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Abstract
Background To assess the effects of inactivated Lactobacillus rhamnosus (ILR) on growth performance, serum 
biochemical indices, colonic microbiota, and metabolomics in weaned piglets, 120 piglets were randomly divided 
into five groups. Samples in the control group were fed a basal diet, while the experimental ILR1, ILR2, ILR3, and ILR4 
groups were fed basal diets supplemented with 0.1%, 0.2%, 0.3%, and 0.4% ILR, respectively. The prefeeding period 
lasted for 5 days and was followed by a formal period of 28 days.

Results Compared to the control, the average daily gain increased by 4.38%, 7.98%, 19.32%, and 18.80% for ILR1, ILR2, 
ILR3, and ILR4, respectively, and the ratio of feed to gain decreased by 0.63%, 3.80%, 12.66%, and 10.76%, respectively. 
Serum IgA, IgG, IgM, total antioxidant capacity, and glutathione peroxidase levels increased significantly in weaned 
piglets in the treatment groups. Addition of 0.3% ILR significantly increased the Shannon and Simpson indices of the 
colonic microbiota in weaned piglets and altered the microbiota composition. Changes in metabolic profiles were 
observed and were primarily related to the urea cycle, amino acid metabolism, and lipid metabolism.

Conclusion ILR improved growth performance and serum immunological and biochemical indices and optimized 
the colonic microbiota structure and metabolism of weaned piglets.
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Background
The role of intestinal microbiota in host nutrition, 
growth, development, immunity, and health has been 
widely confirmed [1–3]. This extends the identification 
and functional study of probiotics in the gut microbiota 
[4, 5]. Common probiotics such as Lactobacillus and 
Bifidobacterium are typically consumed as active bacte-
ria preparations [6]. Lactobacillus has been widely used 
in industry, medicine, and agriculture [7, 8]. Despite 
numerous reports supporting the health benefits of pro-
biotics, the safety concerns resulting from the use of live 
bacteria remain controversial [9]. For example, horizon-
tal gene transfer contributes to the spread of drug resis-
tance in the gut microbiota [10–12]. Another important 
concern regarding the safety of live bacteria is the risk of 
translocation and subsequent bacteremia and septicemia 
[13]. Numerous cases of sepsis caused by Lactobacil-
lus rhamnosus GG (LGG) have been reported clinically 
[14]. Probiotics may trigger an inflammatory response in 
highly susceptible individuals [15]. During breeding, the 
intestines of weaned piglets are weak, and the structure 
of the microbiota is incomplete, ultimately resulting in 
impaired antioxidant capacity and gastrointestinal func-
tion and leading to slow growth and even death [16]. 
Therefore, the addition of live bacteria to animal feed 
should be considered with caution. Furthermore, preser-
vation conditions and quality control of live bacteria are 
difficult [17].

Inactivated lactic acid bacteria exhibit a beneficial 
nature similar to that of live bacteria [18, 19]. One study 
indicated that both live bacteria and heat-inactivated lac-
tic acid bacteria reduced the aflatoxin content in PBS, 
and two inactivated L. rhamnosus (ILR) strains exhibited 
stronger adsorption capacities than did live bacteria [20]. 
Heat-inactivated lactic acid bacteria can release peptido-
glycans, lipoteichoic acid, and extracellular polysaccha-
rides (EPS) that all exert immunomodulatory effects [21]. 
Furthermore, heat-inactivated lactic acid bacteria still 
possess the ability to maintain the balance of intestinal 
microbiota [22, 23], and their products are easier to store 
and possess a longer expiration date [24].

L. rhamnosus regulates the gut microbiota and boosts 
immunity [25]. However, it has been reported that 
dietary supplementation with L. rhamnosus GG cannot 
prevent or reduce the adverse effects of E. coli F4 infec-
tion on the growth performance and health status of 
growing pigs, but it can decrease growth performance, 
increase diarrhea, and decrease serum immunoglobulin 
A (IgA) content [26]. Moreover, heat-killed L. rhamno-
sus improves growth performance and reduces diarrhea 
in growing pigs [27]. However, the effects of ILR on the 
structure and metabolism of the intestinal microbiota in 
weaned piglets have not been reported. Understanding 
the effects of ILR on the structure and metabolism of the 

intestinal microbiota in weaned piglets would help to sys-
tematically elucidate the mechanisms by which ILR pro-
mote growth and immunity. To provide a reference for 
the application of ILR in the production of weaned pig-
lets, in this study the effects of ILR supplementation on 
growth performance, serum parameters, structure, and 
metabolism of the colonic microbiota in weaned piglets 
were analyzed.

