBCs 
×106 cell/
ml

1.29 ± 0.01b 1.34 ± 0.03ab 1.39 ± 0.06a 1.42 ± 0.05a

Hb (g/dl) 6.10 ± 0.06d 7.18 ± 0.07c 7.73 ± 0.21b 8.02 ± 0.08a

MCHC 
(%)

22.09 ± 0.64b 25.31 ± 0.96a 26.24 ± 0.70a 26.47 ± 0.69a

MCV (fl.) 209.76 ± 2.95 211.25 ± 1.29 212.51 ± 1.71 213.10 ± 1.72
Hct (% ( 26.99 ± 0.14c 28.38 ± 0.83bc 29.47 ± 1.36ab 30.33 ± 1.06a

MCH (pg) 47.44 ± 0.20c 53.45 ± 1.73b 55.63 ± 1.55ab 56.41 ± 1.50a

Hepatic function
Total 
proteins 
(g/dL)

3.24 ± 0.03d 3.47 ± 0.02c 3.63 ± 0.06b 4.07 ± 0.06a

Globulin 
(g/dL)

1.83 ± 0.02b 1.84 ± 0.02b 2.16 ± 0.04a 2.20 ± 0.06a

Albumin 
(g/dL)

1.40 ± 0.04d 1.63 ± 0.03b 1.47 ± 0.04c 1.87 ± 0.03a

Glucose 
(mg/dL)

134.53 ± 1.12a 127.32 ± 1.78b 127.94 ± 1.56b 115.94 ± 1.41c

ALT (U/L) 47.94 ± 0.48a 46.98 ± 0.33b 46.14 ± 0.20c 45.18 ± 0.26d

AST (U/L) 125.52 ± 0.93a 122.52 ± 1.04b 118.90 ± 0.81c 118.09 ± 0.61c

ALP (U/L) 25.97 ± 0.34a 24.06 ± 0.16b 21.84 ± 0.66c 21.03 ± 0.58c

Renal function
Uric acid 
(mg/dL)

1.75 ± 0.06a 1.44 ± 0.08b 1.13 ± 0.07c 0.97 ± 0.05c

Urea 
(mg/dL)

23.64 ± 0.65a 21.73 ± 0.56ab 19.66 ± 0.44bc 18.25 ± 1.03c

Cre-
atinine 
(mg/dL)

61.49 ± 0.77a 56.12 ± 1.48b 50.97 ± 2.22c 47.95 ± 0.78d

Antioxidant capacity
SOD (u 
/mg. 
protein)

24.97 ± 0.40c 29.53 ± 0.68b 31.90 ± 1.28a 33.53 ± 0.91a

CAT 
(µmol)

42.37 ± 1.40c 44.20 ± 0.89b 45.23 ± 1.44a 46.17 ± 1.19a

*The values are reported as means ± SE (n = 6). Data in the same row with different 
superscripts indicate significant differences (p < 0.05), determined using ANOVA 
Post Hoc (Duncan test). 1CAT, catalase; SOD, superoxide dismutase; RBCs, Red 
blood cells; AST, Aspartate transaminase; MCV, Mean Corpuscular Volume; Hb, 
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCH, ALT; 
Alanine transaminase; Mean corpuscular Hemoglobin; Htc, Haematocrit. ALP, 
alkaline phosphatase. 2 Red Tilapia treated with various levels of Bacillus subtilis 
and B. licheniformis (0, 0.01, 0.02, 0.03, g/m3) added to the water
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and SOD, there was a significant increase (P < 0.05) with 
higher levels of B. subtilis and B. licheniformis. Both T2 
and T3 groups exhibited superior values of SOD and 
CAT compared to other groups (P < 0.05).

Reproductive hormones
Table 4 shows that the treatment with three levels of B. 
licheniformis and B. subtilis had a significantly higher 
effect (P < 0.05) on Red Tilapia reproductive hormones 
compared to the control group. Specifically, the probiotic 
treatment at level 3 (T3, 0.03  g/m3) showed significant 
results (P < 0.05) in increasing the concentrations of the 
hormones FSH, LH, E2, and progesterone compared to 
the other treatment groups. Regarding testosterone hor-
mone parameters, the highest concentration increase was 
observed in the T3 treatment, while there was no signifi-
cant difference among T1, T2, and the control group.