Methods
Preparation of ILR
The L. rhamnosus strains used in this study were isolated 
from healthy pigs. Approximately 10.0  g of fresh fecal 
sample was weighed and transferred into a 250 mL sterile 
conical flask with 90 mL of sterile water and an appropri-
ate amount of glass beads. After full shaking and mixing, 
1 ml of mixed liquid was transferred to 100 mL of MRS 
medium and cultured at 37  °C for 48  h. After gradient 
dilution, 0.1 mL of the cultured medium was inoculated 
onto an MRS solid medium plate containing 1% CaCO3. 
After 48 h of culture at 37 °C, a single colony with obvi-
ous calcium lysosomes was picked and repeatedly puri-
fied on an MRS solid medium plate until the morphology 
of the bacteria was observed under a microscope. Mor-
phological characteristics of the colonies were observed 
by optical microscopy and scanning electron microscopy. 
Gram staining was performed using the Gram Staining 
Kit (catalog number: G1060; Solarbio, Beijing, China). 
The V-P, nitrate reduction, and catalase tests were con-
ducted according to the Handbook for the Identifica-
tion of Common Bacterial Systems [28]. The 16 S rRNA 
gene was amplified using 27  F and 1492 R primers and 
sequenced as previously described [29]. Based on the 
morphology, Gram staining, catalase testing, and 16  S 
rRNA gene sequencing, the strain was identified as L. 
rhamnosus. The L. rhamnosus strain was cultured to 
1 × 1010 CFU/ml in MRS medium, centrifuged at 4,000 g 
for 30  min to collect bacterial precipitate, then washed 
twice and suspended in distilled water, heated at 80℃ 
for 30 min, and freeze-dried. The determination of effec-
tive inactivation was to culture the freeze-dried sample at 
37 °C for 48 h without colony formation.

Study design and measurement of growth indicators
This study was approved by the Biomedical Research 
Ethics Committee of Hunan Agricultural University 
(approval number: Lunshenke 2023 No. 127) and was 
conducted in accordance with its guidelines.

A total of 120 Duroc × Landrace × large hybrid weaned 
piglets with consistent body weights (8.31 ± 0.16 kg) were 
purchased from Dayuji Animal Husbandry Technolgy 
Co., Ltd (Beijing. China) and divided into five groups 
with six replicates per group and four pigs per repli-
cate based on the principle of similar body weight and 
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the same weight between males and females. Pigs in the 
control group (CON) were fed a basal diet (Table 1), and 
those in the ILR1, ILR2, ILR3, and ILR4 groups were fed 
basal diets supplemented with 0.1, 0.2, 0.3, and 0.4% ILR, 
respectively.

A 28-day formal experiment after a 5-day pre-feeding 
was conducted at the Experimental Base of Chuang-
zhan Bona Agricultural Technology Co., Ltd. (Zhaoq-
ing, Guangdong, China). During the experiment, the pigs 
were raised in the same feeding environment and were 
immunized and sterilized in strict accordance with the 
management methods of the pig farm. All fences were 
equipped with automatic feeders and drinking fountains 
for free access to feed and water.

On the 1st and 28th day of the formal experiment, 
the initial body weights (IBWs) and final body weights 
(FBWs) of the weaned piglets were measured, and daily 
feed consumption and surplus were recorded to calculate 
the average daily gain (ADG), average daily feed intake 
(ADFI), and feed conversion ratio (F/G).

At the end of the experiment, six weaned piglets with 
body weights close to the average of the group were col-
lected from each group, and blood samples were col-
lected from the ear veins after fasting for 6  h. After 
standing for 30 min, the serum was obtained from blood 
by centrifugation at 4,000  rpm at 4  °C for 20  min and 
stored at − 80 °C. After blood collection, the piglets were 
euthanized in a commercial slaughterhouse (Zhaoqing, 
Guangzhou, China) by carbon dioxide asphyxiation with 
less than 2% oxygen (air replaced with carbon dioxide). 
Intestinal tissue was sampled immediately after dis-
section, and each intestinal segment was ligated. Colon 

contents were collected, subsequently transferred to liq-
uid nitrogen for rapid freezing, and then transferred to a 
− 80℃ refrigerator for storage.

Determination of serum indicators
Serum total protein (TP), albumin (ALB), aspartate ami-
notransferase (AST), alanine aminotransferase (ALT), 
total cholesterol (T-CHO), high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein choles-
terol (LDL-C), blood urea nitrogen (BUN), lysozyme, 
total antioxidant capacity (T-AOC), glutathione per-
oxidase (GSH-Px), total superoxide dismutase (T-SOD), 
and malondialdehyde were measured using appropriate 
kits (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, Jiangsu, China). IgA, immunoglobulin M (IgM), 
and immunoglobulin G (IgG) were measured using pig 
IgA ELISA kits (detection range: 0.146–37.5 µg/ml; cata-
log number: CSB-E13234p), IgM ELISA kits (detection 
range: 0.039–10  µg/ml; catalog number: CSB-E06805p), 
and IgG ELISA kits (detection range: 0.586–150  µg/ml; 
catalog number: CSB-E06804p), respectively (Cusabio, 
Wuhan, Hubei, China).