Organosomatic indexes
The findings suggest that the levels of B. subtilis and B. 
licheniformis positively influenced the organosomatic 
indexes and reproductive functions (Table  5). Both B. 
subtilis and B. licheniformis levels contributed to hepatic 

and gonadal development in both sexes compared to the 
control group (P < 0.05). The hepatosomatic index (HSI) 
ranged from 3.07 to 3.55% for males and 3.09–3.34% for 
females. The viscerosomatic index (VSI) was significantly 
impacted by the addition of various doses of B. subtilis 
and B. licheniformis in all treatments (P < 0.05), rang-
ing from 9.99 to 11.06%. However, the VSI for females 
showed no significant effect with the addition of different 
levels of B. subtilis and B. licheniformis in all treatments 
(P > 0.05). The gonadosomatic index (GSI) significantly 
improved in all probiotic treatments (P < 0.05), ranging 
from 3.36 to 4.95% for males and 4.06–5.05% for females.

Egg diameter, mean number of fry/fish and mean fry 
weight
The inclusion of varying levels of B. subtilis and B. lichen-
iformis resulted in a notable improvement in egg diam-
eter, the average number of fry (spawning efficiency and 
larval production), and the average fry weight. Egg diam-
eter varied from 1.17  mm to 1.69  mm, the mean num-
ber of fries ranged from 1130 to 1478, and the average 
fry weight ranged from 16.05 g to 16.89 g, as presented 
in Table 5.

Table 4  Effect of the B. subtilis and B. Licheniformis levels (0, 0.01, 0.02, 0.03, g//m3) added to the water on male and female hormones 
of Red Tilapia Oreochromis spp
Sex Hormone1 Probiotics addition (g/m3)2

0.0 0.01 0.02 0.03
Male T (ng/mL) 2.55 ± 0.16b 2.72 ± 0.18b 2.86 ± 0.30b 3.24 ± 0.08a

Female LH (mIU/mL) 37.33 ± 2.52b 43.67 ± 4.04b 51.67 ± 5.13a 57.67 ± 1.5a

FSH (mIU/mL) 53.00 ± 3.61d 68.67 ± 4.16c 77.33 ± 3.06b 86.00 ± 3.61a

E2 (pg/mL) 104.00 ± 6.00c 125.67 ± 4.51b 147.67 ± 7.77a 157.33 ± 2.5a

Prog (ng/mL) 1.51 ± 0.04c 1.73 ± 0.08bc 2.15 ± 0.12b 3.00 ± 0.53a

* The values are reported as means ± SE (n = 6). Data in the same row with different superscripts indicate significant differences (P < 0.05), determined using ANOVA 
Post Hoc (Duncan test). 1FSH, Follicle-stimulating hormone; Prog, progesterone; T, Testosterone; LH, luteinizing hormone; and E2, estradiol. 2 Red Tilapia treated with 
various levels of Bacillus subtilis and B. licheniformis (0, 0.01, 0.02, 0.03, g/m3) added to the water

Table 5  Effect of the Bacillus subtilis and B. licheniformis (0, 0.01, 0.02, 0.03, g/m3) added to the water on reproductive performance and 
Organosomatic indices of Red Tilapia Oreochromis spp
Parameters/Sex1 Probiotics addition (g/m3)2

0.0 0.01 0.03 0.03
HSI (%)
Male 3.07 ± 0.08b 3.23 ± 0.06b 3.55 ± 0.03a 3.55 ± 0.06a

Female 3.09 ± 0.08b 3.31 ± 0.08a 3.31 ± 0.08a 3.34 ± 0.04a

VSI (%)
Male 9.99 ± 0.06d 10.31 ± 0.09c 10.76 ± 0.06b 11.06 ± 0.07a

Female 9.97 ± 0.33 9.55 ± 0.41 9.50 ± 0.55 9.69 ± 0.38
GSI (%)
Male 3.36 ± 0.17d 3.87 ± 0.04c 4.45 ± 0.06b 4.95 ± 0.04a

Female 4.06 ± 0.22d 4.32 ± 0.07c 4.68 ± 0.06b 5.02 ± 0.12a

Egg diameter (mm) 1.17 ± 0.06b 1.51 ± 0.12a 1.59 ± 0.05a 1.69 ± 0.19a

Mean Number of fries/fish 1130.0 ± 19.9d 1271.33 ± 48.8c 1356.33 ± 17.6b 1478.33 ± 22.6a

Mean fry weight (g) 16.05 ± 0.13c 16.35 ± 0.09b 16.42 ± 0.08b 16.89 ± 0.07a

* The values are reported as means ± SE (n = 6). Data in the same row with different superscripts indicate significant differences (P < 0.05), determined using ANOVA 
Post Hoc (Duncan test). 1HSI, hepatosomatic index; GSI, Gonadosomatic index; and VSI, viscerosomatic index. 2 Red Tilapia treated with various levels of Bacillus 
subtilis and B. licheniformis (0, 0.01, 0.02, 0.03, g/m3) added to the water
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Reproductive development associated gene expression
The current findings show the expression of genes asso-
ciated with development and reproduction, including 
Vasa, nanos1a, nanos2, dnd1, pum1, AMH, and VTG in 

testicular (Fig. 1) and ovarian (Fig. 2) tissues of Red Tila-
pia. It was noted that the expressions of Vasa, nanos1a, 
nanos2, dnd1, pum1, AMH, and VTG genes in testicu-
lar tissues were significantly upregulated in response 

Fig. 2  Effect of the B. subtilis and B. licheniformis (T0; 0, T1; 0.01, T2; 0.02, T3; 0.03, g/m3) added to the water on mRNA of reproduction-related genes in 
the ovaries of Red Tilapia

 

Fig. 1  Effect of the B. subtilis and B. licheniformis (T0; 0, T1; 0.01, T2; 0.02, T3; 0.03, g/m3) added to the water on expression of reproduction-associated 
genes in the testis of Red Tilapia
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to different graded levels of B. subtilis and B. lichenifor-
mis (P < 0.05) compared to the control group (Fig.  1). 
Additionally, the expressions of Vasa, nanos1a, nanos2, 
dnd1, pum1, AMH, and VTG genes in the ovarian tis-
sues followed the same pattern (Fig.  2). This upregula-
tion increased in a dose-dependent manner, with levels 
of 0.03 g/m3 of B. subtilis and B. licheniformis being the 
most effective (Figs. 1 and 2).

Histological changes in testicular tissue
Sections of fish testicular tissue from the control group 
(T0; Fig.  3A) showed the typical anatomy of interstitial 
cells (It), spermatocytes (Sp), spermatids (St), sperma-
tozoa (Sz), and testicular lobules (T). The testes treated 
with B. subtilis and B. licheniformis contained all stages 
of spermatogenesis. In the T1 group (Fig.  3B), which 
received 0.01 g/m3 of B. subtilis and B. licheniformis, we 
noticed normal and healthy architectures of seminiferous 
tubules containing spermatocytes, spermatids, and sper-
matozoa. There was a noticeable increase in the abun-
dance of spermatogenetic cells and growth of testicular 
tubules, particularly in both the T2 (0.02 g/m3; Fig. 3C) 
and T3 groups (0.03 g/m3; Fig. 3D) treated with B. subtilis 
and B. licheniformis. The T3 group showed an increase in 
spermatogenic cells, particularly spermatids and mature 
spermatozoa (Fig. 3D).

Histological changes in ovaries
The control group (T0) fish ovaries (Fig.  4A) displayed 
a slightly normal ovarian structure containing normal 
chromatin nucleolar oocytes (C), vitellogenic oocytes, 
cortical alveoli (CA), ripe oocytes (R), yolk globules 
(Y), and previtellogenic stage (Pr). Fish fed on differ-
ent levels of B. subtilis and B. licheniformis (0.01, 0.02 
and 0.03 mg/m3) exhibited normal development in all 
types of oocytes, including chromatin nucleolar oocytes 
(C), previtellogenic stage (Pr), vitellogenic oocytes, cor-
tical alveoli (CA), ripe oocytes (R), yolk globules (Y), 
postvitellogenic stage (Po), and postspawning ova (PSo) 
(Fig. 4B). This development was most pronounced in the 
T2 (0.02 g/m3) and T3 (0.03 g/m3) groups. Compared to 
the control group (T0), the T2 (Fig. 4C) and T3 (Fig. 4D) 
groups showed an improvement in oocytes with post-
ovulation luteinization and demonstrated superiority in 
oogonia and oocyte occurrence at various developmental 
stages.