Microbiota composition analysis of colon contents
Colonic microbiome DNA was extracted using the 
TGuide S96 kit (TianGen, Beijing, China). The hypervari-
able V3-V4 region of the 16 S rDNA was amplified using 
primers 338  F and 806R as previously described with 
modifications [30]. Briefly, polymerase chain reactions 
(PCRs) were performed in duplicate with a 25-µl reac-
tion mix containing 1 × PCR buffer, 0.25 U of Taq DNA 
polymerase (Transgen, Beijing), 0.2 mM of each deoxy-
nucleoside triphosphate, 1.0 µM of each primer, and 10 
ng microbial genomic DNA. The thermal cycling proce-
dure consisted of an initial pre-denaturation step at 94 °C 
for 10  min that was followed by 30 cycles of 94  °C for 
30 s, 56 °C for 30 s, and 72 °C for 30 s and a final exten-
sion at 72 °C for 10 min. Subsequently, the PCR products 
were detected using 1.8% agarose gel electrophoresis and 
purified using an AxyPrep DNA gel extraction kit (Axy-
gen, China). Sequencing was performed using a Sequel 
II sequencer (PacBio, Silicon Valley, CA, USA) (Bio-
marker Technologies, Beijing, China) [31]. Raw data were 
merged using FLASH version 1.2.11 The merged tags 
were quality controlled using Trimmomatic version 0.33. 
High-quality tags were obtained after removing chime-
ric sequences using UCHIME version 8.1 and were clus-
tered into observed taxonomic units (OTUs) with 97% 
sequence similarity using USEARCH version 10.0. Each 
feature was annotated using the Silva rRNA database 
[32]. α-Diversity indices were calculated using Mothur 
1.30. β-Diversity analysis was performed using QIIME2 
[33] and visualized by component analysis (PCA).

Table 1 Composition and nutrient levels of the basal diet (air-
dry basis)
Items Content 

(%)
Ingredients Calculated value of 

nutrients (%)
Corn 56.00 Crude protein 19.00
Soybean mead 12.00 Crude fiber 4.20
Wheat bran 10.00 Lysine 1.35
Extruded soybean 8.00 Threonine 0.76
Fish meal 3.00 Methionine 0.46
Whey powder 3.00 Calcium 0.70
Sucrose 2.00 Total phosphorus 0.65
Zeolite powder 1.00 STTDP 0.35
CaHPO4 1.00
Soybean oil 1.00
Premix 3.00
Total 100
Premix provides 120 mg of Fe, 20 mg of Cu, 100 mg of Zn, 40 mg of Mn, 0.3 mg 
of Se, 0.5 mg of I, 0.2 mg of Co, 12,000 IU of VA, 2500 IU of VD3, 35 IU of VE, 4 mg 
of VK3, 1.5 mg of VB1, 4.5 mg of VB2, 3.5 mg of VB6, 0.05 mg of VB12, 50 mg of 
nicotinic acid, 2 mg of folic acid, 20 mg of pantothenic acid, and 0.4 mg of biotin 
per kilogram of feed. STTDP: standard total tract digestible phosphorus
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Non-targeted metabolomes analysis of colon contents
The colon content samples were added to an extraction 
solution (methanol: acetonitrile: water = 2:2:1, interior 
label concentration of 2  mg/L) containing an interior 
label (1000:2), vortexed mixed for 30 s, then ground, and 
sonicated. After standing at − 20  °C for 1 h, the samples 
were centrifuged at 1,200  rpm for 15  min at 4  °C. The 
supernatant was transferred into an EP tube, dried in 
a vacuum concentrator, and re-dissolved in acetoni-
trile solution (1:1 acetonitrile: water). Subsequently, the 
supernatant samples were obtained by vortexing, ultra-
sonication, and re-centrifugation and then used for sub-
sequent detection.

A non-targeted metabolomics assay was performed 
by Biomarker Biotechnology Co., LTD (Beijing, China). 
The LC-MS system consisted of an Acquity I-Class PLUS 
ultra-high performance liquid chromatography-mass 
spectrometer (Waters, Framing, Massachusetts, USA) in 
tandem with a Xevo G2-XS QT of high-resolution mass 
spectrometer (Waters) with an Acquity UPLC HSS T3 
column (1.8 μm 2.1*100 mm; Waters). Raw data were col-
lected using MassLynx V4.2, and peaks were extracted, 
aligned, and processed using Progenesis QI software. 
Material identification was carried out using Progenesis 
QI software with online METLIN, public, and Biomark 
self-built databases. Theoretical fragment identification 
was performed simultaneously. The mass deviation of the 
parent ion was within 100 ppm, and that of the fragment 
ion was within 50 ppm. The ropls R package was used 

for orthogonal partial least squares discriminant analy-
sis (OPLS-DA), and permutation was used to test the 
reliability of the model. The identified metabolites were 
annotated using the KEGG, HMDB, and LIPID MAPS 
databases. The variable importance in projection (VIP) of 
the OPLS-DA model obtained from multivariate analysis 
was analyzed, and differential metabolites were identified 
for metabolic pathway analysis, combined with the p-val-
ues of univariate analysis.

Data analysis
Data were analyzed by one-way ANOVA using SPSS 20.0. 
Tukey’s test was used for multiple comparisons, and data 
are presented as means ± standard error. Histograms were 
plotted using the GraphPad Prism 6 software (GraphPad 
Prism Inc., USA). Spearman analysis was performed to 
reveal the correlation between gut microbial communi-
ties and the altered metabolites, and the R pheatmap 
package was used for visualization. Results were consid-
ered significant at P < 0.05.

Results
Effect of ILR on the growth performance of weaned piglets
There were no significant differences in IBW among the 
weaned piglets in any of the groups (P > 0.05; Fig.  1A), 
whereas the FBW of all treatment groups was signifi-
cantly higher than that of the control group (P < 0.05; 
Fig.  1B). Compared to the control, the ADG of each 
experimental group significantly increased by 4.38%, 

Fig. 1 Effect of inactivated Lactobacillus rhamnosus on the growth performance of weaned piglets. (A) initial body weight (IBM); (B) final body weight 
(FBW); (C) average daily gain (ADG); (D) average daily feed intake (ADFI); (E) feed conversion ratio (F/G). Different lowercase letters above the boxes indi-
cate significant differences between the two datasets
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7.98%, 19.32%, and 18.80%, respectively (P < 0.05; 
Fig. 1C), and the F/G decreased by 0.63%, 3.80%, 12.66%, 
and 10.76%, respectively (Fig. 1E). Although the ADFI in 
each treatment group was significantly higher than that 
in the control group, there were no significant differences 
in ADFI among the treatment groups (Fig.  1D). These 
results revealed that the ILR3 and LIR4 groups exhibited 
the best weight gain and feed utilization of weaned pig-
lets, but there was no significant difference between the 
groups (Fig. 1).

Effect of ILR on serum biochemical indicators in weaned 
piglets
The serum TP of the weaned piglets treated with ILR was 
significantly higher than that of the control (P < 0.05), 
and the effects of ILR3 and ILR4 were the most obvi-
ous, whereas there was no significant difference between 
these two groups (P > 0.05; Fig. 2A). Serum albumin and 
HDL-C levels in the ILR2, ILR3, and ILR4 groups were 
significantly higher than those in the control group 
(P < 0.05), while serum LDL-C and triglyceride (TG) lev-
els in each treatment group were significantly lower than 
those in the control group (P < 0.05; Fig. 2C and E). Serum 
T-CHO levels in the ILR2, ILR3, and ILR4 groups were 
significantly lower than those in the control group, and 
those in the ILR3 group decreased the most and were not 
significantly different from those in the ILR2 and ILR4 
groups (Fig. 2F). BUN levels in the ILR3 and ILR4 groups 
were significantly lower than those in the control group 
(P < 0.05; Fig.  2G). There were no significant differences 
in serum ALT and AST levels between the treatment and 
control groups (P > 0.05; Fig. 2H and I).

Serum T-AOC levels in the ILR addition group were 
significantly elevated compared to those in the control 
group (P < 0.05), and the ILR3 group exhibited the high-
est elevation of 74.08% (Fig.  2J). Serum GSH-Px lev-
els in each treatment group were significantly higher 
than those in the control group (P < 0.05), and those 
in the ILR3 and ILR4 groups increased by 28.67% and 
29.54%, respectively (Fig.  2K). The serum malondialde-
hyde level decreased significantly compared to that in 
the control (P < 0.05), with the ILR4 group exhibiting the 
greatest decrease, although there was no significant dif-
ference among the ILR2, ILR3, and ILR4 groups (P > 0.05; 
Fig.  2L). T-SOD activity was not significantly different 
among the groups (P > 0.05; Fig. 2M).

The activities of IgA, IgG, IgM, and lysozyme in weaned 
piglets fed ILR were significantly higher than those in the 
control (P < 0.05) and exhibited an increasing trend with 
increasing ILR supplementation (Fig.  2N-Q). However, 
these immune parameters were not significantly different 
between the ILR3 and ILR4 groups (P > 0.05; Fig. 2N-Q).

Effect of ILR on the colon microbiota structure of weaned 
piglets
Based on the results of growth performance and serum 
parameters, the control and ILR3 groups were selected 
to analyze the structure and metabolic profiles of the 
colonic microbiota in weaned piglets. In total, 4,521 
OTUs were identified in both groups. Principal compo-
nent analysis (PCA) demonstrated clear differences in 
colonic microbiota between the ILR3 and control groups 
(Fig. 3A). Although there were no significant differences 
in OTU number (P > 0.05; Fig.  3B), the Shannon and 
Simpson indices in the ILR3 group were significantly 
higher than those in the control (P < 0.05; Fig.  3C and 
D), thus indicating that ILR increased the α-diversity of 
colonic microbiota in weaned piglets.

Bacteroidetes and Firmicutes dominated the colonic 
microbiota of both groups (Fig.  3E). The relative abun-
dances of Firmicutes, Verrucomicrobiota, Spirochae-
tota, Proteobacteria, Actinobacteria, and Patescibacteria 
in the ILR3 group were significantly lower than those 
in the control group (P < 0.05; Fig. 3F-I and M, and 3N), 
whereas those of Fibrobacterota, Campylobacterota, and 
Bacteroidetes were significantly higher than those in the 
control group (P < 0.05; Fig. 3J-L).

The relative abundances of Prevotella and Allopre-
votella in Prevotellaceae and Phascolarctobacterium, 
Faecalibacterium, Lachnospira, and many unclassified 
genera in the ILR3 group were significantly increased 
compared to the control, and those of Streptococcus, 
Terrisporobacter, Treponema, Escherichia_Shigella, and 
many unclassified genera were significantly decreased 
(Fig. 4).