Discussion
Aquaculture has recently played a significant role as a 
vital food source, supplying humans with excellent pro-
tein and easily absorbable minerals, particularly in devel-
oping nations such as Egypt [20, 40, 41]. Enhancing fish 
broodstock reproductive capacity with probiotic supple-
ments can benefit the industry’s sustainability. While 

Fig. 3  Photomicrographs of transverse sections of mature testis of Red Tilapia kept in various levels of B. subtilis and B. licheniformis {0 (Fig. 3A), 0.01(Fig. 3B), 
0.02 (Fig. 3C), 0.03 (Fig. 3D, g/m3} added to the water. Interstitial cells (It), spermatocytes (Sp), spermatids (St), spermatozoa (Sz), testicular lobules (T). [H&E 
stain was used, 100 μm]
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most studies focus on probiotics’ role in growth stages, 
their impact on reproductive capacity is less explored. In 
this study, we investigated the effects of adding BSL to 
water on red Tilapia’s reproductive variables. The results 
show that supplementing water with BSL significantly 
improved hematobiochemical parameters, reproductive 
hormones, organosomatic attributes, and reproductive 
capacity in red Tilapia. Gene expression analysis revealed 
upregulation of reproductive-related genes in testicu-
lar and ovarian tissues in response to varying levels of 
B. subtilis and B. licheniformis compared to fish on a 
basal diet. Various reports have documented the positive 
impacts of different additives on fish. Among these addi-
tives, probiotics, especially Bacillus strains, have become 
the most widely used and popular in aquaculture [23, 42]. 
The production of fish in aquaculture heavily depends on 
water conditions. To achieve optimal reproductive capac-
ity, survivability, and production, it is crucial to enhance 
the aquatic environment by reducing aquatic pathogens 
and improving water quality. This will lead to success-
ful reproduction [6]. The findings of the current trial 
demonstrate a noticeable improvement in water quality, 
supported by a considerable decrease in total hazardous 
and toxic degrees of ammonia in the probiotics-treated 

groups, especially the T3 group. Many previous studies 
have found similar results [9, 43].

According to the findings of a research conducted by 
[44], the addition of B. licheniformis as denitrifying bac-
teria to rearing water decreases the levels of toxic com-
ponents (TAN and NH3) and improves the breakdown of 
protein and starch in leftover feeds. The quality of water 
is enhanced by the biodegradation of nitrogenous wastes 
by Bacillus species, resulting in waste mineralization [44]. 
Maintaining good water quality is crucial for the survival 
of aquatic organisms especially in Broadstock fish, with 
ammonia nitrogen and nitrite nitrogen being key indica-
tors in aquaculture. High levels of these compounds can 
be toxic to farmed species. Effective water quality man-
agement is essential in aquaculture production. Enrich-
ing water with efficient microbial communities can 
enhance organic matter recycling and maintain a clean 
water environment for farmed fish [45]. Previous studies 
have found that the addition of B. subtilis (109 CFU/mL) 
significantly decreased the total nitrogen and ammonia 
nitrogen concentrations in water. Additionally, Cha et al. 
[46], performed that B. subtilis (0.5% of the diet) effec-
tively reduced the concentration of ammonia nitrogen 
in the Japanese flounder (Paralichthys olivaceus) cul-
ture system. The authors suggested that probiotics play 

Fig. 4  Photomicrographs of transverse sections of mature ovaries of Red Tilapia kept in water supplemented with various levels of B. subtilis and B. li-
cheniformis {0 (Fig. 4A), 0.01 (Fig. 4B), 0.02 (Fig. 4C), 0.03 (Fig. 4D), g/m3}. Arrows: stroma that around the vitellogenic oocytes’ follicles, growing oocytes at 
different developmental stages, normal chromatin nucleolar oocyte (C), vitellogenic oocytes with cortical alveoli (CA), ripe oocytes (R), yolk globules (Y), 
previtellogenic stage (Pr), postvitellogenic stage (Po), postspawning ova are collapsed (PSo), asterisk: degeneration of some tissues around the oogonia 
follicles. [H&E stain was used, 100 μm]
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a crucial role in water quality by breaking down organic 
matter and converting NH4+ to NO3. Furthermore, pro-
biotics have been shown to eliminate pathogenic bacte-
ria from water. Improving water quality can enhance fish 
health, leading to increased production and reduced sus-
ceptibility to disease.