Effect of ILR on the colon content metabolites in weaned 
piglets
The PCA results of the colonic content metabolites dem-
onstrated a clear differentiation between the control and 
ILR treatments, thus indicating an altered metabolic pro-
file in the colonic contents of weaned piglets (Fig.  5A). 
Based on a VIP value > 1 in the model and a p-value < 0.05 
of univariate analysis, 314 metabolites were significantly 
upregulated and 402 metabolites were significantly 
downregulated in the ILR3 group compared to levels 
in the control group (Fig. 5B). In particular, in the ILR3 
group, N-acetyl-L-glutamate (NAG), L-ornithine, cholic 
acid, chenodeoxycholic acid, 3,7-dihydroxy-5-choleste-
noic acid, quinoline-4,8-diol, pyridoxamine phosphate, 
γ-linolenic acid, eicosapentaenoic acid, 2-polyprenyl-
6-methoxyphenol, HSDC, 1-methylnicotinamide, 
D-xylono-1,5-lactone, and 3-indolepropionic acid were 
significantly up-regulated, and N-acetylornithine, cere-
brosterol, coprocholic acid, 13(S)-HPODE, α-linolenic 
acid, L-tyrosine, N-butyl-N-(4-hydroxybutyl)nitrosa-
mine, 9, 10-dihome, CMP-2-aminoethylphosphonate, 



Page 6 of 14Shu et al. BMC Veterinary Research          (2024) 20:422 

creatinine aspartate, urobilinogen, I-urobilinogen, 
N-mononitrosopiperazine, and 4-hydroxy-2-nonenal-
[Cys-Gly] conjugate were significantly down-regulated 
compared to levels in the control (Fig.  5C). Further-
more, metabolic pathway enrichment analysis demon-
strated that the differences in metabolites between ILR3 

and control groups were primarily related to amino 
acid metabolism, urea cycle, lipid metabolism, cofactor 
metabolism, and vitamin metabolism pathways (Fig. 5D).

Spearman’s correlation analysis demonstrated that 
cholic acid was significantly negatively correlated with 
UCG_005, Terrisporobacter, and Streptococcus in the 

Fig. 2 Effect of inactivated Lactobacillus rhamnosus on serum biochemical indicators in weaned piglets. (A) total protein (TP); (B) albumin (ALB); (C) 
low-density lipoprotein cholesterol (LDL-C); (D) high-density lipoprotein cholesterol (HDL-C); (E) TG; (F) total cholesterol (T-CHO); (G) blood urea nitrogen 
(BUN); (H) alanine aminotransferase (ALT); (I) aspartate aminotransferase (AST); (J) total antioxidant capacity (T-AOC); (K) glutathione peroxidase (GSH-Px); 
(L) malondialdehyde (MDA); (M) total superoxide dismutase (T-SOD); (N) immunoglobulin A (IgA); (O) immunoglobulin G (IgG); (P) immunoglobulin M 
(IgM); and (Q) lysozyme (LZM)
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Fig. 3 Effect of inactivated Lactobacillus rhamnosus on the colon microbiota structure of weaned piglets. (A) Principal component analysis profile; (B) 
Feature number; (C) Shannon index; (D) Simpson index; (E) Relative abundances of the top 10 phyla in the colon microbiota of weaned piglets; (F) 
Relative abundance of Firmicutes; (G) Relative abundance of Verrucomicrobiota; (H) Relative abundance of Spiroochaetota; (I) Relative abundance of 
Proteobacteria; (J) Relative abundance oof Fibrobacterota; (K) Relative abundance of Campylobacterota; (L) Relative abundance of Bacteroidota; (M) 
Relative abundance of Actinobacteriota; (N) Relative abundance of Patescibacteria; (O) Relative abundance of Desulfobacterota. ** P < 0.01; *** P < 0.001
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primary bile acid biosynthesis pathway (P < 0.05; Fig. 5E). 
Chenodeoxycholic acid was negatively correlated with 
UCG_005 and positively correlated with Alloprevotella. 
Coprocholic acid and 24OHC were significantly nega-
tively correlated with Prevotella 9 and unclassified 
Lachnospiraceae and significantly positively correlated 
with Streptococcus. Moreover, Prevotella 9 was signifi-
cantly negatively correlated with α-linolenic acid and 
positively correlated with NAG, eicosapentaenoic acid, 
L-ornithine, and 1-methylnicotinamide. Alloprevotella 
was significantly negatively correlated with N-mononi-
trosopiperazine, creatinine aspartate, 4-hydroxy-2-non-
enal-[Cys-Gly] conjugate, and L-tyrosine and positively 
correlated with γ-linolenic acid, pyridoxamine phos-
phate, 3-indolepropionic acid, and SHCHC. Strepto-
coccus was significantly and positively correlated with 
I-urobilinogen and significantly negatively correlated 
with 1-methylnicotinamide levels. Terrisporobacter was 
significantly positively correlated with n-butyl N-(4-hy-
droxybutyl) nitrosamine and negatively correlated with 
D-xylono-1,5-Lactone, NAG, eicosapentaenoic acid, 
1-methylnicotinamide, quinoline-4,8-diol, and 2-poly-
prenyl-6-methoxyphenol (P < 0.05; Fig. 5E).

Discussion
Inactivated lactic acid bacteria possess excellent appli-
cation prospects for animal production and are more 
economical and convenient to use than are live bacteria 
[24]. Adding heat-inactivated L. rhamnosus to the diet of 
growing pigs reduced diarrhea and improved growth per-
formance [21]. In the present study, our results demon-
strated that ILR supplementation significantly improved 
the growth performance of weaned piglets, and the best 

effect was achieved when the supplementation level was 
0.3%.

Serum antioxidant enzyme activity is an important 
indicator of health and the ability to remove free radicals 
[34]. Lactic acid bacteria exert significant immunoregu-
latory effects, including the activation of macrophages, 
interferons, and IgA [35]. In this study, supplementa-
tion with ILR in the feed of weaned piglets significantly 
increased serum T-AOC and GSH-Px activity and 
decreased malondialdehyde levels. Generally, immuno-
globulins are directly related to immune function, and 
lysozymes are involved in innate immunity. This study 
revealed that supplementation with ILR significantly 
increased serum IgA, IgG, IgM, and lysozyme levels in 
weaned piglets, and this is consistent with the effect of 
live bacteria on weaned piglets [36]. These results indi-
cate that the improvement in the immune function and 
antioxidant capacity of weaned piglets by L. rhamnosus is 
not caused by its growth in the intestine to stimulate the 
development of the host intestinal immune system but by 
its cellular components. The specific cellular components 
that regulate host immunity and enhance antioxidant 
capacity require further investigation.

Serum TP, albumin, and BUN levels are related to the 
growth performance of weaned piglets and are often used 
as indicators of protein synthesis and metabolism [37]. 
Previous studies have revealed a strong negative corre-
lation between the biological functions of diet and BUN 
[38]. In the present study, supplementation with 0.3% and 
0.4% ILR significantly increased serum TP and albumin 
levels and reduced serum BUN levels, indicating that ILR 
supplementation promoted amino acid utilization and 
metabolism, and this was beneficial to the health and 

Fig. 4 LEfSe results indicated the significantly altered genera of colon microbiota in weaned piglets treated with inactivated Lactobacillus rhamnosus
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Fig. 5 Effect of inactivated Lactobacillus rhamnosus on the metabolites of colon contents in weaned piglets. (A) OPLS-DA scores of all samples in the 
default mode; (B) Volcano plot indicates differential metabolites of colon contents in weaned piglets treated by inactivated L. rhamnosus; (C) Main sig-
nificantly different metabolites of contents in weaned piglets treated with inactivated L. rhamnosus; (D) Classification diagram indicates the distribution 
of differential metabolites in KEGG pathways; (E) Heatmap indicates Spearman correlations between the main genera of colon microbiota and content 
metabolites in weaned piglets. * P < 0.05; ** P < 0.01
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weight gain of weaned piglets. Serum T-CHO and TG 
levels reflect changes in the lipolysis rate [39]. The main 
function of LDL-C is to transport endogenous choles-
terol, whereas HDL-C transfers cholesterol from periph-
eral tissues to the liver for metabolic decomposition [40]. 
In this study, compared to levels in the control group, 
serum T-CHO and TG levels in the 0.3% and 0.4% ILR 
supplementation groups were significantly decreased, 
whereas HDL-C and LDL-C levels were significantly 
increased and decreased, respectively, thus indicating 
that ILR supplementation promotes lipid and cholesterol 
metabolism in weaned piglets. This was consistent with 
the results of a previous study examining heat-killed L. 
rhamnosus in mice [41]. The increase in serum AST and 
ALT levels is likely related to liver injury and is a sensitive 
marker of hepatocyte damage [42]. Our results revealed 
that ILR supplementation did not alter serum AST and 
ALT levels in weaned piglets, thus indicating that ILR 
supplementation did not damage the liver or myocardial 
cells of weaned piglets.

In pigs, the gut microbiota is closely related to nutri-
ent metabolism, immune regulation, and defense against 
pathogens [43]. This study is the first to report that ILR 
alters the structure and increases the α-diversity of the 
colonic microbiota in weaned piglets. Previous stud-
ies have revealed that increased levels of Firmicutes and 
decreased levels of Bacteroidetes contribute to obesity 
and excess body fat [44]. Bacteroidetes contain numer-
ous probiotics and are rich in polysaccharide-degrading 
enzymes [45]. The ADG and serum levels of TP and 
BUN suggest that dietary ILR supplementation may 
contribute to growth and body fat reduction in weaned 
piglets, and this is consistent with the speculation of He 
et al. [46]. Proteobacteria are the microbial character-
istics of intestinal inflammation [47]. Studies have also 
demonstrated that an increase in spirochetal levels may 
cause an inflammatory response in the body, ultimately 
leading to chronic gastritis in pigs and thereby affecting 
the digestive system [48]. Our results revealed that ILR 
supplementation significantly reduced the relative abun-
dances of Proteobacteria and Spirochetes, thus indicat-
ing that ILR supplementation is beneficial to host health. 
Prevotella positively correlated with feed efficiency and 
growth performance [49]. This is likely due to the ability 
of Prevotella to ferment complex dietary polysaccharides 
[50], thereby promoting the uptake of monosaccharides 
by the host and conferring a growth performance advan-
tage [51]. Simultaneously, large amounts of short-chain 
fatty acids (SCFA) are produced [52]. Our results indicate 
that ILR supplementation significantly increased the rela-
tive abundance of Prevotella in the colonic microbiota of 
weaned piglets. Furthermore, the addition of 0.3% ILR 
significantly increased the abundance of Phascolarcto-
bacterium that can colonize the human gut, produce 