Haemato-biochemical parameters are considered valu-
able indicators for evaluating the health profile of fish [47, 
48]. According to our findings, the use of B. subtilis and 
B. licheniformis improved the hematopoietic state of red 
tilapia. Hematological parameters in the current study, 
such as HB, mean MHC, MCHC, and HCT in the treated 
groups with the addition of probiotics also significantly 
increased compared to the control group, indicating a 
high capacity for oxygen carrying in the blood [49]. On 
the contrary, the MCV was not significantly affected in 
all treatments. The addition of B. subtilis in water demon-
strated a significant improvement in albumin, total pro-
tein, and globulin values compared to the control group 
[50, 51]. Glucose levels in our study exhibited a gradual 
decline in all treated groups, which is in line with the 
results of a previous study [52]. The reduction in glucose 
levels was attributed to the probiotic’s treatment altering 
the expression of genes involved in glucose uptake and 
lowering overall glucose levels in zebrafish larvae [52]. 
Significant differences were observed in the blood serum 
composition of red tilapia that received supplementa-
tion with B. licheniformis and B. subtilis. Components in 
the blood serum indicate the physiological performance 
of the fish body, especially in relation to the functions of 
vital organs such as the liver, kidneys, and the circulatory 
system. Hepatic function enzymes, AST, and ALT are 
biochemical indices of liver function and health. These 
indicators are used to evaluate how additives can influ-
ence the metabolic activities and overall health of fish 
[41]. In our trial, a significant reduction in liver activities 
was observed in all groups treated with B. subtilis and B. 
licheniformis, which is consistent with findings reported 
in Nile tilapia showing the same effect of these enzymes 
when probiotics are added to the rearing water.

The part of probiotics in controlling metabolic enzymes 
has also been explored and studied in a scarce other 
aquatic fish species. Studies by [53] and [54] suggested 
that feeding Nile tilapia a diet supplemented with B. sub-
tilis may reduce ALT and AST activities.

In the current research, we noticed a significant 
decrease in blood levels of creatinine, urea, and uric acid 
levels showed a significant decrease with the increase in 
probiotic levels. This data was in contrast to the findings 
by [55] and [20], who indicated that no notable changes 
in creatinine and urea levels among supplemented groups 
with probiotics. Additionally, the activities of antioxi-
dants SOD and CAT were increased with the addition of 
graded levels of B. subtilis and B. licheniformis (p < 0.05), 

consistent with the results of study by [20]. Prebiotics and 
probiotics have been stated to improve the reproductive 
capability of certain fish species. For instance, Zebrafish 
(Danio rerio) fed a diet enriched either bacillus spp or 
lactobacillus spp showed improvements in gonad devel-
opment, fecundity, egg production, GSI, and the number 
of viable fries produced [56, 57].

As a secondary effect of increased absorption and uti-
lization of nutrients in aquatic animals receiving probi-
otic supplementation, there is an increased availability 
of nutrients essential for reproductive system function, 
including the production of hormones important for 
reproductive function. Pituitary gonadotropins (GnRH) 
such as LH and FSH are the main regulators of gameto-
genesis in teleost fish [58].

The data of the current experiment is consistent with 
the findings by [27], indicating that red tilapia receiving 
probiotic supplementation will experience an increase in 
the production of hormones such as testosterone, FSH, 
LH, estrogen, and progesterone compared to the control 
group.When using probiotics for aquatic animals, the 
type of probiotic bacteria and the dosage of probiotics 
play a significant role in the outcomes. In this study, the 
T3 treatment group (dose 0.03 g/m3) exhibited a greater 
increase in hormone concentrations compared to the T2 
and T1 treatment groups [27]. The results of this experi-
ment showed that the treatment with three levels of pro-
biotics containing B. subtilis and B. licheniformis had a 
significantly greater effect on the reproductive hormones 
of red tilapia compared to the fish fed the basal diet with-
out any treatment.

Specifically, the probiotic treatment at level 3 (T3) pro-
duced highly significant results in increasing the concen-
tration of the hormones FSH, LH, E2, and P compared to 
the other treatment groups. Regarding testosterone hor-
mone, the highest level was found in the T3 treatment, 
while for T1 and T2, they did not differ significantly dif-
ferent from the control group (T0).

Studies by several researchers [48, 59, 60] have docu-
mented that beneficial microbes can lead organisms uti-
lize energy sources more efficiently, leading to improved 
growth and reproductive performance in zebrafish [61]. 
In our study, the inclusion of levels of B. licheniformis and 
B. subtilis notably enhanced the growth performance of 
red tilapia compared to the control group.