SCFA, and play a beneficial role [53]. SCFA are con-
sidered mediators of communication between the gut 
microbiota and the immune system and help to main-
tain an anti-inflammatory and pro-inflammatory balance 
[54]. An increase in an unclassified Lachnospiraceae bac-
terium also plays an important role in cellulose digestion 
[55]. The common diet used in this study contained cer-
tain complex dietary polysaccharides, and changes in the 
colonic microbiota likely improved digestion and absorp-
tion in growing pigs. This is likely one reason for the sig-
nificant increase in the feed-to-gain ratio. Gut microbiota 
enriched in Prevotella also reduce cholesterol levels [56]. 
The reduction in serum cholesterol levels observed in 
the present study may be related to the high abundance 
of Prevotella. The most significant increase in relative 
abundance was Prevotella 9 that accounted for 5.22% 
in the ILR3 group and only 0.50% in the control group. 
Hung et al. [57] demonstrated that the abundance of Pre-
votella 9 in the feces of weaned piglets was negatively 
correlated with diarrhea and positively correlated with 
growth performance, whereas a decreased abundance 
of UCG-005 was positively correlated with diarrhea and 
negatively correlated with growth performance, and this 
is consistent with the results of this study. Alloprevotella 
can regulate intestinal inflammation and exhibit anti-
inflammatory effects [58], and its relative abundance is 
inversely correlated with inflammation [59]. Prevotel-
laceae_NK3B31_group effectively alleviates intestinal 
inflammation, promotes intestinal nutrient absorption, 
and reduces immune rejection in autoimmune diseases 
[60]. Lachnospira can produce butyrate, and its low 
abundance is associated with constipation [61]. Faecali-
bacterium is one of the most common genera in the gut 
microbiota of healthy adults [62]. It can produce butyr-
ate [63], peptides [64], and extracellular polymeric matrix 
[65], and other metabolites have been demonstrated to 
exhibit anti-inflammatory activities in animal models and 
in vitro experiments [66]. Our results revealed that the 
abundance of these bacteria increased after ILR supple-
mentation, and this was related to the improvement in 
antioxidant and immune indices, thus indicating that ILR 
improve the intestinal microbiota of weaned piglets and 
enhance immunity.

Streptococcus is a major swine pathogen that leads to 
high economic losses in the pig industry and causes zoo-
notic infections such as meningitis and sepsis [67]. There-
fore, effective treatment and prevention of Streptococcus 
suis infections are important in the pig industry. In this 
study, ILR supplementation significantly decreased Strep-
tococcus numbers, thus indicating that ILR possess good 
disease-resistant potential. Moreover, the relative abun-
dance of Terrisporobacter was significantly decreased in 
the ILR3 group. Terrisporobacter induces postoperative 
infection in patients [68], and its increased abundance 



Page 11 of 14Shu et al. BMC Veterinary Research          (2024) 20:422 

may contribute to increased inflammation and oxidative 
stress [69]. Other bacteria prone to negative effects have 
been observed in reduced abundance such as Treponema, 
Christensenelleaceae R-7, and Escherichia-Shigella. The 
Christensenelleaceae R-7 group exhibited a high abun-
dance of bacterial infections, ultimately resulting in loss 
of appetite and emotional anxiety that were negatively 
correlated with weight gain [70, 71]. Escherichia contains 
many pathological forms that cause diarrhea, dysentery, 
and parenteral infections, including urinary tract infec-
tions and meningitis [72]. Shigella is a major pathogen of 
bacillary dysentery worldwide and is commonly observed 
in cholera diarrhea or enterotoxigenic E. coli diarrhea 
[73]. Escherichia-Shigella is associated with significant 
dysregulation of the gut microbiota in patients with 
tuberculous meningitis [74]. Therefore, ILR optimizes 
the intestinal microbiota structure of weaned piglets and 
inhibits pathogenic microorganisms, thereby improv-
ing growth performance and immune function, and it 
possesses good prospects for the development of feed 
additives.

An important means by which gut microbes influence 
host health is through metabolites [75]. NAG induces 
essential allosteric activation of carbamyl phosphate syn-
thetase I (CPS1), a key enzyme in the mammalian urea 
cycle [76]. NAG deficiency leads to urea cycle disease 
and carbamyl phosphate synthetase deficiency (CPS1D) 
[77]. L-ornithine is one of the products in the process of 
producing urea from the effect of L-arginine on L-argi-
nine. It is a core part of the urea cycle and can remove 
excess nitrogen [78], promote lipid metabolism, activate 
the urea cycle, and stimulate urea synthesis [79, 80]. The 
increase in NAG and L-ornithine in this study suggests 
that ILR may promote the urea cycle and protein metabo-
lism, maintain nitrogen equilibrium, and maintain health 
and nutritional status within the body. 1-Methylnicotin-
amide (MNA), a metabolite of vitamin B3, increases NO 
release from vascular endothelial cells and lowers blood 
pressure [81]. It also exerts antithrombotic and anti-
inflammatory effects [82]. The increase in MNA observed 
in the present study may be related to positive changes in 
serum immune markers in the treatment group.

In the primary bile acid biosynthesis pathway, cere-
brosterol and its intermediate product coprocholic acid 
were decreased in the ILR3 group, whereas its final 
products cholic acid and chenodeoxycholic acid were 
increased. Cerebrosterol is highly expressed in diseases 
such as Alzheimer’s disease and meningitis [83, 84]. A 
decrease in cerebrosterol levels indicates that more cho-
lesterol is used to synthesize bile acids (BA). Cholic acid 
(CA) and chenodeoxycholic acid (CDCA) are the pri-
mary bile acids synthesized in the liver [85, 86]. BA plays 
an important role in lipid digestion and absorption and 
is an important regulator of the intestinal microbiota 

that is closely related to intestinal microbes and host 
health [87]. Therefore, ILR may promote fat digestion 
and absorption, regulate sterol metabolism, and improve 
feed efficiency by promoting CA and CDCA synthe-
sis through the primary bile acid biosynthesis pathway. 
α-Linolenic acid (ALA) is an essential fatty acid belong-
ing to the ω-3 series of polyunsaturated fatty acids 
(PUFAs). ALA can be metabolized into bioactive long-
chain PUFAs such as eicosapentaenoic acid (EPA) in the 
human body [88]. However, EPA is not readily converted 
from the precursor ALA in humans and other mam-
mals, as the enzyme activity involved in the conversion 
is weak [89]. In this study, ALA levels decreased and 
EPA levels increased in the ILR3 group, indicating that 
ILR can improve related enzyme activities and promote 
ALA metabolism, although more experimental evidence 
is needed. γ-Linolenic acid, an anti-inflammatory ω-6 
PUFA [90], was increased in the ILR3 group. ω-6 and ω-3 
PUFAs play key roles in a variety of biological functions 
and are essential for health [91]. Fermented rhamnose 
milk can participate in α-linolenic acid metabolism and 
arachidonic acid metabolism, promote fatty acid degra-
dation, and regulate lipid metabolic homeostasis in rats 
[92]. This is consistent with our results with the addition 
of ILR.

Correlation analysis demonstrated that Terrisporobac-
ter was significantly negatively correlated with ω-3 PUFA 
eicosapentaenoic acid. A previous study revealed that 
Terrisporobacter was significantly positively correlated 
with TC, TG, and LDL-C and negatively correlated with 
HDL-C and that reducing Terrisporobacter may increase 
the levels of unsaturated fatty acids and BAs [69]. Guo et 
al. [93] speculated that Terrisporobacter may be involved 
in the regulation of enzymes involved in BA metabolism 
or lipid biosynthesis, ultimately leading to higher lipid 
levels and dyslipidemia. Our results are consistent with 
these findings. Moreover, certain bioactive substances 
such as MMA and pyridoxamine phosphate (PMP) were 
upregulated in the ILR3 group. MMA also exerts anti-
inflammatory effects [82]. PMP is a bioactive vitamin B6 
[94]. Vitamin B6 exerts a positive effect on the develop-
ment of immune organs, serum immunoglobulin con-
tent, and growth performance of weanling rabbits [95]. 
However, they are negatively correlated with Streptococ-
cus and positively correlated with an unclassified genus 
(Prevotellaceae). Moreover, the toxic leukotoxin diol 
9,10-dihome [96] was reduced by the addition of ILR and 
positively correlated with UCG_005. Overall, alterations 
in gut microbial composition and diversity produced by 
ILR supplementation may play an important role in the 
development of gut metabolism, ultimately benefiting the 
health of weaned piglets. Notably, due to limited experi-
mental funds, we only compared the microbiota and 
metabolite compositions in the colon contents between 
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the ILR3 and control groups. It is necessary to systemati-
cally study the effects of different concentrations of ILR 
on the composition of microbiota and metabolites in pig-
let colon contents.

Conclusions
Dietary supplementation with ILR can effectively 
improve the growth performance, serum antioxidant and 
immune indices, and composition and metabolic charac-
teristics of the colonic microbiota of weaned piglets, and 
the 0.3% supplementation level was the best. The addi-
tion of 0.3% ILR increased the α-diversity and optimized 
the structure and metabolism of colonic microbiota, 
and this primarily affected amino acid metabolism, urea 
cycle, lipid metabolism, cofactor metabolism, and vita-
min metabolism pathways. Therefore, the results of this 
study highlight the beneficial effects of ILR on the growth 
and health of weaned piglets and reveal the potential 
mechanism by which ILR improves the intestinal system.
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