Furthermore, higher levels of these probiotics in red 
tilapia groups reared in water treated with B. subtilis 
and B. licheniformis can be directly contributed to the 
improvement of water quality. There was a substantial 
variation (P < 0.05) between the treatment groups in the 
GSI percentage, mean number of fries, and mean fry 
weight parameters. Only the group receiving probiotic 
supplementation showed a significant difference in the 
HIS percentage and egg diameter parameters compared 
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to the control group. Body indices, including GSI, VSI, 
and HSI, which indicating dietary value, growth, and 
feed utilization, can be improved by adding feed with a 
mixture of B. subtilis and B. licheniformis [62]. Another 
study of [62] reported that all doses of probiotics had a 
substantial valuable consequence on the GSI and HSI 
indices compared to the control treatment. This suggests 
that adding B. licheniformis and B. subtilis can boost the 
reproductive capability of zebrafish [56, 57].

Dead-end (dnd), Nanos, pumilio (pum), piwil-like 
(piwil) vasa, and genes are known to be implicated in 
translational repression of germ cells [63], which is 
believed to be essential for the preservation of germ-
line integrity across animal phyla, containing mice 
[64], zebrafish [65], and Xenopus [66]. Recently, four 
nanos’ genes [67], two piwil genes [68] and three vasa 
genes [69] have been identified in tilapias. Addition-
ally, in silico examination of public databases by NCBI 
revealed anticipated sequences for three pum genes and 
one dnd1a. Vitellogenin (Vtg) is a reproductive protein 
found in females, that is broken down into yolk proteins. 
Lipovitellin (Lv), and phosvitin (Pv), which are depos-
ited in eggs to provide essential nutrients for early-stage 
embryos. Several studies have confirmed that probiotics 
can improve the reproductive capacity in Nile tilapia by 
supporting reproductive-related genes, as observed in 
this study. A study by [70] clarified that probiotics (0.5 g/
kg) added to Nile tilapia feed during the breeding season 
improved reproductive performance and profitability.

In the extant work, the transcript of development-
reproduction-related genes in red tilapia fed with B. 
subtilis and B. licemiformis were significantly upregu-
lated compared to fish reared in the control group. This 
highlights the beneficial effects of B. subtilis and B. lice-
miformis on fish reproduction, in addition to the previ-
ously reported improvements in hematology profile, 
blood metabolites, and reproductive parameters such as 
GSI, egg diameter, and fry production. Male zebrafish fed 
a diet with a containing probiotic P. acidilactici exhib-
ited higher expression of fertility markers (lepa, dmrt, 
and bdnf) compared to the control group [71]. This indi-
cates that P. acidilactici could be a promising probiotic 
supplement to enhance molecular parameters in testicu-
lar cells of male zebrafish, potentially leading to improve 
the reproductive performance, sperm quality.Probiotics 
have been shown to prevent apoptosis and enhance sur-
vivability in fish during the growth period [72]. They also 
stimulate the intratubular and tubular sections, which are 
known to enhance sperm production [71]. Certain pro-
biotics have been shown to activate various cell types, 
including neuronal, connective tissue, blood/lymphatic 
vessels, mast cells, macrophages, and steroidogenic Ley-
dig cells. Additionally, probiotic supplementation in feed 

has been found to improve fish reproductive health and 
feed utilization, particularly with lactic acid bacteria [24].

Probiotics have the potential to modulate gene expres-
sion patterns or hormone levels that regulate fish repro-
duction [73], thereby enhancing reproductive functions 
and activating reproductive genes to address reproduc-
tive disorders when added to the diet or water. Histologi-
cal investigations revealed that the addition of B. subtilis 
and B. licemiformis enhanced gonadal development in 
red tilapia, particularly in spermatogenic cells, includ-
ing spermatids and mature spermatozoa. Female fish 
reared in 0.02 and 0.03  g/m3 showed different stages of 
oocyte development, with the best gonadal development 
observed in the 0.03  g/m3 group, which had a higher 
number of mature and ripe oocytes. These findings are 
consistent with those reported by [74] in Nile tilapia. Fur-
ther studies are needed to confirm these results, as there 
is a lack of research on the potential effects of probiotics 
on reproductive performance in fish species, especially 
using omics tools.

Conclusion
The study showed that adding B. subtilis and B. licheni-
formis at a concentration of 0.03 g/m3 can enhance fish 
blood profile and reproductive health. This experiment 
demonstrated that probiotics in water can improve water 
quality, hematological and biochemical parameters in red 
tilapia broodfish, and support gonad maturation, game-
togenesis production, gene expression, and overall repro-
ductive performance. Additional research is required 
to validate these findings, as there is a dearth of studies 
examining the potential impacts of probiotics on repro-
ductive performance in fish species.
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